XT

PDF and OpenType
technology

The ideal match or an uneasy compromise?

dual’lab

Create a PDF file with text

* Nothing can be simpler

Choose the right font (Tf)

Set text matrix (Tm) or move text cursor (Td)

Convert Unicode chars to PDF characters via encoding (CIDs)

Output (Tj / TJ) and go for a coffee (——

"‘-——-——'1I

T —

><XT dual’lab

This is what you see when you get back if your text is in
Devanagari script:

"N

Below is the correct result.
How many differences can you find between the two?

T=XT dual’lab

Devanagari

CIRIEEIR
SIS 1)

><XT dual’lab

Tamil: different appearance, same problems

LG mesT oo
GLImesTm)

><XT dual’lab

Tamil

L1 mesT o
GLIment M)

><XT dual’lab

What is OpenType

* File format combining TrueType and Typel outlines?

* Not just this: support for all kinds of scripts, world languages and
their specific features.

><XT dual’lab

Latin

THE SWASHES, Llgatures & Kerning

Kerning

THE SWASHES, Llgatures & Kerning
THE SWASHES, Llgatures & Kerning

Discretionary ligatures

THE SWASHES, Llgatures & Kerning
THE SWASHES, Llgatures & Kerning

THE SWASHES, [gatures & Kerning

Swashes

THE SWASHES, Llgatures & Kerning
THE SWASHES, Llgatures & Kerning

THE SWASHES, [gatures & Kerning
THE SWASHES, [igatures & Kerning

Stylistic alternatives

THE SWASHES, Llgatures & Kerning
THE SWASHES, Llgatures & Kerning
THE SWASHES, [gatures & Kerning
THE SWASHES, [igatures & Kerning

THE SWASHES, Lgatures(et)Kerning

PDF Implementation

» Kerning: Text positioning + text showing operators (Tm/Td + Tj),
or TJ operator

e [(A) 120 (W) 120 (A) 95 (Y again)] TJ

e Ligatures, swashes, other substitutions: output correct glyph id and
specify /ToUnicode mapping correctly (if you want to be able to
extract the text from PDF afterwards)

><XT dual’lab

/ToUnicode CMAP

* Different glyph ids, same Unicode
* <002a><002a><004b>
* <00f8><00f8><004b>

><XT dual’lab

/ToUnicode CMAP

* Some ligatures have Unicode values, but some do not
e ff (U+FBOO): 'LATIN SMALL LIGATURE FF'
* <02¢4><02c4><00540048 >

><XT dual’lab

OpenType features

‘aalt’
'abvf’
‘abvm’
‘abvs'

‘afrc’
‘akhn'

Access All Alternates

A

A
A
A
A

pove-base Forms
pove-base Mark Positioning

nove-base Substitutions
ternative Fractions

Khands

And =130 more!

XT

dual’lab

OpenType features: basic operations

 Substitute glyphs

K-K_ fi-fi

* Adjust the positions of glyphs

@ G @ G

OpenType Layout tag registry

* =~ 150 Script tags

* For some scripts there are old and new implementations (e.g. deva
and dev2)

* = 500 Language tags
* = 140 Feature tags
* Font developers also may define and register their own features

* How is everything organized?

><XT dual’lab

GSUB and GPOS tables in the OpenType font

 GSUB = Glyph Substitution
* GPOS = Glyph Positioning

><XT dual’lab

Script List

Language
System Info

GSUB

Feature List

Lookup List

Single Substitution

Multiple
Substitution

Alternate
Substitution

Ligature
Substitution

Contextual
Substitution

Chained Contextual
Substitution

Example

XT

cyrl

s

dual’lab

Script List

Language
System Info

GPOS

Feature List

Lookup List

Single Adjustment

Pair Adjustment

Cursive Adjustment

Mark-to-Base
Attachment

Mark-to-Ligature
Attachment

Mark-to-Mark
Attachment

Features

* How do we know which features to apply?
* How and when to apply them?

><XT dual’lab

Language based forms:

ccmp

Character composition/decomposition

substitution

Typographical forms:

liga
clig

Standard ligature substitution

Contextual ligature substitution

Positioning features:

dist
kern
mark

mkmk

[GSUB = glyph substitution, GPOS = glyph positioning]

Distances
Pair kerning
Mark to base positioning

Mark to mark positioning

GSUB

G5UB

GSUB

GPOS5

GPOS5

GPOS

GPOS

Indic scripts: overview of the algorithm

* Clustering into syllables (Unicode)
* Reordering (Unicode, aside from font)

 Substitutions (OpenType features)
* one to one
* oneto many
* many to one
e contextual

* Positioning (OpenType features)
* kerning
* mark positioning

T=XT dual’lab

Indic shaping algorithm: Unicode

e |nitial ‘ q %
e \U0O91A\u093F\u0928\u094D\u0939\u0947
"~

* Clustering into syllables
\u0928\u094D\u0939\u0947

* Reordering
* \uO93F\u091A\u0928\u094D\u0939\u0947
™~

><XT dual’lab

Indic shaping algorithm: OpenType

+ GPOS %%. %/%.

><XT dual’lab

GSUB features implementation

 Single substitution:
* One to one
e Replacement glyph might not have Unicode value (swashes)
« Remember Unicode value and replace glyph id.

* Multiple substitution:
* One to many
* Do not confuse with Unicode decomposition
 Same approach
* How to enable copying? (/ToUnicode)

T=XT dual’lab

GSUB features implementation

e Alternate substitution:

& &&et

* One to one of many
e Same approach

e Ligature substitution
* Many to one
e Same approach and define /ToUnicode as described before

><XT dual’lab

GPQOS features

 Single adjustments: superscript or subscript
* Pair adjustments: kerning
 Cursive attachment: connect glyphs with attachment points

* MarkToBase attachment: position mark characters with respect to
base glyph

* MarkTolLigature attachment: associate mark with one of the ligature
glyph’s components

e MarkToMark attachment: attach one mark to another

><XT dual’lab

GPOS features implementation

* Placement

* Advance

* Glyph attachment points
e Offset to attaching point

><XT dual’lab

GPOS features implementation

Y placement

X placementv

X advance

Y advance

><XT dual’lab

GPOS features implementation

* Check if current glyph has placement

* Move the cursor to the position of the glyph the current glyph is attached to
(Td)

* Apply xPlacement and yPlacement to move the origin to the anchor (Td)

* Show current glyph (Tj / TJ)

* Roll back the cursor to the initial position (Td)

* Apply xAdvance and yAdvance (Td)

><XT dual’lab

GPOS features implementation

* Horizontal placement => Tj + Td can be replaced with TJ

* Vertical placement (yPlacement != 0 or yAdvance !=0) =>
TJ is not enough => need to use Td

* Might be a problem for text extraction
o [
% ™ { ™~

T=XT dual’lab

Back to /ToUnicode

dUui

The underlying Unicode sequence is:
\u0935\u0930\u094D\u0923\u094B\u0902

(@ + T+ o+ O + o + =)

quTl
N

Content stream glyph ids: 39, 27, 1C4

T

\u0935\u0930\u094D\u0923\u094B\u0902

(E[+ ¢ + -::5-\+ Ul + } +)

Two buffer approach

* Text editors keep two buffers

e Buffer with Unicode string

e Buffer with glyph ids

e Easy correspondence for non-breakable parts (syllables)
e Cursor goes over syllables

* Windows: Uniscribe

* Linux: ICU - International Components for Unicode

><XT dual’lab

Two syllables

d

* Cursor in your browser knows that!
\u0930\u094D\u0923\u094B\u0902

><XT dual’lab

PDF Approach

* Have only content stream and glyphs written there
e /ToUnicode
* Have to map all the glyphs to Unicode characters

><XT dual’lab

1C4 77

/

1C4

/\

\u0935\u0930\u094D\u0923\u094B\u0902

IT=XT dual’lab

Indic does not work that way

XT

R R R R
R R R R
R 3 2 3
i K X | X
q 3 3 3

dual’lab

How to map glyphs to Unicode?

« 39,27, 1C4

* \u0935\u0930\u094D\u0923\u094B\u0902

e 39 <->u0935

e 27 <->u0923

e 1C4 <-> 7?77

* Easy without reordering, but not in our case

* \u0935|\u0930\u094D\u0923|\u094B\u0902
* Incorrect when copying single glyphs

* Incorrect when adding new words

T=XT dual’lab

How to map glyphs to Unicode?

* 39,27, 1C4

* 27 <->u0923

* \u0935|\u0930\u094D\u0923 | \u094B\u0902

* \u0935\u0930\u094D\u0917\u0940\u0915\u0930\u0923
e Extra chars will be copied along with the word

* \u0935\u0930\u094D\u0917\u0940\u0915\u0930\u0930\u094D\u0
923

* Challenge for most of the PDF producers even today

T=XT dual’lab

/ActualText comes to save us

e Can be specified for content that does translate into text but that is
represented in a nonstandard way (ISO 32000-1)

* Replacement text can be specified for the following items:

e A structure element, by means of the optional ActualText entry (PDF 1.4) of
the structure element dictionary.

* A marked-content sequence, through an ActualText entry in a property list
attached to the marked-content sequence with a Span tag.

><XT dual’lab

/ActualText comes to save us

* \u0935\u0930\u094D\u0923\u094B\u0902
* [39, 27, 1C4]

* /ToUnicode CMAP:
e 39 <->u0935
e 27 <->u0923
e 1C4 <->\u094B\u0930\u094D\u0902

/Span <</ActualText <FEFF 0930 094D 0923 0948 0902> >> BDC
<002701C4>Tj
EMC

><XT dual’lab

/ActualText

* Not supported in many PDF viewers
* Problems with determining spaces when extracting text

><XT dual’lab

Features + algorithms

* Lookup tables don’t know script rules .

e Half characters
e d+d=d tva

Ul + 6= UG ndha
®

o J+ Y=Xstha
* Don’t blindly apply all features E I Eq ;E I

e Set up masks for features during preprocessing

><XT dual’lab

-

Arabic

* Right-to-left
* Unicode => logical order
* init, medi, fina, liga

e /ReversedChars
* /ReversedChars BMC
* (olleH)Tj
e 2000 Td
e (.dlrow)Tj
* EMC

XT

dual’lab

Arabic
Joees llzel) s
sHlrzldlse el
Jlas Yl 2l

><XT dual’lab

Why OpenType?

* All non-obligatory font-specific features + positioning

* Many ligatures do not have Unicode equivalent as there are too many
of them because of script-specific rules => encode them in lookup
tables

* Different correct representations of a text: some glyphs might be
present in a font, some may not => too hard to check all options =>
encode transformations in lookup tables

><XT dual’lab

Conclusions

* OpenType features
* Obligatory (Indic, Arabic shaping)
* Non-obligatory (Latin Swashes, Kerning)
* Unicode preprocessing for complex scripts
* Work in pair with algorithms and script rules

* PDF + OpenType = solid (and necessary) match, but...
 Td even for showing a single word (vertical positioning)
 /ActualText for complex scripts text extraction (two buffer analogue)

><XT dual’lab

References

* OpenType specification - https://www.microsoft.com/en-
us/Typography/OpenTypeSpecification.aspx

* Microsoft Typography - https://www.microsoft.com/en-
us/Typography/default.aspx

* FontForge Open Source tool - https://fontforge.github.io

* OpenType CookBook - http://opentypecookbook.com/index.html

><XT dual’lab

https://www.microsoft.com/en-us/Typography/OpenTypeSpecification.aspx
https://www.microsoft.com/en-us/Typography/default.aspx
https://fontforge.github.io/
http://opentypecookbook.com/index.html

Questions? URH? 4l

* Benoit Lagae benoit.lagae@itextpdf.com

* Alexey Subach alexey.subach@duallab.com

><XT dual’lab

mailto:benoit.lagae@itextpdf.com
mailto:alexey.subach@duallab.com

