
1  pdf2Data

www.itextpdf.com

pdf2Data
an iText 7 add-on



2  pdf2Data

What is it?

pdf2Data allows you to extract data from PDF documents.  The process is based on a 
framework that recognizes data inside PDF documents, based on areas that you have selected 
for extraction in your template.  pdf2Data works best on documents that are based on the 
same template, such as an invoice coming from the same supplier. This makes it easier to 
automate document workflow, reducing human error and your processing time.

The data recognition is based on several rules, which need to be defined in advance per each template field. 

TYPICAL RULES ARE: 

•	 the same (horizontal / vertical) position on the page 
•	 the same font size and style 
•	 certain text pattern (numeric, currency sign, etc) 
•	 certain keywords on the same as the required field 
•	 certain cell(s) in the table 

This means that you can create a fully automated solution for data recognition in a PDF document with basic set-up 

on the original sample template. The template relies on dynamic field selectors such as font, style, position and text 

patterns to find the required fields in your data. To ensure you have the best possible results, we leverage iText text 

extraction, which offers a high fidelity recognition process.

Setting up pdf2Data includes integration with pure Java API with CLI (commany line interface) and REST interfaces.  You 

also can choose between the convenient web application software package included with pdf2Data that enables you to 

define selectors in a more intuitive way, by installing the software on your workstation or using a PDF commenting tool 

such as Adobe Reader, to define the selectors. 

How does it work?

RECOGNITION IS BASED ON THE FOLLOWING STEPS:

1.	 	Select parts of the template that correspond to your data fields using the pdf2Data web application or any PDF Viewer 
with commenting functionality.

2.	 	Define relevant rules for the correct data extraction in the comment attached to each selection.
3.	 Upload the template to the web site running the template engine, and see if it recognized your fields and data inside them.

4.	 	Upload any other PDF document that is based on the same template and check if the software could recognize your data.

Steps 1 to 3 need to be done only once per template. Step 4 can be repeated for as many documents as needed. But 

they all need to be based on the same template.

Please note that although this example makes use of our own pdf2Data server, it is of course possible to use 
your own. Or to simply forego the web interface altogether and define your template using the Adobe Reader 
commenting facilities.



3  pdf2Data

Simple example
Figure 1: landing page of pdf2Data web application

Figure 2: an example selector to extract the customer address 



4  pdf2Data

Figure 3: the template, opened in Adobe Acrobat

Figure 4: sample extraction



5  pdf2Data

A more in-depth look

ABOUT THE SELECTORS

Important: Keep in mind this is not intended as a replacement for the full documentation. Rather as an overview of the 

possibilities for data-extraction.

Font-based

name functionality

fontFamily This selector extracts the font name of the annotated text region and then uses this font name to filter 
glyphs with that font name. It is assumed that all the annotated text of the region has the same font 
family.

fontSize This selector extracts the font size of the annotated text region and then uses this font size to filter glyphs 
with that font size. It is assumed that all the annotated text of the region has the same font size.

fontStyle This selector extracts the font style of the annotated text region, e.g. bold, italic, and then uses this font 
style to filter glyphs with this font style. It is assumed that all the annotated text of the region has the 
same font style.

font The font selector identifies the font used for the text in the selector region and extracts all symbols with 
the same font from the PDF document. If the text in the selector region uses several fonts, only the first 
one is used. The font is considered as a combination of the font family, font size and font style. If only 
some of these properties should be honoured when extracting text, please use selectors fontFamily, 
fontSize, fontStyle

 
Position-based

name functionality

boundary This selector restricts the area on the page where the data is located. The selector boundary without any 
additional properties means that only the data inside the selector region will be extracted. However, it 
is often useful to honor only some of the region borders. In this case these borders can be specified as 
additional properties of the boundary selector. For example, boundary:left selector means that only the 
symbols positioned to the right of the left boundary are extracted. Similarly, - boundary:top means that 
only the symbols positioned below the top boundary are extracted, - boundary: left right means that 
symbols between the left and right boundaries are selected, while the vertical position is ignored. Note. 
The selector boundary without arguments is equivalent to boundary: left right bottom top.

align For “align:left” this selector uses the left bound of annotation for selecting only those lines that begin near 
that boundary. For “align:right” this selector uses the right bound of annotation for selecting only those 
lines that end near that boundary.

page This selector restricts the area to a given page nr. Use 1, 2, etc or -1 (for the last page), -2, etc

 
Picker

name functionality

picker This selector drills down on an extracted group that was recognized on the previous step. The parameter 
is an integer number greater or less than 0 (it depends from direction: first-to-last for positive index and 
last-to-first for negative index). If it exceeds the number of input groups, the result will be empty. The 
typical usecase is that you've already selected a column of a table (using the table selector), and that 
you'd now like to drill down on the last row in the column. This is typically the case when the table lists 
purchased items, and the last row contains the total price.



6  pdf2Data

Formats

name functionality

price recognizes a decimal number, possibly with decimal separator, group separator and preceding or 
following currency sign. Supported: dollar (sign, USD, CAD, HKD, AUD), euro (sign, EUR), yen (sign, JPY), 
pound (sign, GBP, EBP)

date recognizes date string in a number of common formats. Supported: All permutations of MM (or M), DD 
(or D), YYYY (or YY) with separators like '.,/-: ', literal representations of month are caught by '[A-Za-z]+' or '' 
regexp

iban recognizes IBAN string

VAT Supports the VAT numbers of all 27 EU countries. (as of time of writing Feb 2017)

 
Text

name functionality

paragraph This selector combines data into paragraphs with specified (NORMAL, LARGE, HUGE) line spacing and 
return them. By default, if line spacing isn’t specified selector will use normal line spacing.

line This selector combines data into lines with specified (NORMAL, LARGE, HUGE) character spacing and 
returns them. By default, if char spacing isn’t specified selector will use normal char spacing.

 
Pattern-based

name functionality

pattern This selector is usual regular expression selector. It allows convenience selection of a piece of data to 
be extracted. You can specify a prefix, type of data to be extracted, and a suffix. E.g. (prefix) "total price" 
(suffix) "EUR"

regexp The regExp selector implements the standard regular expression search with a few additional options.

 
Table

name functionality

tableCluster The tableCluster selector attempts to process symbols into a logical table. This selector has many 
parameters (including the number of columns, rows, the columns to be selected, the row to be selected, 
the headers, etc). Consult the full documentation for a thorough understanding.



7  pdf2Data

TYPICAL USECASE : PROCESSING AN INVOICE

Boilerplate code

// build a new Pdf2DataExtractor based on a template

Pdf2DataExtractor extractor = new Pdf2DataExtractor(template);

// sampleFile: the file you wish to process

// targetPdf: the path where you wish to store the annotated pdf (for visual inspection)

// targetXML: the path where you wish to store the extracted data (in xml format)

extractor.parsePdf(sampleFile, targetPDF, targetXML);

 
Practical guidelines

1.	 	Use the boundary selector with all four borders enabled to check that the text can be extracted. 
pdf2Data relies on internal PDF structure rather than visual presentation to extract the text. Not all text visible in the 
document can be reliably extracted from PDF documents. The boundary selector triggers one of the simplest low level 
text extraction algorithms, and it is always a good idea to try first or if other selectors don’t work for your document.

2.	 	Do not use the boundary selector with all four sides enabled in the final version of the template, unless the text has a 
fixed position on the page and can not grow depending on the variable data.

3.	 Try the table selector in the automatic mode if your data is located inside a table cell. Table selector in automatic mode 
is the best choice for tables with clear borders around the cells (or at least between columns). It also tries a number of 
smart heuristic algorithms even if your table does not have any borders at all.

4.	 Use the pattern selector if your data is surrounded by boilerplate text (i.e. text that is unlikely to change and always 
precedes or follows after the important data). e.g. "total price: xxxx EUR"

5.	 Use the paragraph selector to combine several lines into a single paragraph or to select a paragraph with a predefined 
first (title) line. Sometimes the extracted text comes out as a sequence of distinct lines. You can always try combining 
them into a single paragraph using Paragraph selector at the end. Paragraph selectors can also be used very efficiently 
to allocate the blocks of text with a predefined first (title) line.

DEPLOYING YOUR OWN PDF2DATA WEB APPLICATION

1.	 Download a Java SE Development Kit 8 and install it.
2.	 Download a Apache Tomcat 8.x software and install it.
3.	 Download the pdf2Data web application war file
4.	 Deploy the application on the installed Tomcat server In most cases it is sufficient to copy a war file into subdirectory 

webapps in Tomcat directory
5.	 Create the file “web.properties” as follows



8  pdf2Data

dir.temp=your_folder_for_resources

mail.to=pdf2data@duallab.com

mail.smtp.host=smtp.duallab.com

mail.smtp.port=25

mail.ssl.smtp.port=567

mail.ssl.enable=false

mail.smtp.starttls.enable=false

mail.from=your email address

user.name=your email address

user.password=your email password

USING THE COMMAND LINE INTERFACE (CLI)

Using the CLI is done in a two-step process. First the template pdf is pre-processed. The annotations are extracted, 

along with their corresponding selectors, and stored in an xml file. The parser then uses the template information in 

the xml file alongside the document to be processed to produce both an xml document (containing the data) and a pdf 

document containing information about the recognition (for quality control purposes.)

Preprocessor

java -jar preprocess.jar --template=Tempate.pdf --xml=Template.xml

Arguments:

-t=Template.pdf, --template=Template.pdf

This argument defines a template PDF file that contains annotations with rules for each 

region.

-x=Template.xml, --xml=Template.xml

This argument defines an XML file that will contain rules for each region we want to recognize 

after preprocessing of the corresponding PDF file.



9  pdf2Data

Parser

java -jar parse.jar --template=Template.xml --pdf=Test.pdf --outPdf=pdfFile.pdf 

--outXml=xmlFile.xml

Arguments:

-t=Template.xml, --template=Template.xml

This argument defines an XML file with rules for recognizing regions of data.

-p=Test.pdf, --pdf=Test.pdf

This argument defines a PDF file with data we want to recognize.

-r=pdfFile.pdf, --outPdf=pdfFile.pdf

This argument defines a PDF file that will contain visual representation of recognized 

elements in the form of annotations.

-x=xmlFile.xml, --outXml=xmlFile.xml

This argument defines an XML file that will contain a recognized data from the corresponding 

PDF file.

CONCLUSION

In this whitepaper, we've briefly presented our new add-on pdf2Data. Pdf2Data allows you to seamlessly integrate data 

extraction in your existing workflow. A template document has to be defined, either via Adobe Reader comments or 

through the available web-interface software package. Afterwards, this template can be applied effortlessly to ensure 

high-volume, high-throughput data transformations. The extracted data is put into an .XML file, which can then be read 

by most libraries.

Learn more at www.itextpdf.com


