
1 pdfCalligraph

www.itextpdf.com

pdfCalligraph
an iText 7 add-on

2 pdfCalligraph

Introduction

Your business is global, shouldn’t your documents be, too?
The PDF format does not make it easy to support certain alphabets, but now, with the help of
iText and pdfCalligraph, we are on our way to truly making PDF a global format.

The iText library was originally written in the context of Western European languages, and was only designed to

handle left-to-right alphabetic scripts. However, the writing systems of the world can be much more complex and

varied than just a sequence of letters without interaction. Supporting every type of writing system that humanity has

developed is a tall order, but we strive to be a truly global company. As such, we are determined to respond to customer

requests asking for any writing system. In response to this, we have begun our journey into advanced typography with

pdfCalligraph.

pdfCalligraph is an add-on module for iText 7, designed to seamlessly handle any kind of advanced shaping operations

when writing textual content to a PDF file. Its main function is to correctly render complex writing systems such as the

right-to-left Hebrew and Arabic scripts, and the various writing systems of the Indian subcontinent and its surroundings.

In addition, it can also handle kerning and other optional features that can be provided by certain fonts for other

alphabets.

In this paper, we first provide a number of cursory introductions: we’ll start out by exploring the murky history of

encoding standards for digital text, and then go into some detail about how the Arabic and Brahmic alphabets are

structured. Afterwards, we will discuss the problems those writing systems pose in the PDF standard, and the solutions

to these problems provided by iText 7’s add-on pdfCalligraph.

Contents

Introduction 2

Technical overview 3

Standards and deviations 3

Unicode 3

A very brief introduction to the Arabic script 6

Encoding Arabic 8

A very brief introduction to the Brahmic scripts 8

Encoding Brahmic scripts 11

pdfCalligraph and the PDF format 12

Java 12

.NET Framework 12

Text extraction and searchability 13

Configuration	 14

Using the high-level API 15

Using the low-level API 17

Colophon 19

3 pdfCalligraph

Technical overview

This section will cover background information about character encodings, the Arabic alphabet and Brahmic scripts.

If you have a solid background in these, then you can skip to the technical overview of pdfCalligraph, which begins

at page 12.

A brief history of encodings

STANDARDS AND DEVIATIONS

For digital representation of textual data, it is necessary to store its letters in a binary compatible way. Several systems

were devised for representing data in a binary format even long before the digital revolution, the best known of which

are Morse code and Braille writing. At the dawn of the computer age, computer manufacturers took inspiration from

these systems to use encodings that have generally consisted of a fixed number of bits.

The most prominent of these early encoding systems is ASCII, a seven bit scheme that encodes upper and lower case

Latin letters, numbers, punctuation marks, etc. However, it has only 27 = 128 places and as such does not cover diacritics

and accents, other writing systems than Latin, or any symbols beyond a few basic mathematical signs.

A number of more extended systems have been developed to solve this, most prominently the concept of a code

page, which maps all of a single byte’s possible 256 bit sequences to a certain set of characters. Theoretically, there is

no requirement for any code page to be consistent with alphabetic orders, or even consistency as to which types of

characters are encoded (letters, numbers, symbols, etc), but most code pages do comply with a certain implied standard

regarding internal consistency.

Any international or specialized software has a multitude of these code pages, usually grouped for a certain language or

script, e.g. Cyrillic, Turkish, or Vietnamese. The Windows-West-European-Latin code page, for instance, encodes ASCII in

the space of the first 7 bits and uses the 8th bit to define 128 extra positions that signify modified Latin characters like É,

æ, ð, ñ, ü, etc.

However, there are multiple competing standards, developed independently by companies like IBM, SAP, and

Microsoft; these systems are not interoperable, and none of them have achieved dominance at any time. Files using

codepages are not required to specify the code page that is used for their content, so any file created with a different

code page than the one your operating system expects, may contain incorrectly parsed characters or look unreadable.

UNICODE

The eventual response to this lack of a common and independent encoding was the development of Unicode, which has

become the de facto standard for systems that aren’t encumbered by a legacy encoding depending on code pages, and

is steadily taking over the ones that are.

4 pdfCalligraph

Unicode aims to provide a unique code point for every possible character, including even emoji and extinct alphabets.

These code points are conventionally numbered in a hexadecimal format. In order to keep an oversight over which code

point is used for which writing systems, characters are grouped in Unicode ranges.

First code point Last code point Name of the script Number of code points

0x0400 0x052F Cyrillic 304

0x0900 0x097F Devanagari 128

0x1400 0x167F Canadian Aboriginal Syllabary 640

It is an encoding of variable length, meaning that if a bit sequence (usually 1 or 2 bytes) in a Unicode text contains

certain bit flags, the next byte or bytes should be interpreted as part of a multi-byte sequence that represents a single

character. If none of these flags are set, then the original sequence is considered to fully identify a character.

There are several encoding schemes, the best known of which are UTF-8 and UTF-16. UTF-16 requires at least 2 bytes

per character, and is more efficient for text that uses characters on positions 0x0800 and up e.g. all Brahmic scripts and

Chinese. UTF-16 is the encoding that is used in Java and C# String objects when using the Unicode notation \u0630.

UTF-8 is more efficient for any text that contains Latin text, because the first 128 positions of UTF-8 are identical to ASCII.

That allows simple ASCII text to be stored in Unicode with the exact same filesize as would happen if it were stored in

ASCII encoding.

There is very little difference between either system for any text which is predominantly written in these alphabets:

Arabic, Hebrew, Greek, Armenian, and Cyrillic.

A brief history of fonts

A font is a collection of mappings that links character IDs in a certain encoding with glyphs, the actual visual

representation of a character. Most fonts nowadays use the Unicode encoding standard to specify character IDs. A glyph

is a collection of vector curves which will be interpreted by any program that does visual rendering of characters.

Sample cubic Bézier curve, requiring 4 coordinate points

Vectors in general, and Bézier curves specifically, provide a

very efficient way to store complex curves by requiring

only a small number of two-dimensional coordinates to

fully describe a curve (see left)

5 pdfCalligraph

Below is a visual representation of the combination of a number of vector curves into a glyph shape:

As usual, there are a number of formats, the most relevant

of which here are TrueType and its virtual successor

OpenType.

The TrueType format was originally designed by Apple as

a competitor for Type 1 fonts, at the time a proprietary

specification owned by Adobe. In 1991, Microsoft started

using TrueType as its standard font format. For a long

time, TrueType was the most common font format on both

Mac OS and MS Windows systems, but both companies,

Apple as well as Microsoft, added their own proprietary

extensions, and soon they had their own versions and

interpretations of (what once was) the standard. When

looking for a commercial font, users had to be careful to

buy a font that could be used on their system. To resolve

the platform dependency of TrueType fonts, Microsoft

started developing a new font format called OpenType as a

successor to TrueType. Microsoft was joined by Adobe, and

support for Adobe’s Type 1 fonts was added: the glyphs

in an OpenType font can now be defined using either

TrueType or Type 1 technology.

OpenType adds a very versatile system called OpenType features to the TrueType specification. Features define in

what way the standard glyph for a certain character should be moved or replaced by another glyph under certain

circumstances, most commonly when they are written in the vicinity of specific other characters. This type of information

is not necessarily information inherent in the characters (Unicode points), but must be defined on the level of the font.

It is possible for a font to choose to define ligatures that aren’t mandatory or even commonly used, e.g. a Latin font may

define ligatures for the sequence ‘fi’, but this is in no way necessary for it to be correctly read.

TrueType is supported by the PDF format, but unfortunately there is no way to leverage OpenType features in PDF. A PDF

document is not dynamic in this way: it only knows glyphs and their positioning, and the correct glyph IDs at the correct

positions must be passed to it by the application that creates the document. This is not a trivial effort because there are

many types of rules and features, recombining or repositioning only specific characters in specific combinations.

6 pdfCalligraph

A brief history of writing

Over the last 5000+ years, humanity has created a cornucopia of writing systems. After an extended initial period of

protowriting, when people tried to convey concepts and/or words by drawing images, a number of more abstract

systems evolved. One of the most influential writing systems was the script developed and exported by the seafaring

trade nation of Phoenicia. After extended periods of time, alphabets like Greek and its descendants (Latin, Cyrillic,

Runes, etc), and the Aramaic abjad and its descendants (Arabic, Hebrew, Syriac, etc) evolved from the Phoenician script.

Although this is a matter of scientific debate, it is possible that the Phoenician alphabet is also an ancestor of the entire

Brahmic family of scripts, which contains Gujarati, Thai, Telugu, and over a hundred other writing systems used primarily

in South-East Asia and the Indian subcontinent.

The other highly influential writing system that is probably an original invention, the Han script, has descendants used

throughout the rest of East Asia in the Chinese-Japanese-Korean spheres of influence.

A VERY BRIEF INTRODUCTION TO THE ARABIC SCRIPT

Arabic is a writing system used for a large number of languages in the greater Middle East. It is most prominently

known from its usage for the Semitic language Arabic and from that language’s close association with Islam, since

most religious Muslim literature is written in Arabic. As a result, many other non-Semitic communities in and around

the culturally Arabic/Muslim sphere of influence have also adopted the Arabic script to represent their local languages,

like Farsi (Iran), Pashto (Afghanistan), Mandinka (Senegal, Gambia), Malay (Malaysia, Indonesia), etc. Some of these

communities have introduced new letters for the alphabet, often based on the existing ones, to account for sounds and

features not found in the original Arabic language.

Arabic is an abjad, meaning that, in principle, only the consonants of a given word will be written. Like most other

abjads, it is ‘impure’ in that the long vowels (/a:/, /i:/, /u:/) are also written, the latter two with the same characters that

are also used for /j/ and /w/. The missing information about the presence and quality of short vowels must be filled in by

the reader; hence, it is usually necessary for the user to actually know the language that is written, in order to be able to

fully pronounce the written text.

I’jam distinguishes between otherwise identical forms
(from Wikipedia.org)

Standard Arabic has 28 characters, but there are only 16 base forms:

a number of the characters are dotted variants of others. These basic

modification dots, called i’jam, are not native to the alphabet but have

been all but mandatory in writing since at least the 11th century.

7 pdfCalligraph

Contextual variation of characters (from Wikipedia.org)

Like the other Semitic abjads, Arabic is written from right to left, and

does not have a distinction between upper and lower case. It is in all

circumstances written cursively, making extensive use of ligatures to

join letters together into words. As a result, all characters have several

appearances, sometimes drastically different from one another,

depending on whether or not they’re being adjoined to the previous

and/or next letter in the word. The positions within a letter cluster are

called isolated, initial, medial, and final. A few of the letters cannot be

joined to any following letter; hence they have only two distinct forms,

the isolated/initial form and the medial/final form.

This concept is easy to illustrate with a hands-on example. The Arabic

word ‘aniq (meaning elegant) is written with the following letters:

Arabic word ‘aniq, not ligaturized

However, in actual writing, the graphical representation shows marked differences. The rightmost letter, أ (alif with

hamza), stands alone because by rule it does not join with any subsequent characters; it is thus in its isolated form.

The leftmost three letters are joined to one another in one cluster, where the characters take up their contextual initial,

medial, and final positions. For foreign audiences, the character in the medial position is unrecognizable compared to its

base form, save for the double dot underneath it.

Arabic word ‘aniq, properly ligaturized

It is possible to write fully vocalized Arabic, with all phonetic information available, through the use of diacritics. This

is mostly used for students who are learning Arabic, and for texts where phonetic ambiguity must be avoided (e.g. the

Qur’an). The phonetic diacritics as a group are commonly known as tashkil; its most-used members are the harakat

diacritics for short /a/, /i/, and /u/, and the sukun which denotes absence of a vowel.

8 pdfCalligraph

ENCODING ARABIC

In the Unicode standard, the Arabic script is encoded into a number of ranges of code points:

First code point Last code point Name of the range Number of code points Remarks

0x0600 0x06FF Arabic 256 Base forms for Standard
Arabic and a number of
derived alphabets in Asia

0x0750 0x077F Arabic Supplement 48 Supplemental characters,
mostly for African and
European languages0x08A0 0x08FF Arabic Extended-A 96

0xFB50 0xFDFF Arabic Presentation
Forms-A

688 Unique Unicode points for
all contextual appearances
(isolated, initial, medial, final)
of Arabic glyphs0xFE70 0xFEFF Arabic Presentation

Forms-B
144

This last range may lead you to think that Arabic might not need OpenType features for determining the appropriate

glyphs. That is correct in a sense, and that is also the reason that iText 5 was able to correctly show non-vocalized Arabic.

However, it is much more error-proof to leverage the OpenType features for optional font divergences, for glyphs that

signify formulaic expressions, and for making a document better suited to text extraction. You will also need OpenType

features to properly show the tashkil in more complex situations.

A VERY BRIEF INTRODUCTION TO THE BRAHMIC SCRIPTS

So named because of their descent from the ancient alphabet called Brahmi, the Brahmic scripts are a large family

of writing systems used primarily in India and South-East Asia. All Brahmic alphabets are written from left to right,

and their defining feature is that the characters can change shape or switch position depending on context. They are

abugidas, i.e. writing systems in which consonants are written with an implied vowel, usually a short /a/ or schwa, and

only deviations from that implied vowel are marked.

The Brahmic family is very large and diverse, with over 100 existing writing systems. Some are used for a single

language (e.g. Telugu), others for dozens of languages (e.g. Devanagari, for Hindi, Marathi, Nepali, etc.), and others only

in specific contexts (e.g. Baybayin, only for ritualistic uses of Tagalog). The Sanskrit language, on the other hand, can be

written in many scripts, and has no ‘native’ alphabet associated with it.

The Brahmic scripts historically diverged into a Northern and a Southern branch. Very broadly, Northern Brahmi

scripts are used for the Indo-European languages prevalent in Northern India, whereas Southern Brahmi scripts are

used in Southern India for Dravidian languages, and for Tai, Austro-Asiatic, and Austronesian languages in larger

South-East Asia.

9 pdfCalligraph

Northern Brahmi

Punjabi word kirapaalu (Gurmukhi alphabet)

Many scripts of the Northern branch show the grouping of characters

into words with the characteristic horizontal bar.

Devanagari t combined with various vowels

In Devanagari, one of the more

prominent alphabets of the

Northern Brahmi branch, an implied vowel /a/ is not expressed in writing (#1), while

other vowels take the shape of various diacritics (#2-5). #5 is a special case, because

the short /i/ diacritic is positioned to the left of its consonant, even though it follows

it in the byte string. When typing a language written in Devanagari, one would first

input the consonant and then the vowel, but they will be reversed by a text editor

that leverages OpenType features in any visual representation.

Devanagari effect of halant

Another common feature is the use of half-characters in consonant clusters,

which means to affix a modified version of the first letter to an unchanged

form of the second. When typing consonant clusters, a diacritic called the

halant must be inserted into the byte sequence to make it clear that the

first consonant must not be pronounced with its inherent vowel. Editors will

interpret the occurrence of halant as a sign that the preceding letter must be

rendered as a half-character.

If the character accompanied by the halant is followed by a space, then the character is shown with an accent-like

diacritic below (#7). If it is not followed by a space, then a half character is rendered (#8). As you can see, line #8 contains

the right character completely, and also everything from the left character up until the long vertical bar. This form is

known as a “half character”.

The interesting thing is that #7 and #8 are composed of the exact same characters, only in a different order, which has

a drastic effect on the eventual visual realization. The reason for this is that the halant is used in both cases, but at a

different position in the byte stream.

10 pdfCalligraph

Southern Brahmi

The Southern branch shows more diversity but, in general, will show the characters as more isolated:

Tamil word nerttiyana

Kannada s combined with various vowels

Some vowels will change the shape of the accompanying consonants, rather than

being simple diacritical marks (see left).

Kannada effect of halant

Southern Brahmi also has more of

a tendency to blend clustering characters into unique forms rather than

affixing one to the other. If one of the characters is kept unchanged, it

will usually be the first one, whereas Northern Brahmi scripts will usually

preserve the second one. They use the same technique of halant, but the

mutations will be markedly different.

Tamil k combined with various vowels, stressing
repositioning

Some scripts will also do more repositioning logic for some vowels,

rather than using glyph substitutions or diacritics.

11 pdfCalligraph

ENCODING BRAHMIC SCRIPTS

Fonts need to make heavy use of OpenType features in order to implement any of the Brahmic scripts. Every Brahmic

script has got its own dedicated Unicode range. Below are a few examples:

First code point Last code point Name of the script Number of code points

0x0900 0x097F Devanagari 128

0x0980 0x09FF Bengali 128

0x0A00 0x0A7F Gurmukhi 128

0x0A80 0x0AFF Bengali 128

Unlike for Arabic, contextual forms are not stored at dedicated code points. Only the base forms of the glyphs have a

Unicode point, and all contextual mutations and moving operations are implemented as OpenType features.

12 pdfCalligraph

pdfCalligraph and the PDF format

A brief history of iText

In earlier versions of iText, the library was already able to render Chinese, Japanese, and Korean (CJK) glyphs in PDF

documents, and it had limited support for the right-to-left Hebrew and Arabic scripts. When we made attempts to go

further, technical limitations, caused by sometimes seemingly unrelated design decisions, hampered our efforts to

implement this in iText 5. Because of iText 5’s implicit promise not to break backwards compatibility, expanding support

for Hebrew and Arabic was impossible: we would have needed to make significant changes in a number of APIs to

support these on all API levels.

For the Brahmic alphabets, we needed the information provided by OpenType font features; it turned out to be

impossible in iText 5 to leverage these without drastic breaks in the APIs. When we wrote iText 7, redesigning it from the

ground up, we took care to avoid these problems in order to provide support for all font features, on whichever level of

API abstraction a user chooses. We also took the next step and went on to create pdfCalligraph, a module that supports

the elusive Brahmic scripts.

Platform limitations

JAVA

iText 7 is built with Java 7. The current implementation of pdfCalligraph depends on the enum class java.lang.
Character.UnicodeScript, which is only available from Java 7 onwards. iText 7 of course uses some of the other

syntax features that were new in this release, so users will have no option to build from source code for older versions,

and will have to build their own application on Java 7 or newer.

.NET FRAMEWORK

iText 7 is built with .NET Framework version 4.0. It uses a number of concepts that preclude backporting, such as LINQ

and Concurrent Collections.

PDF limitations

PDF, as a format, is not designed to leverage the power of OpenType fonts. It only knows the glyph ID in a font that

must be rendered in the document, and has no concept of glyph substitutions or glyph repositioning logic. In a PDF

document, the exact glyphs that make up a visual representation must be specified: the Unicode locations of the original

characters - typical for most other formats that can provide visual rendering - are not enough.

13 pdfCalligraph

Correct Devanagari (Hindi) representation of the
word Sanskrt

As an example, the word “Sanskrit” is written in Hindi as follows with the

Devanagari alphabet:

character default meaning Unicode point comments

स sa 0938

ं m 0902 nasalisation (diacritic)

स sa 0938

् halant 094D drops inherent a of previous consonant

क ka 0915

ृ r 0943 vocalic r (diacritic) replaces inherent a

त ta 0924

Incorrect Devanagari (Hindi) representation of
the word Sanskrt

When this string of Unicode points is fed to a PDF creator application that

doesn’t leverage OTF features, the output will look like this:

The PDF format is able to resolve the diacritics as belonging with the glyph they pertain to, but it cannot do the complex

substitution of sa + halant + ka. It also places the vocalic r diacritic at an incorrect position relative to its parent glyph.

TEXT EXTRACTION AND SEARCHABILITY

A PDF document does not necessarily know which Unicode characters are represented by the glyphs it has stored. This is

not a problem for rendering the document with a viewer, but may make it harder to extract text. A font in a PDF file can

have a ToUnicode dictionary, which will map glyph IDs to Unicode characters or sequences. However, this mapping is

optional, and it’s necessarily a one-to-many relation so it cannot handle some of the complexities of Brahmic alphabets,

which would require a many-to-many relation.

14 pdfCalligraph

Due to the complexities that can arise in certain glyph clusters, it may be impossible to retrieve the actual Unicode

sequence. In this case, it is possible in PDF syntax to specify the correct Unicode code point(s) that are being shown by

the glyphs, by leveraging the PDF marked content attribute /ActualText. This attribute can be picked up by a PDF viewer

for a text extraction process (e.g. copy-pasting contents) or searching for specific text; without this, it is impossible to

retrieve the contents of the file correctly.

Even though the /ActualText marker is necessary to properly extract some of the more complex content, it is not used

often by PDF creation software. Because of this and the garbage-in-garbage-out principle, there is usually only a slim

chance that you will be able to correctly extract text written with a Brahmic alphabet.

Support

What we support: New:

Devanagari, used for Hindi, Marathi, Sindhi, etc Telugu

Tamil Bengali

Hebrew - only requires pdfCalligraph for right-to-
left writing

Malayalam

Arabic, including tashkil Gujarati

Gurmukhi, used for writing Punjabi Thai

Kannada

The Thai writing system does not contain any transformations in glyph shapes, so it only requires pdfCalligraph

functionality to correctly render diacritics.

Using pdfCalligraph

CONFIGURATION

Using pdfCalligraph is exceedingly easy: you just load the correct binaries into your project, make sure your valid license

file is loaded, and iText 7 will automatically use the pdfCalligraph code when text instructions are encountered that

contain Indic texts, or a script that is written from right to left.

The iText layout module will automatically look for the pdfCalligraph module in its dependencies if Brahmic or Arabic

text is encountered by the Renderer Framework. If pdfCalligraph is available, iText will call its functionality to provide the

correct glyph shapes to write to the PDF file. However, the typography logic consumes resources even for documents

that don’t need any shaping operations. This would affect all users of the document creation software in iText, including

those who only use iText for text in writing systems that don’t need OpenType, like Latin or Cyrillic or Japanese. Hence,

in order to reduce overhead, iText will not attempt any advanced shaping operations if the pdfCalligraph module is not

15 pdfCalligraph

loaded as a binary dependency.

Instructions for loading dependencies can be found on http://developers.itextpdf.com/itext-7 . The exact modules you

need are:

• the pdfCalligraph library itself
• the license key library

USING THE HIGH-LEVEL API

pdfCalligraph exposes a number of APIs so that it can be reached from the iText Core code, but these APIs do not have

to be called by code in applications that leverage pdfCalligraph. Even very complex operations like deciding whether the

glyphs need /ActualText as metadata will be done out of the box.

This code will just work - note that we don’t even have to specify which writing system is being used:

// initial actions
LicenseKey.loadLicenseFile(“/path/to/license.xml”);
Document arabicPdf = new Document(new PdfDocument(new PdfWriter(“/path/to/output.pdf”)));

// Arabic text starts near the top right corner of the page
arabicPdf.setTextAlignment(TextAlignment.RIGHT);

// create a font, and make it the default for the document
PdfFont f = PdfFontFactory.createFont(“/path/to/arabicFont.ttf”);
arabicPdf.setFont(f);

// add content: (as-salaamu ‘aleykum - peace be upon you)
arabicPdf.add(new Paragraph(“\u0627\u0644\u0633\u0644\u0627\u0645 \u0639\u0644\u064A\u0643\u0645”));

arabicPdf.close();

iText will only attempt to apply advanced shaping in a text on the characters in the alphabet that constitutes a majority1

of characters of that text. This can be overridden by explicitly setting the script for a layout element. This is done as

follows:

PdfFont f = PdfFontFactory.createFont(“/path/to/unicodeFont.ttf”, PdfEncodings.IDENTITY_H, true);
String input = “The concept of \u0915\u0930\u094D\u092E (karma) is at least as old as the Vedic texts.”;

Paragraph mixed = new Paragraph(input);
mixed.setFont(f);
mixed.setProperty(Property.FONT_SCRIPT, Character.UnicodeScript.DEVANAGARI);

iText will of course fail to do shaping operations with the Latin text, but it will correctly convert the र (ra) into the

combining diacritic form it assumes in consonant clusters.

1 Technically, the plurality https://en.wikipedia.org/wiki/Plurality_(voting)

16 pdfCalligraph

However, this becomes problematic when mixing two or more alphabets that require pdfCalligraph logic. You can only

set one font script property per layout object in iText, so this technique only allows you to show one alphabet with

correct orthography. You are also less likely to find fonts that provide full support for all the alphabets you need.

Since version 7.0.2, iText provides a solution for this problem with the FontProvider class. It is an evolution of the

FontSelector from iText 5, which allowed users to define fallback fonts in case the default font didn't contain a glyph

definition for some characters.

This same problem is solved in iText 7 with the FontProvider, but in addition to this, pdfCalligraph will automatically

apply the relevant OpenType features available in the fonts that are chosen.

Below is a brief code sample that demonstrates the concept:

// initial actions

LicenseKey.loadLicenseFile("/path/to/license.xml");

Document mixedDoc = new Document(new PdfDocument(new PdfWriter("/path/to/output.pdf")));

// create a repository of fonts and let the document use it

FontSet set = new FontSet();

set.addFont("/path/to/ArabicFont.ttf");

set.addFont("/path/to/xLatinFont.ttf");

set.addFont("/path/to/GurmukhiFont.ttf");

mixedDoc.setFontProvider(new FontProvider(fontSet));

// set the default document font to the family name of one of the entries in the FontSet

mixedDoc.setProperty(Property.FONT, "MyFontFamilyName");

// "Punjabi, , ਪੰਜਾਬੀ "
// The word Punjabi, written in the Latin, Arabic, and Gurmukhi alphabets

String content = "Punjabi, \u067E\u0646\u062C\u0627\u0628\u06CC, \u0A2A\u0A70\u0A1C\u0A3E\u0A2C\u0A40";

mixedDoc.add(new Paragraph(content));

mixedDoc.close();

17 pdfCalligraph

It is also trivial to enable kerning, the OpenType feature which lets fonts define custom rules for repositioning glyphs

in Latin text to make it look more stylized. You can simply specify that the text you’re adding must be kerned, and

pdfCalligraph will do this under the hood.

PdfFont f = PdfFontFactory.createFont(“/path/to/kernedFont.ttf”, PdfEncodings.IDENTITY_H, true);
String input = “WAVE”;

Paragraph kerned = new Paragraph(input);
kerned.setFont(f);
kerned.setProperty(Property.FONT_KERNING, FontKerning.YES);

Latin text ‘wave’ without kerning Latin text ‘wave’ with kerning

USING THE LOW-LEVEL API

Users who are using the low-level API can also leverage OTF features by using the Shaper. The API for the Shaper

class is subject to modifications because pdfCalligraph is still a young product, and because it was originally not meant

to be used by client applications. For those reasons, the entire class is marked as @Deprecated or [Obsolete], so

that users know that they should not yet expect backwards compatibility or consistency in the API or functionality.

Below is the default way of adding content to specific coordinates. However, this will give incorrect results for complex

alphabets.

// initializations
int x, y, fontsize;
String text;
PdfCanvas canvas = new PdfCanvas(pdfDocument.getLastPage());

PdfFont font = PdfFontFactory.createFont(“/path/to/font.ttf”, PdfEncodings.IDENTITY_H);

canvas.saveState()
 .beginText()
 .moveText(x, y)
 .setFontAndSize(font, fontsize)
 .showText(text) // String argument
 .endText()
 .restoreState();

In order to leverage OpenType features, you need a GlyphLine, which contains the font’s glyph information for each

of the Unicode characters in your String. Then, you need to allow the Shaper class to modify that GlyphLine, and

pass the result to the PdfCanvas#showText overload which accepts a GlyphLine argument.

18 pdfCalligraph

Below is a code sample that will work as of iText 7.0.2 and pdfCalligraph 1.0.2.

// initializations
int x, y, fontsize;
String text;
Character.UnicodeScript script = Character.UnicodeScript.TELUGU; // replace with the alphabet of your choice
PdfCanvas canvas = new PdfCanvas(pdfDocument.getLastPage());

// once for every font
TrueTypeFont ttf = new TrueTypeFont(“/path/to/font.ttf”);
PdfFont font = PdfFontFactory.createFont(ttf, PdfEncodings.IDENTITY_H);

// once for every line of text
GlyphLine glyphLine = font.createGlyphLine(text);
Shaper.applyOtfScript(ttf, glyphLine, script); // this call will mutate the glyphLine

canvas.saveState()
 .beginText()
 .moveText(x, y)
 .setFontAndSize(font, fontsize)
 .showText(glyphLine) // GlyphLine argument
 .endText()
 .restoreState();

If you want to enable kerning with the low-level API, you can simply call the applyKerning method with similar

parameters as before:

Shaper.applyKerning(ttf, glyphLine);

Users who want to leverage optional ligatures in Latin text through the low-level API can do the exact same thing for

their text. The only differences are that this cannot currently be done with the high-level API, and that they should call

another method from Shaper:

Shaper.applyLigaFeature(ttf, glyphLine, null); // instead of .applyOtfScript()

Colophon

THE FONTS USED FOR THE EXAMPLES ARE:

• FoglihtenNo07 for Latin text
• Arial Unicode MS for Arabic text
• specialized Noto Sans fonts for the texts in the Brahmic scripts
• Image of number 2 was taken from the FontForge visualisation of the glyph metrics of LiberationSerif-Regular
• Arabic tabular images were taken from Wikipedia
• Bézier curve example was taken from http://falcon80.com/HTMLCanvas/BasicShapes/Bezier%20Curves.html

SOURCES & FURTHER READING:

writing

Complex script examples: http://scripts.sil.org/cms/scripts/page.php?site_id=nrsi&id=CmplxRndExamples

Arabic (i’jam & tashkil): http://unicode.org/faq/middleeast.html

Arabic (letter shapes): http://www.lingvozone.com/Arabic

Devanagari (letter reshaping): http://www.omniglot.com/writing/devanagari.htm

Tamil: http://www.omniglot.com/writing/tamil.htm

encodings

Unicode: http://www.unicode.org/standard/principles.html

UTF-8 & -16: http://unicode.org/faq/utf_bom.html

fonts

OpenType specification (very technical) https://www.microsoft.com/en-us/Typography/OpenTypeSpecification.aspx

Font characteristics: http://designwithfontforge.com/en-US/What_Is_a_Font.html

