
 | Web-Friendly PDFs with ngPDF 1

www.itextpdf.com

Web-Friendly PDFs
with ngPDF

https://www.itextpdf.com

 | Web-Friendly PDFs with ngPDF 2

PDFs as first-class citizens
of the Web with ngPDF
The web has changed the way we look at documents. Increasingly, content is

consumed on devices with wildly differing form factors. The need for content to adapt

to diverging screen sizes will only increase as mobile devices displace traditional

desktops and laptops. It is a common misconception that PDFs cannot be responsive.

However, since the addition of Tagged PDF to PDF 1.4, PDF readers have had the

possibility to reflow text depending on the screen size.

PDF

PDF

PDF PDF

Be that as it may, users today have come to expect their documents to be accessible

and legible on any of their devices, preferably through the use of a web browser. The

excellent reputation of PDF for accurate representation of documents on screen as

well as on paper, has caused it to be perceived to be out-of-place on the web.

At iText, we aim to be at the frontier of PDF technology. Through our continued

involvement in the PDF Association and the ISO committee, we are working hard

to make PDF a better citizen of the web. An algorithm recently developed by the

PDF Association, makes great strides for turning well-crafted PDFs into responsive

documents. The algorithm, as implemented in ngPDF and powered by iText 7, takes

the idea of text reflow in PDF one step further, by automatically turning them into

first-class HTML documents without manual intervention.

In this white paper co-authored with Dual Lab, we touch upon the history of semantic

PDF; how we got from Tagged PDF to ngPDF today. The first part is accessible to

a broader audience, the second part takes a deep dive into the ngPDF internals.

Additionally, a tech preview of ngPDF is available at www.ngpdf.com. We’d very much

like for you to give it a spin and let us know what you think.

https://www.pdfa.org/resource/deriving-html-from-pdf/
https://www.pdfa.org/resource/deriving-html-from-pdf/
https://www.ngpdf.com/

 | Web-Friendly PDFs with ngPDF 3

Contents
1 Making PDFs a good citizen in the Open Web world ___4

1.1 Introduction ___4
1.2 Derivation algorithm __5
1.3 How ngPDF does this __5
1.4 What’s inside: iText API __7
1.4.1 Open the document and check if it is tagged __7

1.4.2 Iterate through the structure tree of the document and retrieve all
structure element properties and attributes ___8

1.4.3 Find the corresponding marked content sequences inside the page
contents and extract its text or image content __9

2 How to understand that a PDF is Tagged __________ 10

2.1 Use ngPDF to view the logical structure and its properties _______________________10
2.2 Use iText RUPS __12

3 How to generate Tagged PDFs _________________ 13

3.1 Via authoring software __13
3.2 Via the iText API __14

4 Challenges _______________________________ 16

4.1 Features still in development or not yet supported ______________________________________16

 | Web-Friendly PDFs with ngPDF 4

1.1 Introduction

One of the key propositions of the Portable Document Format is a reliable
visual representation on all devices and operating systems. It is based on
the fixed page layout model, where all text characters, all raster images
and vector drawings have absolute positioning on the page.

This is very different from the Web world, where only

the web browser knows how to lay out the web content

on the screen of the user device. On the other hand, the

internal XML-like structure of the HTML pages along with

the actively developing WAI-ARIA standard does a very

good job of presenting the semantics of the content.

The same idea of defining the semantics of PDF content

was introduced back in PDF 1.4 as the concept of

structure elements, the so-called Tagged PDF. In short,

Tagged PDF defines the semantic hierarchy (often called

semantic structure) of the complete PDF document,

where each terminal structure element (for example,

a paragraph or a span) in this hierarchy references the

graphical elements on the page (or several pages) that

represent this structure element.

Although this notion of Tagged PDF and its structure

tree were introduced into PDF specifications more than

10 years ago, not many end users were aware of this

additional data that could be present in their documents.

One of the important applications of Tagged PDF today

is the “Read out loud” feature that allows accessibility

software to accurately describe the content of PDF

documents to visually impaired users.

However, only accessibility specialists and PDF engineers

were mainly inspecting and manipulating the structure

tree of Tagged PDF documents.

1
Making PDFs a
good citizen in the
Open Web world

 | Web-Friendly PDFs with ngPDF 5

1.3 How ngPDF does this

ngPDF is a web application freely available at www.ngpdf.com that allows users to upload any Tagged PDF and inspect

the resulting HTML, as well as many other useful properties of Structure hierarchy right in their browser.

Here is the step by step illustration of how it works:

Step 1: Go to www.ngpdf.com and click the button “Try the demo now”

1.2 Derivation algorithm
The Derivation algorithm was developed by the PDF

Association to provide a reliable way for generating an

HTML presentation of Tagged PDF documents based

on their semantics. In short, this algorithm extracts

the content of the PDF document based on its visual

presentation and recombines it into HTML using the

logical structure of the PDF. Although this might sound

rather simple, it took several years for the group of PDF

experts to specify all the details and make this approach

well-defined. The full details of the Derivation algorithm

can be found in the PDF Association publication

“Deriving HTML from PDF”.

http://www.ngpdf.com
www.ngpdf.com
https://www.pdfa.org/resource/deriving-html-from-pdf/

 | Web-Friendly PDFs with ngPDF 6

Step 2: Upload your PDF document. Note that it must be Tagged, see the next section if you do not know

how to check this. Or simply choose a sample provided by the application.

Step 3: Click to “View HTML” to see the results of the derivation algorithm right away.

Or click “Go to editor” to compare the HTML and PDF visual presentations side by side.

 | Web-Friendly PDFs with ngPDF 7

1.4 What’s inside: iText API

The derivation algorithm implemented inside ngPDF is based on the iText 7 library, which provides all the necessary

ingredients for the correct derivation from PDF to HTML.

Below we list several code samples to demonstrate how iText does this. Note that the samples use Java, but equivalent

functionality is also available in C#.

We can't just derive HTML from any old PDF. A first step in the implementation of the derivation algorithm, must be to

check if the PDF is tagged. This is trivial to achieve with iText 7, as shown in Code Sample 1.

In a second step, the PDF document is then analyzed to gather information on its structure. The ngPDF implementation

of the derivation algorithm uses iText to iterate over the document structure tree (see Code Sample 2). All structural

elements and their attributes are then stored for processing so corresponding HTML can be emitted later.

Finally, after the output HTML document structure is known, ngPDF can proceed to extract the actual PDF contents. We

define an event listener that knows how to process both text content and images as demonstrated in Code Sample 3. Every

time `PdfCanvasProcessor` encounters an object, the event listener knows how to extract the underlying text or image.

1.4.1 Open the document and check if it is tagged

PdfDocument pdfDocument = new PdfDocument(new PdfReader(documentPath));
boolean documentIsTagged = pdfDocument.isTagged();

 | Web-Friendly PDFs with ngPDF 8

1.4.2 Iterate through the structure tree of the document and retrieve
all structure element properties and attributes

PdfDocument pdfDocument = new PdfDocument(new PdfReader(pdfDocumentPath));
PdfStructTreeRoot root = pdfDocument.getStructTreeRoot();
iterateOverChildren(root);

private void iterateOverChildren(IStructureNode node) {
 if (node.getKids() != null) {
 for (IStructureNode child : node.getKids()) {
 if (child instanceof PdfMcr) {
 // This ID can be used to extract the associated page content
 int mcid = ((PdfMcr) child).getMcid();
 } else if (child instanceof PdfStructElem) {
 inspectAttributes((PdfStructElem) child);
 }
 iterateOverChildren(child);
 }
 }
}

private void inspectAttributes(PdfStructElem element) {
 // Example on how to resolve effective role (taking /RoleMap into consideration)
 String role = pdfDocument.getTagStructureContext().resolveMappingToStandardOrDomainSpecificRole(
 element.getRole().getValue(), element.getNamespace()).getRole();

 PdfObject attrObj = element.getAttributes(false);
 if (attrObj != null) {
 PdfDictionary attrDict;
 if (attrObj instanceof PdfArray) {
 attrDict = ((PdfArray) attrObj).getAsDictionary(0);
 } else {
 attrDict = (PdfDictionary) attrObj;
 }
 // Example on how to fetch Bbox attribute
 Rectangle bBox = attrDict.getAsRectangle(PdfName.BBox);
 }
}

 | Web-Friendly PDFs with ngPDF 9

1.4.3 Find the corresponding marked content sequences inside the
page contents and extract its text or image content

PdfDocument pdfDocument = new PdfDocument(new PdfReader(pdfDocumentPath));
MarkedContentEventListener listener = new MarkedContentEventListener();
new PdfCanvasProcessor(listener).processPageContent(pdfDocument.getPage(1));
Map<Integer, String> mcidToContent = listener.getMcidContent();

class MarkedContentEventListener implements IEventListener {
 private Map<Integer, ITextExtractionStrategy> contentByMcid = new HashMap<>();
 private Map<Integer, Collection<PdfImageXObject>> imagesByMcid = new HashMap<>();

 public Map<Integer, String> getMcidContent() {
 Map<Integer, String> content = new HashMap<>();
 for (int id : contentByMcid.keySet()) {
 content.put(id, contentByMcid.get(id).getResultantText());
 }
 return content;
 }

 @Override
 public void eventOccurred(IEventData data, EventType type) {
 switch (type) {
 case RENDER_TEXT:
 TextRenderInfo textInfo = (TextRenderInfo) data;
 int textMcid = textInfo.getMcid();
 if (textMcid != -1) {
 ITextExtractionStrategy textExtractionStrategy = contentByMcid.get(textMcid);
 if (textExtractionStrategy == null) {
 textExtractionStrategy = new LocationTextExtractionStrategy();
 contentByMcid.put(textMcid, textExtractionStrategy);
 }
 textExtractionStrategy.eventOccurred(data, type);
 }
 break;
 case RENDER_IMAGE:
 ImageRenderInfo imageRenderInfo = (ImageRenderInfo)data;
 int imageMcid = imageRenderInfo.getMcid();
 if (imageMcid != -1) {
 Collection<PdfImageXObject> images = imagesByMcid.get(imageMcid);
 if (images == null) {
 images = new ArrayList<>();
 images.add(imageRenderInfo.getImage());
 }
 }
 default:
 break;
 }
 }

 @Override
 public Set<EventType> getSupportedEvents() {
 return new HashSet<>(Arrays.asList(EventType.RENDER_TEXT, EventType.RENDER_IMAGE));
 }
}

 | Web-Friendly PDFs with ngPDF 10

2.1 Use ngPDF to view the logical structure and its properties

If you drop a random PDF file in your possession onto the ngPDF upload
area, there is a high chance you will see the disappointing message
“Tagged structure not found”:

This means that your PDF document is not Tagged, i.e. it does not contain a logical structure hierarchy. This does not

mean your document is corrupt. It will still be shown without any problems, but the software and assistive technologies

will experience difficulty reading out your document. As the Derivation algorithm uses the same logical structure as

2
How to
understand that
a PDF is Tagged

 | Web-Friendly PDFs with ngPDF 11

assistive technologies, it also won’t work for documents with missing logical structure.

But if your PDF document is Tagged, the ngPDF Editor will provide you with detailed information on the logical structure

tree. Its right hand side visualizes the complete structure tree as well as all the properties of its structure elements:

In addition, in the above screenshot we can also see the properties of the selected structure element and the idea how

the Derivation algorithm works:

This means that the algorithm first maps the PDF tag Table Contents to another PDF tag P, which is finally mapped to

the HTML tag <p>.

 | Web-Friendly PDFs with ngPDF 12

2.2 Use iText RUPS
iText RUPS is a free low-level PDF inspector available at https://github.com/itext/i7j-rups/releases

It allows users to inspect the complete structure tree of a document as well as low-level data for all its elements. Simply

drop your PDF document into the iText RUPS window and choose the “Structure” tab located in the right pane of the

application window.

https://github.com/itext/i7j-rups/releases

 | Web-Friendly PDFs with ngPDF 13

3.1 Via authoring software

Common options in terms of authoring software include popular office
suites such as Microsoft Office or LibreOffice, or specialized design tools
such as Adobe InDesign.

A very natural question one may ask is how to generate Tagged PDFs. Normally this is the responsibility of the authoring

software that produces PDF documents to also insert the logical structure into these documents.

The good news is that many commonly used applications for creating PDF files are able to do this. But often this requires

extra settings in your “Save As” or “Export to PDF” dialog.

Consider, for example, how this works in Microsoft Word. First, one needs to follow the “More options” link in the Save As

dialog of MS Word. Note that this link will appear only when you choose PDF as an output format!

3
How to
generate
Tagged PDFs

 | Web-Friendly PDFs with ngPDF 14

Next, the options dialog itself contains a checkbox “Document structure

tags for accessibility” which must be checked for Microsoft Word to

output Tagged PDFs.

3.2 Via the iText API

Using the high level API of iText it is really easy to create a tagged PDF document. The following code sample adds a

paragraph and a table with 3 cells to an untagged document.

PdfDocument pdfDocument = new PdfDocument(new PdfWriter(outFileName));
Document document = new Document(pdfDocument);

document.add(new Paragraph("Hello world"));

Table table = new Table(3);
table.addCell("Cell 1");
table.addCell("Cell 2");
table.addCell("Cell 3");
document.add(table);

document.close();

 | Web-Friendly PDFs with ngPDF 15

Turning this code sample into one that creates a PDF file is easily done. It takes a single line of code that needs to be

added to the code sample. You need to add the following line before adding any content:

pdfDocument.setTagged();

This will turn the output PDF into a tagged PDF for no additional effort. This is made possible because iText knows which

objects you're adding to the Document and as such knows when to tag a Paragraph as "P".

PdfDocument pdfDocument = new PdfDocument(new PdfWriter(outFileName));
pdfDocument.setTagged();
Document document = new Document(pdfDocument);

document.add(new Paragraph("Hello world"));

Table table = new Table(3);
table.addCell("Cell 1");
table.addCell("Cell 2");
table.addCell("Cell 3");
document.add(table);

document.close();

This is also possible using iText’s low level API, however, using the low level API for this is not advised as you would need

extensive knowledge of the PDF specification, and would need to make several highly technical method calls compared

to the easy solution provided by the high level API.

 | Web-Friendly PDFs with ngPDF 16

4.1 Features still in development or not yet supported

As it often happens with “first versions”, some points of the Derivation
Algorithm are still under discussion. Fortunately, this will most likely
concern only very specific cases not often seen in real-world documents.

One important PDF feature that is still missing is the HTML presentation of PDF annotations. Annotations are commonly

used in PDF to add comments to a document; though in addition to text annotations there are also drawing annotations,

multimedia annotations and more. The key difficulty here is that while there is now a standard for Web Annotations,

fragmentation in this area and the lack of browser support means the accurate representation of PDF annotations is still

an issue to be resolved.

This and other points will be addressed in the future updates of the Derivation Algorithm, which is already a work in

progress for a dedicated Technical Working Group of the PDF Association.

4

Challenges

https://www.w3.org/TR/annotation-model/

 | Web-Friendly PDFs with ngPDF 17

ABOUT US

Get to know iText

Think about a boarding pass for your flight. Or PDF

invoices, receipts, forms...most likely they were generated

by iText technology!

iText is a global leader in innovative award-winning PDF

software. It is used by millions of users - both open source and

commercial - around the world to create digital documents for

a variety of purposes: invoices, credit card statements, mobile

boarding passes, legal archiving and more.

iText works and works well. Our customers choose iText

because of our world-class quality of software, and our

reliable mature, proven technology in the iText SDK. We

are recognized as a global thought leader and innovator in

PDF solutions and functionalities. As an open-source PDF

library, iText can be embedded into the document solution

workflows of various industries and their applications.

Our diverse customer base includes many of the

Fortune 500 companies, as well as small companies and

government agencies. We strongly believe in the value of

open-source software. Our core library, iText 7, is available

under the AGPL license. We also offer commercial licensing

for customers that do not wish to comply with AGPL and

want to keep their source code private.

VISION

In a world in which speed and efficiency are

paramount, we enable companies and people to build

the most reliable solutions for document and data

exchange, effortlessly.

MISSION

It’s our mission to be the most trusted and

comprehensive technology provider which perfectly

leverages the power of PDF, by offering open-

source and enterprise solutions that streamline the

generation and consumption of documents and data.

CONTACT

marketing@itextpdf.com

www.itextpdf.com

mailto:marketing@itextpdf.com
https://www.itextpdf.com
https://www.facebook.com/iTextPDF/
https://twitter.com/iText
https://www.linkedin.com/company/itext-software-corp/
https://www.youtube.com/channel/UC6kL1_Vm712V3XDM1_RSY8w
https://github.com/itext/
https://stackoverflow.com/questions/tagged/itext7+or+itext

OUR OFFICES

EUROPE, MIDDLE EAST, AFRICA & CIS
AA Tower

Technologiepark-Zwijnaarde 122

9052 Zwijnaarde

Belgium

sales.isb@itextpdf.com

Tel +32 9 298 02 31

Fax +32 9 270 33 75

AMERICAS
265 Medford Street,

Suite 500

Somerville, MA 02143

United States

sales.isc@itextpdf.com

Tel +1 617 982 2646

Fax +1 617 982 2647

ASIA & OCEANIA
Republic Plaza

9 Raffles Place, Level 6, Republic Plaza 1

SINGAPORE 048619

Singapore

sales.isa@itextpdf.com

Tel +65 6932 5062

itextpdf.com

mailto: sales.isb@itextpdf.com
mailto: sales.isc@itextpdf.com
mailto:sales.isa@itextpdf.com
https://www.itextpdf.com
https://www.itextpdf.com

	￼
Making PDFs a good citizen in the Open Web world
	1.1 Introduction
	1.3 How ngPDF does this
	1.4 What’s inside: iText API
	1.4.1 Open the document and check if it is tagged

	1.4.2 Iterate through the structure tree of the document and retrieve all structure element properties and attributes
	1.4.3 Find the corresponding marked content sequences inside the page contents and extract its text or image content

	￼
How to understand that
a PDF is Tagged
	2.2 Use iText RUPS
	￼

	￼
How to
generate
Tagged PDFs
	3.1 Via authoring software
	3.2 Via the iText API

	Challenges

