I Text 7
Building
Blocks

Bruno Lowagie iText Software

iText 7: Building Blocks

iText Software
This book is for sale at http://leanpub.com/itext7buildingblocks

This version was published on 2016-08-27

)

Leanpub

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing
process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools and
many iterations to get reader feedback, pivot until you have the right book and build traction once
you do.

© 2016 iText Software

http://leanpub.com/itext7buildingblocks
http://leanpub.com/
http://leanpub.com/manifesto

Contents

Before we start: Overview of the classes and interfaces 2
Chapter 1: Introducing the PdfFontclass 9
Creating a PdfFont object 9
Embeddingafont 11
Choosing the appropriate encoding Lo oL 14
Font properties 19
Reusing styles e 22
Summary 23
Chapter 2: Working with the RootElement 24
Using Canvas to add content inside a Rectangle 24
Converting text to PDF with the Documentclass 31
Changing the Document renderer 36
Switching between different renderers L o Lo 40
Flushing the Document renderer 42
Changing content that was previously added 46
Adding aPage Xof Yfooter. 48
Adding text with showTextAligned 51
Using iText 7add-ons L 52
Improving the typography 55
Summary 57
Chapter 3: Using ILeafElement implementations 58
Working with Tabelements L o 60
Limitations of the Tab functionality 66
Adding linkso 67
Extra methods available in the Textclass 69
Introducing images 70
Changing the position and width of animage 74
Adding an image toan existing PDF Lo L Lo Lo 75
Resizing and rotating animage o L 76
Image types supported by iText oo 81

Summary 92

CONTENTS

Chapter 4: Adding AbstractElement objects (part1) 93
Grouping elements with the Divclass L. 93
Drawing horizontal lines with the LineSeparator object 97
Keeping content together 98
Changing the leading of a Paragraph, 102
Creating a custom renderer 105
Listsand list symbols 107
Adding Listltem objectstoa List 112
Nested lists 114
Summary 118

Chapter 5: Adding AbstractElement objects (part2) 119
My firsttable 119
Table and cell Alignment 121
Row and cell height 123
Cell marginsand padding 126
Tableand cell borders 127
Nesting tables L 133
Repeating headers and footers Lo Lo o 135
Imagesintables 140
Splitting cells versus keeping content together 142
Table and cell renderers 146
Tables and memory use 151
Summary 152

Chapter 6: Creating actions, destinations, and bookmarks 154
URLactions o o e 154
Named actions L 156
GoToactions 157
Named destinations L 160
Remote GoTo actions e 164
JavaScriptactions oL 166
Chained actions e 166
Destinations e 167
Link annotations 171
Outlines aka bookmarks oo 172
Color and style of the outline elements. 177
Summary 180

Chapter 7: Handling events; setting viewer preferences and writer properties 181
Implementing the [EventHandler interface 181
Adding a background and text toevery page. L L. 184

Solving the “Page X of Y’ problem 187

CONTENTS

Adding a transparent background image oL 191
Insert and remove page events o o 195
Pagelabels 196
Page display and pagemode Lo 198
Viewer preferences 202
Printer preferences 204
Open action and additional actions L. 206
Writer properties L. e 209
Summary 215
Appendix 216
A: AbstractElement methods 216
B: BlockElement methods 217

C:RootElement methods 218

CONTENTS 1

This is the second tutorial in the iText 7 series. In the first tutorial, iText 7: Jump-Start Tutorial’, we
discussed a series of examples that explained the core functionality of iText 7. In this book, we’ll focus
on the high-level building blocks that were introduced in the first chapter of that tutorial: Introducing
basic building blocks®. In that chapter, we created PDFs using objects such as Paragraph, List, Image
and Table, but we didn’t go into detail. This tutorial is the extended version of that chapter. In this
tutorial, you’ll discover which building blocks are available and how they all relate to each other.

Throughout the book, we’ll use the following symbols:

o The information sign indicates interesting extra information, for instance about different
options for a parameter, different flavors of a method, and so on.

9 The question mark will be used when this information is presented in the form of a question
and an answer.

ﬁ The bug highlights an Exception that gets thrown if you make a common mistake.
’J The text balloons are used for a chatty remark or a clarification.

9 The triangle with the exclamation point warns for functionality that was introduced at a
later stage in the development of iText 7.

Q The key indicates functionality that is new in iText 7, or at least very different from what
developers were used to in iText 5 or earlier versions.

All the examples of this book along with the resources needed to build them, are available online at
the following address: http://developers.itextpdf.com/content/itext-7-building-blocks/examples’

"http://developers.itextpdf.com/content/itext-7-jump-start-tutorial
*http://developers.itextpdf.com/content/itext-7-jump-start-tutorial/chapter- 1-introducing-basic-building-blocks
*http://developers.itextpdf.com/content/itext-7-building-blocks/examples

http://developers.itextpdf.com/content/itext-7-jump-start-tutorial
http://developers.itextpdf.com/content/itext-7-jump-start-tutorial/chapter-1-introducing-basic-building-blocks
http://developers.itextpdf.com/content/itext-7-jump-start-tutorial/chapter-1-introducing-basic-building-blocks
http://developers.itextpdf.com/content/itext-7-building-blocks/examples
http://developers.itextpdf.com/content/itext-7-jump-start-tutorial
http://developers.itextpdf.com/content/itext-7-jump-start-tutorial/chapter-1-introducing-basic-building-blocks
http://developers.itextpdf.com/content/itext-7-building-blocks/examples

Before we start: Overview of the
classes and interfaces

When we talk about iText 7’s basic building blocks, we refer to all classes that implement the
IElement interface. iText 7 is originally written in Java, then ported to C#. Because of our
experience with both programming languages, we’ve adopted the convenient habit € typical for
C# developersa€” to start every name of an interface with the letter I.

Figure 0.1 shows an overview of the relationship between IElement and some other interfaces.

Before we start: Overview of the classes and interfaces 3

(IPropertyContainer A
Interface
i
= Methods
p GetProperfy<Ti=
@ HasProperty
g SetProperty
| IBlement & | IRenderer # |
Interface Interface
=+ |PropertyContainer =+ |PropertyContainer
r
= Methods = Methods
) CreateRenderersubTres @ AddChild
P GetRenderer g Drow
[SetMextRendersr R GetModsiElsment
k . - g Layout
:|S @ SetPorent
| ILargeElement A ' ILeafElement A |
Interface Interface
=¥ |Element =¥ [Elerment
r
= petheds
@ Fush ’

fp [sComplete

Figure 0.1: Overview of the interfaces

At the top of the hierarchy, we find the IPropertyContainer interface. This interface defines
methods to set, get, and delete properties. This interfaces has two direct subinterfaces: IElement
and IRenderer. The IElement interface will be implemented by objects such as Text, Paragraph
and Table. These are the objects that we’ll add to a document, either directly or indirectly. The
IRenderer interface will be implemented by objects such as TextRenderer, ParagraphRenderer and
TableRenderer. These renderers are used internally by iText, but we can subclass them if we want
to tweak the way an object is rendered.

The IElement interface has two subinterfaces of its own. The ILeafElement interface will be
implemented by building blocks that can’t contain any other elements. For instance: you can add a
Text or an Image element to a Paragraph object, but you can’t add any object to a Text or an Image

Before we start: Overview of the classes and interfaces 4

element. Text and Image implement the ILeafElement interface to reflect this. Finally, there’s the
LargeElement interface that allows you to render an object before you’ve finished adding all the
content. It’s implemented by the Table class, which means that you add a table to a document
before you’ve completed adding all the Cel1 objects. By doing so, you can reduce the memory use:
all the table content that can be rendered before the content of the table is completed, can be flushed
from memory.

The IPropertyContainer interface is implemented by the abstract ElementPropertyContainer
class. This class has three subclasses; see figure 0.2.

(? |PropertyContainer

" ElementPropertyContainer<T> ¥ |
Generic Abstract Class

|Element
| AbstractElement=T> ¥ | RootElement=T= ¥ | Style ¥ |
Generic Abstract Class Generic Abstract Class Clazs
=+ ElementPropertyContainer<T> =t ElementPropertyContainer<T> =+ ElementPropertyContainer<Style>
T j
| Canvas ¥ | | Document ¥ |
Class Clazs
—+ RootElement<Canvass =+ RootElenent<Docurnent>
& "~._ >

Figure 0.2: Implementations of the IPropertyContainer interface

The Style class is a container for all kinds of style attributes such as margins, paddings and rotation.
It inherits style values such as widths, heights, colors, borders and alignments from the abstract
ElementPropertyContainer class.

The RootElement class defines methods to add content, using either an add() method or a
showTextAligned() method. The Document object will add this content to a page. The Canvas object
doesn’t know the concept of a page. It acts as a bridge between the high-level layout API and the
low-level kernel API.

Figure 0.3 gives us an overview of the AbstractElement implementations.

F

¢ I TR T AT EEEL Y A TE S AR g AT (R TR T A A L
amg =g [=] g =g = L b=l
Anyeiedagaan # “_EL # g A ydeibese,) # B £ o R M

Before we start: Overview of the classes and interfaces

| e |_|~_» = L= L 18

LT | PR AT LS o FETIRE e P e T (o LY
i T emny s | EE] (=] L= =
Df alepuanEEOE | | & ey # L |~ abew | = bl
SRR Q| oy _ _ SR YR | ﬁ_u INENTTR TR TR T T sl
HETREIE TN US|
_ BT | AT T RN TR T L S
. T ITILIT e D
| & AL AN FINGIY |
FITETETy] mu

Ly,

e ey e
A <l UL S e

rarparry g n_/

Figure 0.3: Implementations of the IElement interface

Before we start: Overview of the classes and interfaces 6

All classes derived from the AbstractElement class implement the IElement interface. Text, Image,
Tab and Link also implement the ILeafElement interface. The ILargeElement interface is only
implemented by the Table class. The basic building blocks make it very easy for you to create tagged
PDF. Tagged PDF is a requirement for PDF/A, a standard for long-term preservation of document,
and, PDF/UA, an accessibility standard. A properly tagged PDF includes semantic information about
all the relevant content.

o An ordinary PDF can show a human reader content that is organized as a table. This table

is rendered using a bunch of text snippets and lines. To a machine, the table isn’t more than

that: text positioned at arbitrary places, lines drawn at arbitrary places. A seeing person can

detect rows and columns and understand which rows are actually header or footer rows

and which rows are body rows. There is no simple way for a machine to do this. When a

machine detects a text snippet, it doesn’t know if that text snippet is part of a paragraph,

part of a title, part of a cell, or part of something else. When a PDF is tagged, it contains a

structure tree that allows a machine to understand the structure of the content. Some text

will be marked as part of a cell in a header row, other text will be marked as the caption

of the table. All real content will be tagged. Other content, such as lines between rows and
columns, running headers, page numbers, will be marked as an artifact.

In iText, we have introduced the IAccessibleElement interface. It is implemented by all the basic
building blocks that contain real content: Text, Link, Image, Paragraph, Div,List, ListItem, Table,
Cell, LineSeparator. If we define a PdfDocument as a tagged PDF using the setTagged() method,
iText will create a structure tree so that a Table is properly tagged as a table, a List properly tagged
as a list, and so on. There is no real content in a Tab or an AreaBreak, which is why these classes
don’t implement that interface. It’s just white space; a tab and an area break don’t even need to be
marked as an artifact.

In this tutorial, we won’t create tagged PDF; iText will just render the content to the document
using the appropriate IRenderer implementation. Figure 0.4 shows an overview of the IRenderer
implementations.

EELE TS
=
A RpERguge

BTN
s

Before we start: Overview of the classes and interfaces

S AN U0 - T i = 1 & F T
1 . U EEITE HRIEIE 1INE 4 TR EL P ARSI A ST
nenry L) ey A ey
| f asepueypplele | |* dsdepu —.1 dusspus A | | ...z.a!_..i........i | a suepsgosmmlag]
SRILNLIES TR T
ELES ELEY
I P 7 s BApmsgAY]
A — e PR
L=
.._. * L] hu.hui.._u“.._.__._...
7 L . - s - = 1 = = f
. IEILET- BT AR AL AN ﬁ BRI SRR e — ARV RN TR ITTTE S ST, 7 _ L L TR L S
RS y) = ey L) T
al E_a Ty j| | Nl A SRy :|_i|,.._r|. K_| sl \& __ mnaEey
............... b
]
Lm mpaespeEaly] E_nv_._uuiai._____ﬁ

R U ..H..

Figure 0.4: Implementations of the IRenderer interface

Before we start: Overview of the classes and interfaces 8

When you compare figure 0.4 with 0.3, you'll discover that each AbstractElement and each
RootElement has its corresponding renderer. We won'’t discuss figure 0.4 in much detail. The concept
of renderers will become clear the moment we start making some examples.

Chapter 1: Introducing the PdfFont
class

When writing a tutorial, I always prefer working with real-world use cases. That’s not always easy
because real-world use cases can get quite complex, whereas a tutorial needs to explain different
concepts as simple as possible. While I was looking for a theme for this tutorial, I stumbled upon the
short story “The Strange Case of Dr. Jekyll and Mr. Hyde” by Robert Louis Stevenson. I made a first
example turning a plain text file into a PDF eBook and I liked the result. When I discovered how
many movies, cartoons and series were made based on this work, [saw an opportunity to create
a database that could be converted into a table. The movie posters could serve as sample material
when discussing images in PDF.

But first things first: let’s start with an example that displays the title and the author in different
fonts. The PdfFont class doesn’t appear in any of the hierarchical charts showing the relationship
between element interfaces and classes, but it’s needed for all the building blocks that involve text.
We could spend a complete tutorial about fonts (and we probably will), but this chapter will explain
the basic font functionality that you need to be aware of.

Creating a PdfFont object

If we look at figure 1.1, we see that three different fonts were used to create a PDF document with
the title and the author of the Jekyll and Hyde story: Helvetica, Times-Bold and Times-Roman.
In reality, three other fonts are used by the viewer: ArialMT, TimesNewRomanPS-BoldMT and
TimesNewRomanPSMT.

Chapter 1: Introducing the PdfFont class 10

@:i-:_.?f;?: pdf - Adobe Acrobat Pro - m}
File Edit View Window Help £
= open ‘ TEL Create ~ | o e Z | @ e & e & & Customize ~ ‘ lz‘

[

O | (= @ | Tools | Fill &Sign = Comment

~

The Strange Case of Dr. Jekyll and Mr. Hyde by Robert Louis Stevenson

Document Properties

Description Security Fonts Initial View Custom Advanced

Fonts Used in this Document

= a Helvetica
Type: Type 1
Encoding: Ansi
Actual Font: ArialMT
Actual Font Type: TrueType
= a Times-Bold
Type: Type 1
Encoding: Ansi
Actual Font: TimesNewRomanPS-BeldMT
Actual Font Type: TrueType
= a Times-Roman
Type: Type 1
Encoding: Ansi
Actual Font: TimesNewRomanPSMT
Actual Font Type: TrueType

Figure 1.1: Standard Type 1 fonts

The MT in the names of the Actual Font refers to the vendor of the fonts: the Monotype Imaging
Holdings, Inc. These are fonts shipped with Microsoft Windows. If you’d open the same file on a
Linux machine, other fonts would be used as actual fonts. This is typically what happens when you
don’t embed fonts. The viewer searches the operating system for the fonts that are needed to present
the document. If a specific font can be found, another font will be used instead.

0 Traditionally, there are 14 fonts that every PDF viewer should be able to recognize and
render in a reliable way: four Helvetica fonts (normal, bold, oblique, and bold-oblique),
four Times-Roman fonts (normal, bold, italic, and bold-italic), four Courier fonts (normal,
bold, oblique, and bold-oblique), Symbol and Zapfdingbats. These fonts are often referred
to as the Standard Type 1 fonts. Not every viewer will use that exact font, but it will use a

font that looks almost identical.

To create the PDF shown in figure 1.1, we used three of these fonts: we defined two fonts explicitly;
one font was defined implicitly. See the Text_Paragraph* example.

“http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter- 1#1822-c01e01_text_paragraph.java

http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-1#1822-c01e01_text_paragraph.java
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-1#1822-c01e01_text_paragraph.java

© 00 N O U b W N =

Y
(]

Chapter 1: Introducing the PdfFont class 11

PdfDocument pdf = new PdfDocument(new PdfWriter(dest));
Document document = new Document(pdf);
PdfFont font = PdfFontFactory.createFont(FontConstants.TIMES _ROMAN);
PdfFont bold = PdfFontFactory.createFont(FontConstants.TIMES BOLD);
Text title =

new Text("The Strange Case of Dr. Jekyll and Mr. Hyde").setFont(bold);
Text author = new Text("Robert Louis Stevenson").setFont(font);

Paragraph p = new Paragraph().add(title).add(" by ").add(author);
document .add(p);
document .close();

In line 1, we create a PdfDocument using a PdfWriter as parameter. These are low-level objects that
will create PDF output based on your content. We’re creating a Document instance in line 2. This
is a high-level object that will allow you to create a document without having to worry about the
complexity of PDF syntax.

In lines 5 and 6, we create a PdfFont using the PdfFontFactory. In the FontConstants object, you’ll
find a constant for each of the 14 Standard Type 1 fonts. In line 7, we create a Text object with the
title of Stevenson’s short story and we set the font to TIMES_BOLD. In line 8, we create a Text object
with the name of the author and we set the font to TIMES_ROMAN. We can’t add these Text objects
straight to the document, but we add them to a BlockElement, more specifically a Paragraph, in line
9.

0 Between the title and the author, we add " by " as a String object. Since we didn’t
define a font for this String, the default font of the Paragraph is used. In iText, the default
font is Helvetica. This explains why we see the font Helvetica listed in the font overview

in figure 1.1.

In line 10, we add the paragraph to the document object; we close the document object in line 11.

We have created our first Jekyll and Hyde PDF using fonts that aren’t embedded. As a result, slightly
different fonts can be used when rendering the document. We can avoid this by embedding the fonts.

Embedding a font

iText supports the Standard Type 1 fonts, because the io-jar contains the Adobe Font Metrics (AFM)
files of those 14 fonts. iText can’t embed these 14 fonts because the PostScript Font Binary (PFB)
files are proprietary. They can’t be shipped with iText because iText Group doesn’t have a license to
do so. We are only allowed to ship the metrics files.

In the Text_Paragraph_Cardo’ example, we use three fonts of the Cardo font family. These are fonts
that were released under the Summer Institute of Logistics (SIL) Open Font License (OFL). The result
is shown in figure 1.2.

*http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter- 141823-c01e02_text_paragraph_cardo.java

http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-1#1823-c01e02_text_paragraph_cardo.java
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-1#1823-c01e02_text_paragraph_cardo.java

O O B W N~

Chapter 1: Introducing the PdfFont class

T text_paragraph_cardo.pdf - Adobe Acrobat Pro

File Edit View Window Help

12

O x

E‘Open‘@&eate- |a@®@‘@@@[@@@>@

<1
Customize ~ | E

[(NG| = @[]

Fill & Sign |

Comment

The Strange Case of Dr. Jekyll and Mr. Hyde by Robert Louis Stevenson

1

Document Properties

Description Security Fonts nitial View Custom Advanced

Fonts Used in this Document

=] Cardo-Bold (Embedded Subset)
Type: TrueType
Enceding: Ansi

=2 Cardo-ltalic (Embedded Subset)
Type: TrueType
Enceding: Ansi

=] Cardo-Regular (Embedded Subset)
Type: TrueType
Enceding: Ansi

Figure 1.2: Embedded fonts

First we need the path to the font programs for the three Cardo fonts: Cardo-Regular.ttf, Cardo-

Bold.ttf and Cardo-Italic.ttf:

public static final String REGULAR =
"src/main/resources/fonts/Cardo-Regular.ttf";

public static final String BOLD =
"src/main/resources/fonts/Cardo-Bold.ttf";

public static final String ITALIC =
"src/main/resources/fonts/Cardo-Italic.ttf";

In line 1 to 3 of the following snippet, we use these paths as the first parameter of the createFont()
method. The second parameter is a Boolean indicating whether or not we want to embed the font.

© 00 9 O O b W N =

Chapter 1: Introducing the PdfFont class

PdfFont font = PdfFontFactory.createFont(REGULAR, true);
PdfFont bold = PdfFontFactory.createFont(BOLD, true);
PdfFont italic = PdfFontFactory.createFont(ITALIC, true);
Text title =

13

new Text("The Strange Case of Dr. Jekyll and Mr. Hyde").setFont(bold);

Text author = new Text("Robert Louis Stevenson").setFont(font);

Paragraph p = new Paragraph().setFont(italic)
.add(title).add(" by ").add(author);
document . add(p);

Line 4 to 6 are identical to what we had before, but in line 7, we change the default font of the
Paragraph to italic. This explains why " by " was written in italic in figure 1.2 and why the font
Helvetica no longer appears in the font list. In line 7, we add the Paragraph to the Document instance.

Figure 1.3 shows what would happen if we don’t embed the fonts.

T ted_paragraph_no_cardo.pdf - Adobe Acrabat Pro

File Edit View Window Help

-] X

@0P=n|ferreate' |D@@@|@@@L@@)@

*®
Customize - ‘ lz‘

Lo NG | ©@[we]-]|HB

Tools |

Fill & Sign | Comment

The Strange Case of Dr. Jekyll and Mr. Hyde by Robert Louis Stevenson

A

Document Properties

Description Security Fonts Initial View Custom Advanced

Fonts Used in this Document

=] Cardo-Bold
Type: TrueType
Encoding: Ansi
Actual Font: Adobe Sans MM
Actual Font Type: Type 1
=] Cardo-ltalic
Type: TrueType
Encoding: Ansi
Actual Font: Adobe Sans MM
Actual Font Type: Type 1
= Cardo-Regular
Type: TrueType
Enceding: Ansi
Actual Font: Adobe Sans MM
Actual Font Type: Type 1

Figure 1.3: Ugly font substitution

In the Text_Paragraph_NoCardo® example, we have defined the fonts like this:

*http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter- 1#1824-c01e03_text_paragraph_nocardo.java

http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-1#1824-c01e03_text_paragraph_nocardo.java
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-1#1824-c01e03_text_paragraph_nocardo.java

Chapter 1: Introducing the PdfFont class 14

PdfFont font PdfFontFactory.createFont (REGULAR);
PdfFont bold = PdfFontFactory.createFont(BOLD);
PdfFont italic = PdfFontFactory.createFont(ITALIC);

The constants REGULAR, BOLD and ITALIC refer to the correct Cardo .ttf files, but we omitted the
parameter that tells iText to embed the font. Incidentally, the Cardo fonts aren’t present on my PC.
Adobe Reader replaced them with Adobe Sans MM. As you can see, the result doesn’t look nice. If
you don’t use any of the standard Type 1 fonts, you should always embed the font.

The problem is even worse when you try to create PDFs in different languages. In figure 1.4, we try
to add some text in Czech, Russian and Korean. The Czech text looks more or less OK, but we’ll
soon discover that there one character missing. The Russian and Korean text is invisible.

@Z;:Z'_:,‘-::'_'::'_ ong.pdf - Adobe Acrobat Pro — O

File Edit View Window Help ®

B Open | @ Create ~ | D @ @ @ | @ g g |_-@ @) @" Customize - | lz‘
o NG | =@ | Tools | Fill &Sign | Comment

-

Podivny pipad Dr. Jekylla a pana Hyda by Robert Louis Stevenson

by Robert Louis Stevenson Document Properties

Description Security Fonts nitial View Custom Advanced

.. by Robert Louis Stevenson Fonts Used in this Document

= a Times-Roman
Type: Type 1
Enceding: Ansi
Actual Font: TimesMNewRomanP5SMT
Actual Font Type: TrueType

Figure 1.4: Wrong rendering of Czech, Russian and Korean

Not embedding the font isn’t the only problem here. We also need to define the appropriate encoding.

Choosing the appropriate encoding

In figure 1.4, we tried to render the following text:

Podivny pfipad Dr. Jekylla a pana Hyda by Robert Louis Stevenson

© 00 39 O Ol & W N =~

RGN
= o

Chapter 1: Introducing the PdfFont class 15

Crpannas ucropus fokropa [Lxexuna u mucrepa Xaiina by Robert Louis Stevenson
XX, XX, X by Robert Louis Stevenson

The first line is the Czech translation of “The Strange Case of Dr. Jekyll and Mr. Hyde.” If you look
closely at figure 1.4, you'll see that the character f is missing. That’s because the character is
missing in the Winansi encoding. Winansi, also known as code page 1252 (CP-1252), Windows 1252,
or Windows Latin 1, is a superset of ISO 8859-1 also known as Latin-1. It’s a character encoding of
the Latin alphabet, used by default in many applications on Western operating systems.

For the Czech text, we need to use another encoding. One option is to use code page 1250, an encoding
to represent text in Central European and Eastern European languages that use Latin script. The
second line reads as Strannaya istoriya doktora Dzhekila i mistera Khayda. For this text, we could
use code page 1251, an encoding designed to cover languages that use the Cyrillic script. Cp1250
and Cp1251 are 8-bit character encodings. The third line is Korean for Hyde, jekyll, Me, a South-
Korean television series loosely based on the Jekyll and Hyde story. We can’t use an 8-bit encoding
for Korean. To render this text, we need to use Unicode. Unicode is a computing industry standard
for the consistent encoding, representation, and handling of text expressed in most of the world’s
writing systems.

0 When you create a font using an 8-bit encoding, iText will create a simple font for the PDF.

A simple font consists of at most 256 characters that are mapped to at most 256 glyphs.

When you create a font using Unicode (in PDF terms: Identity-H for horizontal writing

systems or Identity-V for vertical writing systems), iText will create a composite font. A

composite font can contain 65,536 characters. This is less than the total number of available

code points in Unicode (1,114,112). This means that no single font can contain all possible
characters in every possible language.

Instead of Cp1250 and Cp1251, we could also use Unicode for the Czech and Russian text. Actually,
when we store hard-coded text in source code, it is preferred to store Unicode values.

public static final String CZECH =

"Podivn\u@@fd p\u@159\u@@edpad Dr. Jekylla a pana Hyda";
public static final String RUSSIAN =

"\Uu@421\u0442\u0440\u0430\u043d\u043d\u0430\u044f "
"\u0438\u0441\u0442\u043e\ud440\u438\u44f "
"\u0434\u043e\u043a\u0442\u043e\u0440\u0430 "
"\u0414\u0436\u0435\u043a\u0438\u043b\u0430 \u0438 "
"\u@43c\u0438\u0441\u0442\u0435\u0440\u0430 "

+ "\u@425\u0430\u0439\u0434\u0430" ;
public static final String KOREAN =

"\udb58\uc774\ub4dc, \uc9cO\ud@ac, \ub@98";

+ o+ o+ 4+

=N O Ol & W N =

Chapter 1: Introducing the PdfFont class 16
We'll use the values CZECH. RUSSIAN and KOREAN in our next couple of examples.

9 Why should we always use Unicode notations for spe-
cial characters?

When the source code file is stored on disk, committed to a version control system, or
transferred in any way, there’s always a risk that the encoding gets lost. If a Unicode file
is stored as plain text, two-byte characters change into two single-byte characters. For
example, the character 0 with Unicode value \udeac will change into two characters with
ASCII code do and ac. When this happens the syllable 0 (pronounced as “kil”) changes into
D- and the text becomes illegible. It is good practice to use the Unicode notation as done in
the above snippet; this will help you avoid encoding problems with your source code.

Using the correct encoding isn’t sufficient to solve every font problem you might encounter. In the
Czech_Russian_Korean_Wrong’ example, we create the Paragraph objects like this:

PdfFont font = PdfFontFactory.createFont(FontConstants.TIMES_ROMAN);
document .add(new Paragraph().setFont(font)
.add(CZECH) .add(" by Robert Louis Stevenson"));
document .add(new Paragraph().setFont(font)
.add(RUSSIAN).add(" by Robert Louis Stevenson"));
document .add(new Paragraph().setFont(font)
.add(KOREAN) .add(" by Robert Louis Stevenson"));

This won’t work because we didn’t use the correct encoding, but also because we didn’t define a
font that supports Russian and Korean. We fix this problem in the Czech_Russian_Korean® example
by embedding the free font “FreeSans” for the Czech and Russian translation of the title. We’ll use
a Hancom font “HCR Batang” for the Korean text.

public static final String FONT = "src/main/resources/fonts/FreeSans.ttf";
public static final String HCRBATANG = "src/main/resources/fonts/HANBatang.ttf";

We'll use these paths as the first parameter for the PdfFont constructor. We pass the desired encoding
as the second parameter. The third parameter indicates that we want to embed the font.

"http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter- 1#1836-c01e04_czech_russian_korean_wrong java
®http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter- 1#1837-c01e05_czech_russian_korean_right java

http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-1#1836-c01e04_czech_russian_korean_wrong.java
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-1#1837-c01e05_czech_russian_korean_right.java
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-1#1836-c01e04_czech_russian_korean_wrong.java
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-1#1837-c01e05_czech_russian_korean_right.java

Chapter 1: Introducing the PdfFont class 17

1 PdfFont font1250 = PdfFontFactory.createFont(FONT, PdfEncodings.CP1250, true);
2 document.add(new Paragraph().setFont(font1250)

3 .add(CZECH) .add(" by Robert Louis Stevenson"));

4 PdfFont font1251 = PdfFontFactory.createFont(FONT, "Cp1251", true);

5 document.add(new Paragraph().setFont(font1251)

6 .add(RUSSIAN).add(" by Robert Louis Stevenson"));

7 PdfFont fontUnicode =

8 PdfFontFactory.createFont (HCRBATANG, PdfEncodings.IDENTITY H, true);

9 document.add(new Paragraph().setFont(fontUnicode)
10 .add(KOREAN) .add(" by Robert Louis Stevenson"));

Figure 1.5 shows the resulting PDF.

@ZZ.EZ‘_,.Ei'-‘_ZE'—“ZZ'-—Z:ZZE—ZZZ'—':Z . E— ﬁ
File Edit View Window Help E
Do [Boe- | B BRFPE | #0200 BS customize | [

| N & | =@ \ [Tools | Fill &Sign | Comment

~

Podivny pripad Dr. Jekylla a pana Hyda by Robert Louis Stevenson

CrpanHas uctopus goktopa Oxekuna n muctepa Xanaga by Robert Louis Stevenson

gto] =, A2, 1} by Robert Louis Stevenson [pocument Properties

Description Security Fonts Initial View Custom Advanced

Fonts Used in this Document

= FreeSans (Embedded Subset)
Type TrueType
Encoding: Custom

= FreeSans (Embedded Subset)
Type: TrueType
Encoding: Custom

= HCRBatang (Embedded Subset)
Type: TrueType (CID)
Encoding: Identity-H

Figure 1.5: Correct rendering of Czech, Russian and Korean

When we look at the Fonts panel in the document properties, we notice that FreeSans is mentioned
twice. That is correct: we’ve added the font once with the encoding Cp1250 and once with the
encoding Cp1251, In the Czech_Russian_Korean_Unicode® example, we’ll create one composite font,
freeUnicode, for both languages, Czech and Russian.

*http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter- 1#1844-c01e06_czech_russian_korean_unicode.java

http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-1#1844-c01e06_czech_russian_korean_unicode.java
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-1#1844-c01e06_czech_russian_korean_unicode.java

© © 0 N O O b W N~

[N

Chapter 1: Introducing the PdfFont class 18

PdfFont freeUnicode =

PdfFontFactory.createFont(FONT, PdfEncodings.IDENTITY H, true);
document .add(new Paragraph().setFont(freeUnicode)

.add(CZECH) .add(" by Robert Louis Stevenson"));
document .add(new Paragraph().setFont(freeUnicode)

.add(RUSSIAN).add(" by Robert Louis Stevenson"));
PdfFont fontUnicode =

PdfFontFactory.createFont (HCRBATANG, PdfEncodings.IDENTITY H, true);
document .add(new Paragraph().setFont(fontUnicode)

.add(KOREAN) .add(" by Robert Louis Stevenson"));

Figure 1.6 shows the result. The page looks identical to what we saw in figure 1.5, but now the PDF
only contains one FreeSans font with Identity-H as encoding.

.m::s:*_'_.:::-‘_:'E:—*__.*::::E:::‘-—:::E—:'::?:Z: - m} *
File Edit View Window Help *
B‘Open | f“:{ Create ~ | D @ (% @ | {E} ® g LQ @} @) @ Customize - ‘ @

/1 | Ik ‘ (=) (4 | [| Tools Fill & Sign Comment

Podivny pfipad Dr. Jekylla a pana Hyda by Robert Louis Stevenson
CrpaHHas uctopus noktopa Ixekuna n muctepa Xainna by Robert Louis Stevenson

gto] =, x]Z, L} by Robert Louis Stevenson

Document Properties

Description Security Fonts Initial View Custom Advanced

Fonts Used in this Document

= @ FreeSans (Embedded Subset)
Type: TrueType (CID)
Encoding: Identity-H

= HCRBatang (Embedded Subset)
Type: TrueType (CID)
Encoding: Identity-H

Figure 1.6: Correct rendering of Czech, Russian and Korean (Unicode)

Using Unicode is one of the requirements of PDF/UA and of certain flavors of PDF/A for reasons of
accessibility. With custom encodings, it isn’t always possible to know which glyphs are represented
by each character.

In the next series of font examples, we’ll experiment with some font properties such as font size,
font color, and rendering mode.

O O B W N =~

Chapter 1: Introducing the PdfFont class 19

Font properties

Figure 1.7 shows a screen shot of yet another PDF with the Jekyll and Hyde title. This time, the
default font Helvetica is used, but we’ve defined different font sizes.

@ font_size.pdf - Adobe Acrobat Pro - O *

File Edit View Window Help *

E}Open | ﬁ Create ~ | = @ @ @ ‘ @} e g g Eﬁn @) @ Customize ~ ."
/1 | Iy @ | =) (g | | Tools Fill & Sign Comment

The Strange Case of Dr. Jekyll and Mr. Hyde vy rovert Louis stevenson

Figure 1.7: Different font sizes

The font size is set with the setFontSize() method. This method is defined in the abstract class
ElementPropertyContainer, which means that we can use it on many different objects. In the
FontSize'® example, we use the method on Text and Paragraph objects:

Text titlel
Text title2
Text author

new Text("The Strange Case of ").setFontSize(12);
new Text("Dr. Jekyll and Mr. Hyde").setFontSize(16);
new Text("Robert Louis Stevenson");

Paragraph p = new Paragraph().setFontSize(8)
.add(titlel).add(title2).add(" by ").add(author);
document.add(p);

We set the font size of the newly created Paragraph to 8 pt. This font size will be inherited by all the
objects that are added to the Paragraph, unless the objects override that default size. This is the case
for titlet for which we defined a font size of 12 pt and for title2 for which we defined a font size
of 16 pt. The content added as a String (" by ") and the content added as a Text object for which
no font size was defined inherit the font size 8 pt from the Paragraph to which they are added.

Q In iText 5, it was necessary to create a different Font object if you wanted a font with a
different size or color. We changed this in iText 7: you only need a single PdfFont object.
The font size and color is defined at the level of the building blocks. We also made it possible
for elements to inherit the font, font size, font color and other properties from the parent

object.

In previous examples, we've worked with different fonts from the same family. For instance, we’'ve
created a document with three different fonts from the Cardo family: Cardo-Regular, Cardo-Bold,

http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter- 1#1846-c01e07_fontsize.java

http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-1#1846-c01e07_fontsize.java
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-1#1846-c01e07_fontsize.java

O O B W N~

Chapter 1: Introducing the PdfFont class 20

and Cardo-Italic. For most of the Western fonts, you’ll find at least a regular font, a bold font, an
italic font, and a bold-italic font. It will be more difficult to find bold, italic and bold-italic fonts for
Eastern and Semitic languages. In that case, you’ll have to mimic those styles as is done in figure

1.8. If you look closely, you see that different styles are used, yet we've only defined a single font in
the PDF.

m:.‘.‘_f’:..' Adobe Acrobat Pro — m}

File Edit View Window Help *

=) open | A Create ~ | B @ C% B | B @ B b B & T Customize ~ | lz‘
/1 | Ik | - '|' ‘ | Tools Fill & Sign Comment

The Strange Case of Dr. Jekyll and Mr. Hyde by Robert Louis Stevenson

Document Properties

Description Security Fonts Initial View Custom Advanced

Fonts Used in this Document

= a Helvetica
Type: Type 1
Encoding: Ansi
Actual Font: ArialMT
Actual Font Type: TrueType

Figure 1.8: Mimicking different font styles
Let’s take a look at the BoldItalic'* example to find out how this was done.
Text titletl

Text title?2
Text author

new Text("The Strange Case of ").setltalic();
new Text("Dr. Jekyll and Mr. Hyde").setBold();
new Text("Robert Louis Stevenson").setltalic().setBold();
Paragraph p = new Paragraph()
.add(titlel).add(title2).add(" by ").add(author);
document .add(p);

In lines 1 to 3, we use the methods setItalic() and setBold(). The setItalic() method won’t
switch from a regular to an italic font. Instead, it will skew the glyphs of the italic font in such a
way that it looks as if they are italic. The setBold() font will change the render mode of the text
and increase the stroke width. Let’s introduce some color to show what this means.

Figure 1.9 shows the text using different colors and different rendering modes.

"http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter- 141847-c01e08_bolditalic.java

http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-1#1847-c01e08_bolditalic.java
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-1#1847-c01e08_bolditalic.java

© 00 39 O Ol & W N =~

AN
= o

Chapter 1: Introducing the PdfFont class 21

@ color_rendermode.pdf - Adobe Acrobat Pre - m} X

File Edit View Window Help *
BOpen | ﬂ Create - ‘ D @ % @ | @ %;.) @ L,_‘ Eﬁ_) @) ‘@ Customize ~ | lz‘
7] &[G = @ | | Tools = Fill & Sign | Comment

The Strange Case of Dr. Jekyll and /i1

Figure 1.9: different font colors and rendering modes

The ColorRendering'? example explains what happens.

Text titlel = new Text("The Strange Case of ").setFontColor(Color.BLUE);

Text title2 = new Text("Dr. Jekyll")

.setStrokeColor(Color.GREEN)
.setTextRenderingMode(PdfCanvasConstants. TextRenderingMode .FILL_STROKE);

Text title3 = new Text(" and ");

Text title4 = new Text("Mr. Hyde")
.setStrokeColor(Color.RED).setStrokeWidth(@.5f)
.setTextRenderingMode(PdfCanvasConstants. TextRenderingMode . STROKE) ;

Paragraph p = new Paragraph().setFontSize(24)
.add(titlel).add(title2).add(titlel3).add(titled);

document .add(p);

A font program contains the syntax to construct the path of each glyph. By default the path is painted
using a fill operator, not drawn with a stroke operation, but we can change this default.

« In line 1, we change the font color to blue using the setFontColor() method. This changes
the fill color for the paint operation that fills the paths of all the text.

« In line 2-4, we don’t define a font color, which means the text will be painted in black.
Instead we define a stroke color using the setStrokeColor() method, and we change the
text rendering mode to FILL_STROKE with the setTextRenderingMode() method. As a result
the contours of each glyph will be drawn in green. Inside those contours, we’ll see the default
fill color black.

« We don’t change any of the defaults in line 5. This Text object will simply inherit the font size
of the Paragraph, just like all of the other Text objects.

« In line 6-8, we change the stroke color to red and we use the setStrokeWidth() to 0.5 user
units. By default, the stroke width is 1 user unit, which by default corresponds with 1 point.

®http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-1#1848-c01e09_colorrendering.java

http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-1#1848-c01e09_colorrendering.java
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-1#1848-c01e09_colorrendering.java

Chapter 1: Introducing the PdfFont class 22

There are 72 user units in one inch by default. We also change the text rendering mode to
STROKE which means the text won’t be filled using the default fill color. Instead, we’ll only see
the contours of the text.

Mimicking bold is done by setting the text rendering mode to FILL_STROKE and by increasing the
stroke width; mimicking italic is done by using the setSkew() method that will be discussed in
chapter 3. Although this approach works relatively well, the setBold() and setItalic() method
should only be used as a last resort when it’s really impossible to find the appropriate fonts for the
desired styles. Mimicking styles makes it very hard —if not impossible— for parsers extracting text
from PDF to detect which part of the text is rendered in a different style.

Reusing styles

If you have many different building blocks, it can become quite cumbersome to define the same
style over and over again for each separate object. See for instance figure 1.10 where parts of the
text —the title of a story— are written in 14 pt Times-Roman, but other parts —the names of the main
characters— are written in 12 pt Courier with red text on a light gray background.

T style_example.pdf - Adobe Acrobat Pro - [m] X

File Edit View Window Help *

B Open | ﬁ Create ~ ‘ = @ % @ | {:?} g%) @’ L& E@n @) EZ[Customize - .'
A | o | =) (e | Tools Fill & Sign Comment

-

The Strange Case of Dr. Jekyll and Mr. Hyde.

Figure 1.10: reusing styles

We could define the font family, font size, font color and background for each separate Text object
that is added to the title Paragraph, but in the ReusingStyles'* example, we use the Style object to
define all the different styles at once.

http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-1#1889-c01e10_reusingstyles.java

http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-1#1889-c01e10_reusingstyles.java
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-1#1889-c01e10_reusingstyles.java

O N O O & W N~

S G
D W NN, O O

Chapter 1: Introducing the PdfFont class 23

Style normal = new Style();
PdfFont font PdfFontFactory.createFont(FontConstants. TIMES _ROMAN);
normal .setFont(font).setFontSize(14);
Style code = new Style();
PdfFont monospace = PdfFontFactory.createFont(FontConstants.COURIER);
code.setFont(monospace).setFontColor(Color.RED)
.setBackgroundColor (Color.LIGHT_GRAY);
Paragraph p = new Paragraph();
.add(new Text("The Strange Case of ").addStyle(normal));
.add(new Text("Dr. Jekyll").addStyle(code));
.add(new Text(" and ").addStyle(normal));
.add(new Text("Mr. Hyde").addStyle(code));
.add(new Text(".").addStyle(normal));
document.add(p);

T T T T ©

In line 1-3, we define a normal style; in line 4-7, we define a code style —Courier is often used when
introducing code snippets in text. In line 8-13, we compose a Paragraph using different Text objects.
We set the style of each of these Text objects to either normal, or code.

The Style object is a subclass of the abstract ElementPropertyContainer class, which is the
superclass of all the building blocks we are going to discuss in the next handful of chapters. It
contains a number of setters and getters for numerous properties such as fonts, colors, borders,
dimensions, and positions. You can use the addStyle() method on every AbstractElement subclass
to set these properties in one go.

Q Being able to combine different properties in one class, is one of the many new features in
iText 7 that can save you many lines of code when compared to iText 5.

The Style class is about much more than fonts. You can even use it to define padding and margin
values for BlockE lement building blocks. But let’s not get ahead of ourselves, the BlockElement class
will be discussed in chapters 4 and 5.

Summary

In this chapter, we’'ve introduced the PdfFont class and we talked about font programs, embedding
fonts and using different encodings. This allowed us to show the title of a short story by Robert
Louis Stevenson in different languages: English, Czech, Russian, and Korean. We also looked at font
properties such as font size, font color, and rendering mode. We even discovered how to mimic styles
in case we can’t find the font program to render text in italic or bold.

There’s much more that could be said about fonts, but we’ll leave that for a separate tutorial.
In the next chapter, we’ll create a PDF with the full story while we discuss the RootElement
implementations Document and Canvas.

Chapter 2: Working with the
RootElement

Throughout this tutorial, we’ll be creating PDF documents by adding BlockElement and Image
objects to a RootElement, an abstract class that is subclassed by the Document object and the Canvas
object. In the previous chapter, we've already used the Document class; in this chapter, we’ll take a
closer look at both the Canvas and the Document class.

« Document is the default root element when creating a self-sufficient PDF. It manages high-level
operations such as setting page size and rotation, adding elements, and writing text at specific
coordinates. It has no knowledge of the actual PDF concepts and syntax. A Document’s
rendering behavior can be modified by extending the DocumentRenderer class and setting
an instance of this custom renderer with the setRenderer() method.

+ Canvas is used for adding BlockElement and Image content inside a specific rectangle defined
using absolute positions on a PdfCanvas. Canvas has no knowledge of the concept of a page
and content that doesn’t fit the rectangle will be lost. This class acts as a bridge between the
high-level layout API and the low-level kernel APL

Lets’s start with some Canvas examples.

Using Canvas to add content inside a Rectangle

In figure 2.1, we see a rectangle drawn using the low-level API. Inside this rectangle, we’ve added
some text. This text was added using the Canvas object.

0 N O O & W N =

[G
o b W N =~ O ©

Chapter 2: Working with the RootElement 25

E:?‘ ".'_E'"“ZE::'*—::::E—:'::"'.:': - D X

File Edit View Window Help ® |

B Open | Ej Create ~ | D @ @ @ ‘ {i} & Lz LQ Eé @) @ Customize = | @
/1 M ‘ () (o) | Tools Fill & Sign Comment

A

[The Strange Case
of Dr. Jekyll and
Mr. Hyvde by
Robert Louis
Stevenson

Figure 2.1: Adding text inside a rectangle

The CanvasExample' shows how it’s done.

PdfDocument pdf = new PdfDocument(new PdfWriter(dest));
PdfPage page = pdf.addNewPage();
PdfCanvas pdfCanvas = new PdfCanvas(page);
Rectangle rectangle = new Rectangle(36, 650, 100, 100);
pdfCanvas.rectangle(rectangle);
pdfCanvas.stroke();
Canvas canvas = new Canvas(pdfCanvas, pdf, rectangle);
PdfFont font = PdfFontFactory.createFont(FontConstants.TIMES_ROMAN);
PdfFont bold = PdfFontFactory.createFont(FontConstants.TIMES_BOLD);
Text title =

new Text("The Strange Case of Dr. Jekyll and Mr. Hyde").setFont(bold);
Text author = new Text("Robert Louis Stevenson").setFont(font);
Paragraph p = new Paragraph().add(title).add(" by ").add(author);
canvas.add(p);
pdf.close();

Let’s examine what happens in this code snippet:

« Line 1: we define a PdfDocument,

« Line 2: we don’t use a Document object, so we have to create each PdfPage in our own code,
« Line 3: we use this PdfPage to create a PdfCanvas,

« Line 4: we define a rectangle,

"http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-241891-c02e01_canvasexample.java

http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-2#1891-c02e01_canvasexample.java
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-2#1891-c02e01_canvasexample.java

© 00 39 O O b W N~

Chapter 2: Working with the RootElement 26

Line 5-6: we draw the rectangle using the low-level API,

Line 7: we create a Canvas object using the PdfPage, the PdfDocument and the rectangle,

Line 8-13: we create a Paragraph; this code is identical to what we had in the previous chapter,
Line 14: we add the Paragraph to the Canvas.

Line 15: we close the PdfDocument.

Looking at this example, it’s not hard to understand the use case. Suppose that you need to add
content on a specific page at a specific rectangular location. You create a Canvas object passing that
page and that rectangle as a parameter, and you can add that content to that object. The content will
be rendered inside the boundaries of that rectangle.

It is important to understand that all the content that doesn’t fit the rectangle will be cut. See figure
2.2.

T

File Edit View Window Help E

B Open | ﬁ Create ~ | =il @ @ @ {é} Q%) @ g3 Eﬁ) @) E_Zf Customize ¥ "
/1 | m | - (o | Tools Fill 8 Sign = Comment

-

[The Strange Case
of Dr. Jekyvll and

Figure 2.2: Adding text that doesn’t fit a rectangle

In the CanvasCut'’ example, we add the same content to a smaller rectangle.

Rectangle rectangle = new Rectangle(36, 750, 100, 50);
Canvas canvas = new Canvas(pdfCanvas, pdf, rectangle);
PdfFont font PdfFontFactory.createFont(FontConstants.TIMES_ROMAN) ;
PdfFont bold = PdfFontFactory.createFont(FontConstants.TIMES _BOLD);
Text title =

new Text("The Strange Case of Dr. Jekyll and Mr. Hyde").setFont(bold);
Text author = new Text("Robert Louis Stevenson").setFont(font);

Paragraph p = new Paragraph().add(title).add(" by ").add(author);
canvas.add(p);

In this snippet, we add the exact same content as before, but instead of new Rectangle(36, 650,
100, 100), we reduced the height from 100 to 50: new Rectangle(36, 750, 100, 50). As a result,

http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-2#1892-c02e02_canvascut.java

http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-2#1892-c02e02_canvascut.java
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-2#1892-c02e02_canvascut.java

Chapter 2: Working with the RootElement 27

the text no longer fits the rectangle. The part that says “Mr. Hyde by Robert Louis Stevenson” got
lost. No exception gets thrown because this is expected behavior.

A iText 7.0.0 was rewritten from scratch. We've waited with the release of the first iText 7
version until we were 99% sure of the API. We wanted to avoid significant changes to the
API in later versions. Nevertheless, we’re constantly improving the library, hence you will
notice that some functionality described in the tutorials will only work in the current or
SNAPSHOT version of iText 7. Whenever this is the case, You'll see a “Warning” call out
like this one. The CanvasCut example we’ve just discussed won’t work as described in iText

7.0.0. You’ll need iText 7.0.1 to get the behavior described in this tutorial.

Text getting cut without warning isn’t always what you want. In some cases, you need to know if
the content fit the rectangle or not. For instance, in figure 2.3, we have defined a larger rectangle to
which we've added the Paragraph as many times as possible.

T canvas_repeat.pdf - Adobe Acrobat Pro - O X
File Edit View Window Help ®
=7 open | @ Create = | B & @ 2 e izly @ & & Customize - | lz‘

(o MG | =@ | Tools | Fill&Sign = Comment

-

[The Strange Case
of Dr. Jekyll and
Mr. Hyde by
Robert Louis
[Stevenson

[The Strange Case
of Dr. Jekyll and
Mr. Hyde by
Robert Louis

[Stevenson

[The Strange Case
of Dr. Jekyll and

Figure 2.3: Filling a rectangle with text

We’ve added the Paragraph three times, because we can fit it inside the rectangle almost two and a
half times. How did we know this? Let’s take a look at the CanvasRepeat'® example.

®http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-2#1893-c02e03_canvasrepeat.java

http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-2#1893-c02e03_canvasrepeat.java
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-2#1893-c02e03_canvasrepeat.java

W N O O &~ W N =

(RN
N »~ O ©

Chapter 2: Working with the RootElement 28

First we extended the CanvasRenderer:

class MyCanvasRenderer extends CanvasRenderer {
protected boolean full = false;

private MyCanvasRenderer(Canvas canvas) {
super(canvas) ;

@0verride
public void addChild(IRenderer renderer) ({
super.addChild(renderer);
full = Boolean.TRUE.equals(getPropertyAsBoolean(Property.FULL));

public boolean isFull() {
return full;

We introduce a member-variable full that indicates if the rectangle was completely filled or not.
Each time a child is added to the renderer, we check the status of the FULL property. This status can
be null, false or true. If it’s true, there is no more space left to add content. We also added an
isFull() method for our convenience.

Rectangle rectangle = new Rectangle(36, 500, 100, 250);
Canvas canvas = new Canvas(pdfCanvas, pdf, rectangle);
MyCanvasRenderer renderer = new MyCanvasRenderer(canvas);
canvas.setRenderer (renderer);
PdfFont font = PdfFontFactory.createfFont(FontConstants.TIMES_ROMAN);
PdfFont bold = PdfFontFactory.createFont(FontConstants.TIMES BOLD);
Text title =

new Text("The Strange Case of Dr. Jekyll and Mr. Hyde").setFont(bold);
Text author = new Text("Robert Louis Stevenson").setFont(font);
Paragraph p = new Paragraph().add(title).add(" by ").add(author);
while (!renderer.isFull())

canvas.add(p);

The Rectangle we define in line 1 is larger than what we had before. Line 3 and 4 are new. We
create an instance of our custom renderer and we declare this renderer to the Canvas object. In line
11 and 12, we add the Paragraph as many times as possible as long as the Canvas we’ve defined isn’t
completely full.

W N -

Chapter 2: Working with the RootElement 29

,J One might wonder why we are adding the border of the rectangle using the
low-level rectangle menu. The abstract RootElement extends the abstract
ElementPropertyContainer class. The ElementPropertyContainer class defines methods
such as setBorder () and setBackgroundColor (), but these methods can’t be used because
setting a border or a background isn’t implemented for Canvas, nor for Document. Not
every method defined in ElementPropertyContainer makes sense for all of its subclasses.
For instance: it doesn’t make sense to implement the setFont() method for an Image
object. You can check which methods are implemented for the Canvas and Document class
in Appendix C".

In figure 2.4, we created a document with two pages, but there’s something special about it: we added
content under the existing content of the first page after we added content to the second page.

|

File Edit View Window Help *

- open | T2 Create ~ ‘ ! e B (3 @ & T Customize + | el
¥ m / 2‘ Ik @H - ‘ Tools Fill & Sign Comment

@ Page Thumbnails

mE ® 9
. — Dr. Jekyll and Mr.
Hyde
2
4 [The Strange Case
&z f Dr. Jekyll and
’_ Mr. Hyde by
O Robert Louis
E 1 [Stevenson

Figure 2.4: Adding content to the previous page

The first part of the code, is identical to what we had in the first example: we define a first page
and a rectangle, we create a Canvas instance with this page and this rectangle. Then we define a
Paragraph and we add this Paragraph to the canvas. The following code snippet taken from the
CanvasReturn'® example shows how we create a second page and add some content to that page.

PdfPage page2 = pdf.addNewPage();

PdfCanvas pdfCanvas2 = new PdfCanvas(page2);

Canvas canvas2 = new Canvas(pdfCanvas2, pdf, rectangle);
canvas2.add(new Paragraph("Dr. Jekyll and Mr. Hyde"));

We add a new page to the document with the addNewPage() method (line 1). We create a new
PdfCanvas object with that page (line 2) and a new Canvas object using that new PdfCanvas, the

"http://developers.itextpdf.com/content/itext-7-building-blocks/c-rootelement-methods
Bhttp://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-2#1894-c02e04_canvasreturn.java

http://developers.itextpdf.com/content/itext-7-building-blocks/c-rootelement-methods
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-2#1894-c02e04_canvasreturn.java
http://developers.itextpdf.com/content/itext-7-building-blocks/c-rootelement-methods
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-2#1894-c02e04_canvasreturn.java

RGN

, O © 0 N O O b W N =~

Chapter 2: Working with the RootElement 30

PdfDocument and the Rectangle we used for the first page (line 3). We add a Paragraph to that new
Canvas.

This is pretty straightforward, but now look what happens next:

PdfPage pagel = pdf.getFirstPage();
PdfCanvas pdfCanvas1l = new PdfCanvas(
pagel.newContentStreamBefore(), pagel.getResources(), pdf);

rectangle = new Rectangle(100, 700, 100, 100);
pdfCanvasi.saveState()

.setFillColor(Color.CYAN)

.rectangle(rectangle)

CFil1()

.restoreState();
Canvas canvas = new Canvas(pdfCanvas1, pdf, rectangle);
canvas.add(new Paragraph("Dr. Jekyll and Mr. Hyde"));

In line 1, we create a PdfPage instance for the first page using the getFirstPage() method.

The getFirstPage() method is a custom version of the getPage() method. The getPage()
method allows you to get access to any page that was created before as long as the
PdfDocument hasn’t been closed.

In line 2 and 3, we create a PdfCanvas object using the following parameters:

« aPdfStream instance: a page consists of one or more content streams. In this case, we want to
add content under the existing content, hence we use the newContentStreamBefore() method.
If you want to add content on top of existing content, you should use the newContentStrea-
mAfter () object. These methods create a new content stream, and add it to the page. You can
also get access to existing content streams. The method getContentStreamCount () will tell
you of how many content streams the page content consists. There’s a getContentStream()
method that allows you to get a specific content stream based on its index. There’s also a
getFirstContentStream() and a getLastContentStream() method.

+ aPdfResources instance: the content stream on its own isn’t sufficient to render a page. Each
page refers to resources such as fonts and images. When adding content to that page, we’ll
need to reuse and update these resources.

« the PdfDocument instance: this is the low-level PdfDocument we’re working with.

In line 4, we define a rectangle. We paint that rectangle in Cyan in lines 5 to 9. In line 10 and 11, we
create a Canvas object to which we add a Paragraph.

Chapter 2: Working with the RootElement 31

& Being able to go back to a previous page and to add content to that page is one of the
new, powerful features in iText 7. The architecture of iText 5 didn’t allow us to change the
content of “completed” pages. This is one of the many reasons why we decided to rewrite

iText from scratch.

,J So far, we have been using the Canvas class to add content to aPdfCanvas. In chapter 7, we’ll
discover another use case: you can also create a Canvas to add content to a PdfFormX0b ject.
A form XObject is an object that is external to any page content stream. It represents a
stream of PDF content that can be referred to more than once from the same page, or from
different pages. It’s a stream of reusable PDF syntax. The Canvas objects allows you to

create that PDF syntax without any hassle.

It’s high time that we create a PDF with the full Jekyll and Hyde story instead of merely adding the
title and the author to a page. We'll use the Document class to achieve this.

Converting text to PDF with the Document class

Figure 2.5 shows a text file with the full Jekyll and Hyde story: jekyll_hyde.txt*

L‘}{ Cihitext-arya\samplesipublications\highlevelsrc\main\resources\tet\jekyll_hydetd - Notepad++ - m} x
File Edit Search View Encoding Language Settings Macre Run Plugins Window 7 X
o B SRy | |dhg| & 5 |BEB| = FEiERno®|] | &
[jekyll_hyde st B3 I
1 tIH.E STRANGE CASE OF DR. JEKYLL AND MR. HYDE@ENNG ~
by Robert Louis Stevensonifig

STORY OF THE DOOREE

Mr. Utterson the lawyer was a man of a rugged countenance that was never lighted by a smile; cold, scanty and embarrassed in-
Ho doubt the feat was easy to Mr. Utterson; for he was undemonstratiwve at the best, and even his friendship seemed to be foum
It chanced on one of these rambles that their way led them down a by-street in a busy guarter of London. The street was small
Two doors from one corner, on the left hand going east the line was broken by the entry of a court; and just at that point a
Mr. Enfield and the lawyer were on the other side of the by-street; but when they came abreast of the entry, the former lifte:
10 "Did you ever remark that door?" he asked; and when his companion had replied in the affirmative. "It is connected in my mind

I T R SO O

11 "Indeed?” said Mr. Utterson, with a slight change of voice, "and what was that?"il&@

"Well, it was this way," returned Mr. Enfield: "I was coming home from some place at the end of the world, about three o'cloc!
"Tut-tut," said Mr. Utterson.il@

"I =zee you feel az I do,"™ =aid Mr. Enfield. "Yes, it's a bad story. For my man was a fellow that nobody could have to do with
From this he was recalled by Mr. Utterson asking rather suddenly: "&nd you don't know if the drawer of the chegque lives there
"R likely place, isn't it?" returned Mr. Enfield. "But I happen to have noticed his address; he lives in some square or other
1 "And vou never asked about the--place with the door?" said Mr. Utterson.il3

"No, -2ir: I had a delicacy," was the reply. "I feel wvery strongly about putting questions; it partakes too muach of the style
"L wery good rule, too," =said the lawyer.ilg

1 o o W R

20 "But I have studied the place for myself,"™ continued Mr. Enfield. "It seems scarcely a house. There is no other door, and nob

21 The pair walked on again for a while in silence; and then "Enfield,"™ said Mr. Utterson, "that's a good rule of yours."il@

22 "Yes, I think it is," returned Enfield.ilig v
£ >
MNeormal text file length : 138207 lines: 360 Ln:1 Col:1 Sel:0[0 Dos\Windows UTF-2 INS

Figure 2.5: Text file with the Jekyll and Hyde story

We'll convert this txt file to a PDF multiple times in the next handful of examples. We'll start by
creating the PDF shown in figure 2.6.

http://gitlab.itextsupport.com/itext7/samples/raw/develop/publications/highlevel/src/main/resources/txt/jekyll_hyde.txt

http://gitlab.itextsupport.com/itext7/samples/raw/develop/publications/highlevel/src/main/resources/txt/jekyll_hyde.txt
http://gitlab.itextsupport.com/itext7/samples/raw/develop/publications/highlevel/src/main/resources/txt/jekyll_hyde.txt

0 N O O & W N =

Chapter 2: Working with the RootElement

File Edit View Window Help

-] X

®

= Open

|@Create' | D @ C% @ |

e z b b B &

/2| &[G = *

Customize ~ | lz‘

Fill & Sign

Tools Comment

THE STRANGE CASE OF DR. JEKYLL AND MR. HYDE

by Robert Lauis Stevenson

STORY OF THE DOOR

Mr. Utterson the lawyer was a man of a rugged countenance that was never lighted by a smile;
cold, scanty and embarrassed in discourse; backward in sentiment; lean, long, dusty, dreary and
yet somehow lovable. At friendly mestings, and when the wine was to his taste, something
eminently human beacened from his eye; something indeed which never found its way into his
talk, but which spoke not only in these silent symbels of the after-dinner facs, but more often and
loudly in the acts of his life. He was austerz with himself: drank gin when he was alone, to martify
a taste for vintages; and though he enjoyed the theatre, had not crossed the doors of ane for
twenty years. But he had an approved tolerance for others; sometimes wandering, almost with
envy, at the high pressure of spirits invelved in their misde=ds; and in any extremity inclined to
help rather than to reprove. *l inline to Cain's heresy.” he used to say quaintly: "1 let my brother
5o to the devil in his own way." In this character, it was frequently his fortuns to be the last
reputable acquaintance and the last good influence in the lives of downgeing men. And to such as
these, 5o long as they came about his chambers, he never marked & shade of change in his

and just at that point a certain sinister block of building thrust forward its gable on the street. It was
two storeys high: showed no window, nothing but a door on the lower storey and a blind forehead
of discoloured wall on the upper; and bare in every feature, the marks of prolonged and sordid
nagligence. The door, which was equipped with neither bell nor knocker, was blistered and
distained. Tramps slouched into the recess and struck matches on the panels; children kept shop
upan the steps; the schoolboy had tried his knife on the mouldings; and for close on a ganeration,
no one had appeared to drive away these random visitors or to repair their ravages.

Mr. Enfield and the lawyer were on the other side of the by-strest; but when they came abreast of
the entry, the former lifted up his cane and painted.

“Did you ever remark that door?” he asked: and when his companion had repiied in the affimnative.
"It is connected in my mind." added he. “with a very odd story."

"Indeed?" said Mr_ Utterson_ with a slight change of voice, "and what was that?

"Well, it was this way," retumed Mr. Enfield: *| was coming heme from some place at the end of
the world, about three o'dlack of a black winter moming, and my way lay through a part of town

where there was literally nathing to be seen but lamps. Street after street and all the folks asleep—
strest afier street, all lighted up as if for a procession and all as empty as & church-till at last | got

demeaneur. into that state of mind when a man listens and listens and begins o long for the sight of 3
policeman. All at ance, | saw two figures: one a little man who was stumping along eastward at a

o doubt the feat was 2asy to Mr. Utterson; for he was undemonstrative at the best, and even his
good walk, and the cther a girl of maybe sight or ten who was running as hard as she was able

friendship seemed to be founded in a similar catholicity of good-nature. It is the mark of a modest

man to accept his friendly circle ready-made from the hands of opportunity; and that was the down a cross street. Well, sir, the two ran into one ancther naturally encugh at the comer; and

then came the horrible part of the thing: for the man trampled calmly over th child's body and left

lawyer's way. His friends were those of his own blood or those whom he had known the longest:
her screaming on the ground. It sounds nothing to hear, but it was hellish 1o sa=. It wasn't like a

his affections, like ivy, were the growth of ime, they impli=d no aptness in the object. Hencs, no

doubt the band that united him to Mr. Richard Enfield, his distant kinsman, the well-knawn man man; ft was [he some damned Juggemaut | gave a few halloa, taok ta my hesls, collared my

gentieman, and brought him back to where there was already quite a group about the scresming

abaut town. It was a nut to erack for many, what these two could see in 2ach other, or what
child. He was parfectly cool and made no resistance, but gave me one look, so ugly that it brought

subject they could find in common. It was reported by those wha encountered them in their

Sunday walks, that they said nathing, looked singularly dull and would hail with obvious refief the out the sweat on me like running. The peaple who had tumed cut were the gir's own family; and

pretty scon, the doctor, for whom she had been sent put in his appearance. Well, the child was not

appearance of a friend. For all that, the two men put the greatest store by these excursions,
much the worse, more frig . g to the and there you might have

counted them the chief jewe! of ach week, and not only set aside oesasions of pleasure, but even
resisted the calls of business, that they might enjoy them unintermupted.

supposed would be an end to it. But there was one curious circumstance. | had taken a loathing to
my gentieman at first sight. So had the child's family, which was only natursl. But the doctor's case
It chanced on one of these rambles that their way led them down a by-street in a busy quarter of was what struck me. He was the usual cut and dry apotheeary. of no particular age and colour,

London. The street was small and what is called quiet. but it drove a thriving trade on the with a strong Edinburgh accent and about as ametional as a bagpipe. Well, sir, he was like the
weekdavs The inhahitants were all doinn well it seemed and all emuloushe hanina to do better rord of e

b

Tp—

Figure 2.6: First attempt to convert txt to PDF
The JekyllHydeV1*° example is very simple. You don’t need any new functionality that hasn’t been

discussed before:

PdfDocument pdf = new PdfDocument(new PdfWriter(dest));
Document document = new Document(pdf);

BufferedReader br = new BufferedReader(new FileReader(SRC));
String line;
while ((line = br.readlLine()) != null) {

document .add(new Paragraph(line));

}

document.close();

In line 1, we create the low-level PdfDocument object. In line 2, we create the high-level Document
instance. We create a Buf feredReader to read the txt file in line 3. We read every line in the text file
in a loop in lines 4 to 7. In line 6, we wrap every line inside a Paragraph object, which we add to the
Document object. In line 8. we close the document. The result is a 42-page PDF with the full story of
“The Strange Case of Dr. Jekyll and Mr. Hyde”

*%http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-2#1895-c02e05_jekyllhydev1.java

http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-2#1895-c02e05_jekyllhydev1.java
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-2#1895-c02e05_jekyllhydev1.java

Chapter 2: Working with the RootElement 33

While this result is already nice, we can do better. The first thing that jumps to the eye in figure
2.7 is the fact that we changed the alignment. Instead of the default left alignment, the text is now
justified on both sides of the page. If you take a closer look, you’ll also notice that we’ve introduced
hyphenation.

$X] jekyll_hyde_v2.pdf - Adobe Acrabat Pro - O X
File Edit View Window Help *
BOpen | EL} Create - | E/ @ C% @ e g % @ @) @“ Customize ~ | lz‘
. /42| Ik | = @ Tools = Fill & Sign |

Comment

THE STRANGE CASE OF DR. JEKYLL AND MR HYDE two storeys high: showed no window, nothing but a door on the lower storey and a blind forehead
by Robert Lows Stevenson of discoloured wall on the upper: and bore in every feature, the marks of prolonged and sordid

negligence. The door, which was equippad with neither bell nor knocker, was blistered and dis-
STORY OF THE DOOR tained. Tramps slouched into the recess and struck matchas on the panels: children kept shop
upon the steps: the schoolboy had tried his knife on the mouldings: and for close on a generation,

Mr. Uttersan the lawyer was a man of a rugged countenance that was never lighted by a smile; o ne had appeared o drive away these random visitors or to repair their ravages.

cold, scanty and embarrassed in discourse; backward in sentiment; lean, long, dusty, dreary and
Mr. Enfield and the lawyer wers on the ather side of the by-street; but when they came abreast of

the entry, the former lifted up his cane and pointed.

yet somehaw lovable. At friendly mestings, and when the wine was to his tasts, something emin-
ently human beaconed from his eye; something indeed which never found its way into his talk, but
which spake not enly in these silent symbols of the after-dinner face, but mere often and loudly in "Did you ever remark that door?” he asked: and when his companion had replied in the affirmative
the acts of his life. He was austere with himself, drank gin when he was alone, to mortify a taste "It i connected in my mind.” added he, "with a very odd story."

for vintages: and though he enjoyed the theatrs, had not crossed the doers of ane for twenty

"Indeed?" said Mr. Utterson, with a slight change of voice, "and what was that?*
years_ But ha had an approved tolerance for others: sametimes wondering, almost with envy, at o 9

the high pressure of spirits involved in their misdeeds: and in any extremity inclined to help rather "Well, it was this way." returned Mr. Enfield: "I was coming home from some place at the end of
than to reprove. "l incline to Cain's heresy.” he used to say quaintly: " let my brother go to the the world, about three o'clock of a black winter morming, and my way lay through a part of town
devil in his own way.” In this character, it was frequently his fortune to be the last reputable where there was literally nothing to be seen but lamps. Street after street and all the folks asieep—
acquaintance and the last good influence in the lives of downgoing men. And to such as these, so street after street, al lighted up as if for a procession and all as empty as a church—till at last | got
long as they came about his chambers, he never marked a shade of change in his demeanour. into that state of mind when 3 man listens and listens and begins to long for the sight of a police-

man. All st once, | saw two figures: one a little man whe was stumping along eastward at a good
walk, and the ather a gid of maybe eight or ten who was running as hard as she was able down a
cross street. Well, sir, the two ran into one ancther naturally encugh at the comer; and then came

No doubt the feat was easy to Mr. Utterson; for he was undemonstrative at the best, and even his
friendship seemed to be founded in a similar cathelicity of good-nature. It is the mark of a modest

man to aceept his friendly circle ready-made from the hands of opportunity: and that was the law-
the horrible part of the thing; for the man trampled calmly over the child's body and left her

screaming on the ground. It sounds nothing to hear, but it was hellish to see. [t wasn't ke a man;
it was like some damned Juggemaut. | gave a few halloa, took to my heels, collared my gentle-

yer's way. His friends were those of his own blood or those whom he had known the longest: his
affections. like ivy, were the growth of time, they implied no apiness in the object. Hence, no doubt

the bond that united him to Mr. Richard Enfield, his distant kinsman, the well-known man about
man, and brought him back to where there was already quite @ group about the screaming child.

He was perfectly cool and made no resistance, but gave me one lock, so ugly that it brought out
the sweat on me like running. The people who had tumed out were the gid's own family: and pretty

town. It was a nut to crack for many, what these two could see in each other, or what subject they
ecould find in common. It was reported by those who encountered them in their Sunday walks. that

they said nothing. looked singularly dull and would hail with obvious relief the sppearance of a
soan. the doctor, for whom she had been sent put in his appearance. Well. the child was not much

the worse. more frightened, according to the Sawbones: and there you might have supposed
would be an end te it. But there was one curious circumstance. | had taken a leathing to my gen-

friend. For all that, the two men put the greatest store by these excursions, counted them the chief
jewel of each week, and not only sat aside oceasions of pleasure, but even resisted the calls of

business, that they might enjoy them uninterruptad.
tleman at first sight. So had the child's family, which was only natural. But the doctor's case was

It chanced on one of these rambles that their way led them down a by-street in a busy quarter of what struck me. He was the usual cut and dry apothecary, of no particular age and colour, with a
London. The street was small and what is called quiet. but it drove a thriving trade on the week- strong Edinburgh sccent and about as emotional as a bagpipe. Well, sir, he was like the rest of us;
days. The inhabitants were all doing well, it seemed and all emulously hoping to do better stil. and every time he lcoked at my priscner, | saw that Sawbones turn sick and white with desire to kill
lavino out the sumlus of their arains in coouetry: so that the shoo fronts stond alono that thooowah- imn 1 knmue s hnt saanr im hir mmind et ae he koo ot saeas in minec and killing hoina ook af the

Figure 2.7: Second attempt to convert txt to PDF

For the JekyllHydeV2?* example, we copied the first example, and we added the following lines:

document . setTextAl ignment (TextAlignment. JUSTIFIED)
.setHyphenation(new HyphenationConfig("en", "uk", 3, 3));

We used the setTextAlignment() to change the default alignment at the Document level. We
used the setHyphenation() method to define the hyphenation rules. In this case, we created a
HyphenationConfig object to treat the text as British English. When splitting a word, we indicated
that we want at least 3 characters before the hyphenation point and at least 3 characters after the
hyphenation point. This means that the word “elephant” can’t be hyphenated as “e-lephant” because
“e” is shorter than 3 characters; we need to split the word like this instead: “ele-phant”. The word
“attitude” can’t be hyphenated as “attitu-de” because “de” is shorter than 3 characters, in this case
we need something like “atti-tude”.

*Thttp://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-2#1896-c02e06_jekyllhydev2.java

http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-2#1896-c02e06_jekyllhydev2.java
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-2#1896-c02e06_jekyllhydev2.java

Chapter 2: Working with the RootElement

34

Changing defaults at the Document level, such as the default alignment, the default
hyphenation, or even the default font, wasn’t possible in iText 5. You had to define all
of these properties at the level of the separate building blocks. In iText 7, we introduced
the inheritance of properties. The default font is still Helvetica, but we can now define a
different font at the Document level.

Figure 2.8 shows our third attempt to convert the txt file to a PDF. We changed the font from 12 pt
Helvetica to 11 pt Times-Roman. As a result, the page count was reduced from 42 pages to only 34.

@ jekyll_hyde_v3.pdf - Adcbe Acrobat Pro
File Edit View Window Help

] X

x

E}‘ Open

|@Create' | E/ @ @ @

ez & b & &

Customize - ‘ |ZI

/3| [0

| &
=R

| 5

Tools

Fill & Sign

Comment

THE STRANGE CASE OF DR. JEKYLL AND MR. HYDE
by Robert Louis Stevenson

STORY OF THE DOOR

M1 Uterson the Lawyer was a man of 2 rugzed countenance that was never Lighisd by a smile: cold, scanty
and embarrassed in discourse; backward in sentiment; lean, long, dusty, dreary and vet somehow lovable. At friendly
meetings, and when the wine was to his taste, something eminently human beaconed Fom his eye; semething indeed
which never found its way into bis talk, but which spake ot only in these silent symbels of the after-gimner face, but
mare often and loudly in the acts of his life. Ha was austers with himself; drank gin when he was alone, to mortfy a
taste for viniages: and though he exjoyed the theawe, had ot crossed the doors of one for twenry years. But be had an
approved tolsrance for others; somstimes wordering, almost with ecvy, at the high pressure of spirits ivelved in their
misdeeds: and in any xtemiry inclined to belp rather than to reprove. 'T incline to Cain's heresy,” he used to say
quaintly: T let my brother go to the devil m his own way.” In this character, it was frequently his fornine to be the last
reparable acquaintance and the last good influsnce in the lives of downzoinz men And 1o such as these. so long a5
they came about his chamivers. he never marked a shade of change in his demeanour.

o doubt the feat was zasy to Mr. Utterson; for he was undemonstrative at the best, and even his friendship
seemed o be founded in a similar catholiciry of zood-namura. It i the mark of a modest man to accept his friendly
circle ready-made From the hands of opporunity: and that was the Lawyer's way. His frisnds were those of his own
blood ar those whom be had known the Jongest: bis affections. like ivy. were the growth of fime. they implied no apt-
ness in the object. Hence, no doubt the bond that united him to Mr. Richard Enfield, his distant kinsman, the well-
known man about town. It was a £t to crack for many, what these two could se2 in sach ofher, or what subject they
could find in common. Tt was raparted by those who ancountersd them in thair Sunday walks, that they said nothing,
Toaked singularly dull and would hail with obvieus relief the appearance of 2 fiend. For all that. the fwo men put the
Zreatest store by these excursions, counted them the chisf jewel of sach week, and not nly st asids occasions of
pleasure. but even resisted the calls of business, that they might enjoy them uninterrupted.

1t chanced on one of these rambles that their way led them down 2 by-streat i a busy guarter of London. The
street was small and what is called quiet. but it drove a thriving tade on the weekdays. The inhabitaus were all doing
well, it seemed and all emlously hoping to do better still, and laying out the swrplus of their zmins in coquetry; so
that the shop fronts stood alonz that thoroughfare with an air of invitation, like rows of smiling saleswomen Even en
Sunday, when it veiled its more Sorid charms and Lay comparatively empty of passage, the streat shoma eut in contrast
to its dingy neighbourhood. like a fire in a forest. and with its freshly painted shutters. well-polished brasses, and gen-
eal cleanliness and gaiety of note. instantly caught and pleased the eye of the passenger.

Twa doors from one corner, on the left hand going east the line was broken by the entry of 3 court. and justat
that paint a camain sinister block of building thrust forward its zable on the sest. It was two storeys hizh: showed zo
window. nothing but a door on the lower starey and a blind forshead of discoloured wall an the upper: and bore in
every feanure, the marks of prolonzed and sordid neslizence. The door, which was equipped with neither bell nor
knocker, was blistered and distined. Tramps slouched into the recess and struck matches on the panels; children kapt

"Well it was this way." Terumed Mr. Enfield: "I was coming home from same place at the end of the world,
about thres o'clock of a black winter morring, and my way Lay through a part of town where there was literally noth-
ine o be seen but lamps. Street after strest and all the Solks asleep--sirest after streer, all lighted up as if for 2 praces-
sion and all as empty as a church--till at Last T got into that state of mind wher a man listens and listens and begins to
lons for the sight of a policeman All at ance. Tsaw oo figures: oxe a linle man who was srumping along eastward at
2 good walk, and the other a girl of maybe eighi o ten who was running as hard as she was able down 2 coss sieet
Well. sir. the two ran into ene another aturally enouzh at the comer: and then came the horrible part of the thing: for
the man mrampled calmly over the child's body and left her screaming on the ground. It sounds nothing to hear, but it
was hellich to see. It wasr't lke a man; it was 1ike some danmed Fuggernaut. T gave a few halloa, ook to my heels,
collared my gentleman, and brought him back o where thera was alraady quite a group about the screaming child. He
was ¥ cool and made o resistance, but gave me one look. so ugly that it brought out the sweat on me like run-
ning The people who had nurned out were the gir's own family: avd pretry soor, the doctor, for wher she had been
sent put in his appearance. Well, the child was not much the worse, more Eightened, according to the Sawbones; and
thers you might kave supposad would be an end o it. But thera was ons curious circumstance. 1 had taken a loathing
t0 my genrleman at first sight So had the child's family, which was ouly raniral But the doctar’s case was what struck
me. He was the usual cut and dry apethecary. of no particular age and colour, with 2 strong Edinburgh accent and
about as emotional as a bagpipe. Well, sir, he was like the rest of us; every time he looked at my prisoner, T saw that
Sawbones tum sick and white with desire to kill him. T knew what was in his mind just as he knew what was in mine;
and killing being out of the question, we did the next best. We told the man we could and would make such a scandal
out of this as should make his name stink from one end of Londo: to the other If he had any fiends o1 any credit, we
undertoak that he should Jose them Aud all the time. 25 we were pitching it in red hot, we were kesping the women
ofFhim as best we could for they ware as wild as harpies. Tnever saw a circle of such hateful faces; and there was the
man in the middle, with a kind of black sneering coolness—frightensd too, T could see that-—bur carrying it off, sir,
really Iike Satan. "If you choose to maks capital out of this accident’ said he, T am nannally bafpless. No gentleman
but wishes to avoid a scens,’ says be. "Name your figure " Well, we screwed him up to a Eundred pounds for the child's
family: he would have clearly 1iked to stick out: but there was something about the lot of us that meant mischisf. and
atlast e strack. The next thing was to gat the money; and where do you thirk he carried us bt to that place with the
door?--whipped out 2 key, went in. and presently came back with the matter of ten pounds in gold and a cheque for
the balancs on Coutts's, drawn payable to bearer and signed with a name that [can't mantion. though it's ane of the
poits of my stary., but it was 2 name at least very well known and often privted The fgure was stiff. bt the sigmature
was good for more than that if it was ouly geruine. I took the iberty of pointing out to my gendeman that the whele
business looked apocryphal, and that a man does na, in raal life, walk into a cellar doer at four in the morning and
come out with another man's chegue for close upen a bundred pounds. But b was quits axsy and sueering “Sat your
mind at rest; says he, Twill stay with you fill the banks open and cash the cheque mysalf. So we all sat off, the doc-
tor, and the child's father, and our friend and myself, and passad the rest of the night in my chambers; and next day,
when we had breakfasted. went in a body to the bank. T pave in the cheque myself, and said T had evary reasan to
believe it was a forzery. Not 2 bit of it. The cheque was gemuine "
*Tur-tur,” said Mr. Utterson.

Figure 2.8: Third attempt to convert txt to PDF

When we look at the JekyllHydeV3?** example, we see that two different fonts are used:

*2http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-2#1897-¢02e07_jekyllhydev3.java

http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-2#1897-c02e07_jekyllhydev3.java
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-2#1897-c02e07_jekyllhydev3.java

~N O O B W N -

W N O Ol & W N =

NN N N B B | s s s
W NP, O © 0030 O WO~ O O

Chapter 2: Working with the RootElement 35

Document document = new Document(pdf);
PdfFont font = PdfFontFactory.createFont(FontConstants.TIMES_ROMAN);
PdfFont bold = PdfFontFactory.createFont(FontConstants.HELVETICA BOLD);
document . setTextAlignment(TextAlignment . JUSTIFIED)
.setHyphenation(new HyphenationConfig("en", "uk", 3, 3))
.setFont(font)
.setFontSize(11);

Times-Roman is used as the default font, but we also define Helvetica-Bold for the titles. The txt file
was conceived in such a way that the first line of the text file is the title of the book. Every other title
in the story is preceded by an empty line. Every line that isn’t a title, is a full paragraph. Knowing
this, we can adapt the loop that reads the text file line by line.

BufferedReader br = new BufferedReader(new FileReader(SRC));
String line;
Paragraph p;
boolean title = true;
while ((line = br.readlLine()) != null) {
p = new Paragraph(line);
p.setKeepTogether (true);
if (title) {
p.setFont(bold).setFontSize(12);
title = false;
}
else {
p.setFirstLineIndent(36);
}
if (line.isEmpty()) {
p.setMarginBottom(12);
title = true;
}
else {
p.setMarginBottom(Q);

}
document .add(p);

This code snippet is a tad more complex than what we had before, but let’s walk through it step by
step:

« We introduce a Boolean title (line 4) which we initalize as true because we know that the
first line in the text file is a title. We create a Paragraph for each line (line 6) and we use

Chapter 2: Working with the RootElement 36

the setKeepTogether () method because we don’t want iText to distribute paragraphs over
different pages (line 7). If a Paragraph doesn’t fit the current page, it will be forwarded to
the next page unless the Paragraph doesn’t fit the next page either. In that case will be split
anyway: part of it will be added to the current page and the rest will be forwarded to the next
page —or pages.

« If value of title is true, we change the default font that was defined at the Document level as
11 pt Times-Roman to 12 pt Helvetica-Bold. We know that the next line in the txt file will be
normal content, so we set the value of title to false (line 9-11). For normal lines, we change
the indentation of the first line so that we can easily distinguish the different paragraphs in
the text (line 12-14).

« If the current line is an empty String, we define a bottom margin of 12 (line 16) and we
change the value of title back to true (line 17), because we know that the next line will be
a title; for all other the lines, we reduce the bottom margin of the Paragraph to @ (line 20).

« Once all the properties for the Paragraph are set, we add it to the Document (line 22).

As you could tell from figure 2.8, iText has rendered the text to PDF page by page in quite a nice
way. Now suppose that we want to render the text in two columns, organized side by side on one
page. In that case, we need to introduce a DocumentRenderer instance.

Changing the Document renderer

The text in figure 2.8 is rendered using exactly the same Document defaults and exactly the same
Paragraph properties as in the previous example. There’s one major difference: the text is now
rendered in two columns per page.

Chapter 2: Working with the RootElement 37

ekyll_hyde v4.pdf - Adobe Acrobat Pro — O X
T jeioi_hy P
File Edit View Window Help *

@Open |@Create' | I:/ @ C% @’ | ‘@} @ @ @ @J @) @ Customize = | Iz‘
::’:: /41| Ik | E: '|' | | Tools FiII&:SignE

Comment

THE STRANGE CASE OF DR. JEKYLL
AND MR. HYDE

by Robert Louis Stevenson.

STORY OF THE DOOR

Mr. Utterson the lawyer was a maz of 2
rugged countenance that was never lighted by 2
smile; cold, scanty and embarrassed in discowrse;
backward in sentiment; lean, long, dusty, dreary
and yet somehow lovable. At friendly meetings.
and when the wine was to Lis taste, somethiag
eminently buman beaconed from bis eye:
something indeed which zever found ifs way it
his talk, but which spoke aot culy in these silent
symbols of the afier-dinner face, but more often
and loudly in the acts of bis life. Ee was sustere
with himself, drank gin when be was aloge, to
mortify a taste for vintages; and though he
enjoyed the theatrs, bad aot crossed the doors of
one for twenty years. But be had an approved tol-
erance for others; sometimes woadering, almost
with envy, at the high pressure of spisits involved
ia their misdeeds; and in amy extremity inclined
to help mather than to reprove. *T inclize to Cain's
heresy,” be wsed to sey quaiatly: "1 let my brother
20 to the devil in his own way." In this character,
it was frequently his fortume to be the last reput-
able acquaiatance and the last good influeace in
the lives of downgoing men. And to such as
these, so loag as they came about his chambers,
he pever marked a shade of change in his
demesnour.

No doubt the feat was sasy fo Mr. Utter-
son; for he was undemonstative at the best, aad
even his frisadship seemed to be founded in 2
similar cathalicity of zood-nature. It is the mark
of 3 modest man to accept his Friendly circle

other, or what subject they could find in com-
mon. It was reported by those who encountered
them in their Sunday walks, that they said nof-
ing, looked singulsrly dull snd would hail with
obvious relief the sppearance of a frisnd. For all
that, the two men put the greatast store by thase
excursions, counted them the chief jewel of sach
week, snd not only set aside occasions of pless-
ure, bur even resisted the calls of business, that
they might enjoy them uninterruptad.

It chanced on ome of these rambles that
their way led them down a by-street in & busy
quarter of London. The street was small and what
is callad quist, but it drove s thriving wade on the
weekdsys. The inhsbitants were all doing well, it
seemed snd all emulously hoping to do barmer
still, and laying out the surplus of their grains in
coquetry; so that the shop fronts stood slong that
thoroughfare with an sir of invitation, like rows
of smiling saleswomen. Even on Sundsy, when it
veiled its more florid charms and lay comparat-
ively empry of passage, the smreet shone out in
conmast to its dingy neighbourhood, like a fire in
a forest; and with its freshly painted shutters,
well-polished brasses, and general cleanliness
and gaiety of note, instantly caught and pleased
the eye of the passenger.

Two doors from one corner, on the left
hand going east the line was broken by the entry
of a court; and just at that point 4 certsin sinistar
block of building thrust forward its gsble on the
sreat. It was two storeys high: showed no win-
dow, nothing but a door on the lower storey and

appesred 1o drive away thesa random visitors or
10 Tepair their ravages

Ms. Enfield and the lawyer were oa the
other side of the by-strest; but when they came
ahraast of the entry, the former lified up kis cane
2nd pointed.

“Did you ever remark that doer?” he
asked; and when his companion had replied in
the affirmative. "It is connected in my mind”
added he, "with a very odd story."

"Indead™" said Mr. Unerson., with a slight
change of voice, "and wht was thar?™

"Well, it was this way," returned Mr.
Enfield: "1 was coming home from some place st
the end of the world, sbout three o'clock of a
black winter morming, snd my way lay through a
part of town where there was literally nothing to
be seen but lamps. Streer after street and all the
folks asleep—stest after sweet, all lighted up as if
for a procession and all s empey as a church--till
at last T got fmro that state of mind when a man
listens and listens and begins w long for the sight
of a policemsan. Al ar once, T saw two figures:
one a limle man who was smmping along eest-
ward at 3 good walk, and the other s girl of
mayba eizht or ten who was running 85 hard as
she was sble down a cross smeet. Well, sir, the
o Tan inro one another nanmally enough at the
comer; snd then came the horrible part of the
thing; for the man trampled calmly over the
child's body and left her screaming on the
ground It sounds nothing to hear, but it was
hellish to see. It wasn't like a man; it was like

©O© 00 9 O O & W N

. a blind forehead of discoloured wall on the
ready-made from the hands of opportuniry; and e e et N PR

Figure 2.9: Rendering the text in two columns

To achieve this, we used the ColumnDocumentRenderer class. This is a subclass of the DocumentRen-
derer class that is used by default. The JekyllHydeV4**> example explains how the ColumnDocumen-
tRenderer is created and applied.

float offSet 36;
float gutter = 23;
float columnWidth = (PageSize.A4.getWidth() - offSet * 2) / 2 - gutter:
float columnHeight = PageSize.A4.getHeight() - offSet * 2;
Rectangle[] columns = {

new Rectangle(offSet, offSet, columnWidth, columnHeight),

new Rectangle(

offSet + columnWidth + gutter, offSet, columnWidth, columnHeight)};

document .setRenderer (new ColumnDocumentRenderer (document, columns));

We define an array of Recangle objects, and we use that array to create a ColumnDocumentRenderer
object. We use the setRenderer () method to tell the Document to use this renderer instead of the
default DocumentRenderer instance

“http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-2#1898-c02e08_jekyllhydev4.java

http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-2#1898-c02e08_jekyllhydev4.java
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-2#1898-c02e08_jekyllhydev4.java

W N O O & W N =~

N B S sl s
© © 0 1 O O b W N~ O O

Chapter 2: Working with the RootElement 38

& If we wanted to organize content in columns in iText 5, we needed to use the ColumnText
object. In iText 2, there was a MultiColumnText object that reduced the amount of code
that needed to be written to distribute the code over different columns, but this class
was removed in iText 5 because of the lack of robustness of MultiColumnText. With the
ColumnDocumentRenderer, developers now have a reliable way to create columns without

having to write as much code as was needed in iText 5.

While we were at it, we applied a small change to the code that parses the text:

BufferedReader br = new BufferedReader(new FileReader(SRC));
String line;
Paragraph p;
boolean title = true;
AreaBreak nextArea = new AreaBreak(AreaBreakType.NEXT_AREA);
while ((line = br.readLine()) != null) {
p = new Paragraph(line);
if (title) {
p.setFont(bold).setFontSize(12);
title = false;
1
else {
p.setFirstLineIndent(36);
}
if (line.isEmpty()) {
document . add(nextArea) ;
title = true;
}

document.add(p);

In line 5, we create an AreaBreak object. This is a layout object that terminates the current content
area and creates a new one. In this case, we create an AreaBreak of type NEXT_AREA and we introduce
it before the start of every new chapter. The effect of this area break is shown in figure 2.10.

Chapter 2: Working with the RootElement

Without the AreaBreak, the chapter “INCIDENT AT THE WINDOW” would have started in the left
column of page 19, right after the content of the previous chapter. By introducing the AreaBreak,
the new chapter now starts in a new column. If we had used an AreaBreak of type NEXT_PAGE, a new

more than ever confined himself to the cabinet
over the lsborstory, where he would sometimes
even sleep; he was out of spirits, he bad grown
very sileat, be did not read; it seemad as if he had
somathing on his mind. Utterson became so used
to the unvarying character of these reports, that
he fell off little by Little in the Sequency of his
Visits.

INCIDENT AT THE WINDOW

It chanced on Sunday, when Mr. Urterson
was om his nsnal walk with Mr. Enfield, that their
way lay once agsin through the by-street; and
that when they came in front of the door, both
stopped to gaze on it

"Well" said Enfield, "that story’s at an
end at least. We shall never see more of Mr.
Hyde."

"I hope not," said Utterson. "Did I ever
tell you that T once saw him, and shared your
feeling of repulsion™"

"It was impossible to do the one without
the other,” reurned Enfield. "And by the way.
what an ass you must have thought me, not to
know that this was a back way to Dr. Jekyll's! It
was pardy your own fault that I found it out.
even when T did "

"So you found it out, did you?" said
Unterson. "But if that be 5o, we may step into the
court and rake a lock at the windows. To t=ll vou
the truth, T 2m uneasy about poor Jakyll; and
aven ousside, T feel s if the presence of a friend
might do him good "

The court was very cool and a little damp,
and full of premature twilight, although the sky.
high up overhead, was still bright with sunset.
The middle one of the three windows was half-
way open; and sitting close beside it, taking the
air with an infinits sadness of misn, Iike some
disconsolate prisoner, Unterson saw Dr. Jekyll

cousin—-Mr. Enfield-Dr. Jekyll) Come now; get
your bt and taka 2 quick furn with us.”

"You are very good,” sighed the other. "I
should like to very much; but 30, 2o, 20, it is
quite impassible; I dare not. But indeed, Utter-
son, T am very glad to see you; this is really 2
great pleasurs; [would ask you and Mr. Eafield
up, but the place is really oot £it"

“Why, then,” said the lawyer, good-
asturedly, "the best thing we can do is to stay
down bere and speak with you from where we

are."

"That is just what I was about to venmre
to propose.” retummed the doctor with a smile. Bue
the words were hardly uttared, before the smile
was struck our of his face and succeeded by an
axpression of such abject tarror and despair, as
froze the very blood of the two gentleman below.
They saw it but for a glimpse for the window
was instanily thrust down; but that glimpse had
been sufficient, and they tumed and left the court
without 2 word. In silence, oo, they mraversed the
by-street; and it was not untl they had come into
2 neighbouring thoroughfare, where even upon &
Sunday there were still some stirrings of life, that
Mr. Utterson at last turned and looked at his
companion. They were both pale; and there was
an answering horror in their eyes.

"God forgive us, God forgive us,” said
Mr. Utterson

But Mr. Enfield only nodded his head

very seriously, and walked on cmce mose iz
silenc

@ jekyll_hyde_v4.pdf - Adebe Acrobat Pro - m}
File Edit View Window Help

Open | f:l, Create ~ | = | 2z & @ & % Customize ~ | E
® @ /4 | LY @I ‘ Tools : Fill & Sign | Comment

THE LAST NIGHT

Mr. Utterson was sirting by his fireside
one evening after dinner, when he was surprised
1o receive a visit from Pools

"Bless me, Poale, what brings you here?™
be cried; and then faking @ second look at him,
"What ails you?" he added; "is the doctor i7"

“Mr. Utterson,” said the man, “there is
something wroas."

“Take a seat, and here is a glass of wine
for you," said the lawyer. "Now, tzke your time,
and tell me plainly what you want.”

"You know the doctor's ways, sir,”
replied Poole, "and how he shuts himsalf up.
Well, he's shut up agsin in the cbinet; and I
dow't Like it, siv—I wish I may die if I like it. Mr.
Utterson, sir, I'm afraid.”

"Now, my good man," seid the lawyer,
"be explicit. What are you afaid of?"

"I've been afraid for about a week,”
returned Poole, dozgedly disregarding the ques-
tion, "and I can bear it no more.”

The man's appearance amply bore out kis
words; his manner was altered for the worse; and
except for the moment when he had first
announced his terror, he had not once looked the
lawyer in the face. Even now, he sat with the
#lass of wine imtasted on his knes_ and his eyes
directed to a comer of the floor "1 can bear it no
more." he repeated.

Figure 2.10: The effect of an AreaBreak of type NEXT_AREA

page would have been started; see figure 2.11.

Chapter 2: Working with the RootElement

40

@ Jjekyll_hyde_v3.pdf - Adobe Acrobat Pro
File Edit View Window Help

- [m]

*

B‘Open|@€reate"a@@@|@@@@@@)

= Customize ~ | lz‘

® @ [2]7a| &[] & @ [s58%]]] | (]

Tools :

Fill & Sign

Comment

more than ever confined himself to the cabinet
over the Isboratory, where he would sometimes INCIDENT AT THE WINDOW
even sleep; he was out of spirits, he had grown
very sileat, he did not resd: it seemad as if he had
something on his mind. Untarson became 5o used
to the unvarying character of these reports, that
he fell off lirle by linle in the frequency of his
visits.

It chanced on Sunday, when Mr. Uterson
was on his usual walk with Mr. Enfield, that their
way lay once again through the by-sireet; and
that when they came in front of the door, both
stopped to Zaze on it

"Well." caid Enfield, "that story’s at an
end at least. We shall never see more of Mr.
Hyde"

"I hope not," said Utterson. "Did I ever
tell you that I once saw him, and shared your
feeling of repulsion?

"It was impassible to do the cne without
the other," remmed Eafield. "Axd by the way,
what aa ass you must have thonght me, aot to
know that this was a back way to Dr. Jekyll's! It
was pastly your owa fault that I found i out,
even whealdid”

"So you found it out, did you?" said
Uttersn. “But if that be 50, we may step into the
court and take look at the windows. To tell you
the truth, I am uneasy about poer Jekyll; aad
even ouiside, I feel as if the preseace of a Giead
might do him good "

The court was very cool and a little damp,
snd full of premarure twilight, sithough the sky,
high up overhesd, was still bright with sunset.
The middle one of the thrae windows was half-
way open; and sitting close beside it, taking the
sir with an infinits sadness of mien, like some
disconsolare prisoner, Unerson saw Dr. Jekyll

cousin—Mr. Enfield--Dr. Jekyll) Come now; get
your har and take 3 quick nurn with us.”

"You are very good,” sighed the other. "1
should like to very much; but zo, no, ze, it is
quite impossible; I dare not. But indeed, Utter-
som, T am very glad to see you; this s really 2
great pleasure; T would ask you and Mr. Eafield
up, but the place is really not &t

"Why, then,” said the lawyer. good-
aaturedly, “the best thing we caz do is to stay
down bere and speak with you fom where we
are”

“That is just what I was about (o veature
to propose,” renmaed the doctor with a suaile. But
the wosds were hardly uttered, before the smile
was struck out of his face and succeeded by an
expression of such abject terror snd despair, as
froze the very blood of the two geatlemen below.
They saw it but for a glimpse for the window
was instantly thrast down; but that Zlimpse bad
been sufficient, and they tarned and left the court
without a word. In silence, too, they traversed the
by-sireet; and it was oot mtil they had come into
2 neighborring thoroughfare, where even wpoa a
Sunday there were still some stimings of ife, that
Mr. Utterson at last tumed and looked at his
companion. They wer both pale; and there was
an amswering borror in their eyes.

"God forgive us, God forgive us," said
Mr. Unterson.

But Mr. Enfield only nodded his head

very seriously, and walkad on once more in
silence.

Figure 2.11: The effect of an AreaBreak of type NEXT_PAGE

In the JekyllHydeV5** example, we changed a single line:
1 AreaBreak nextPage = new AreaBreak(AreaBreakType.NEXT_PAGE);

Instead of skipping to the next column, iText now skips to the next page.

By default, the newly created page will have the same page size as the current page. If
you want iText to create a page of another size, you can use the constructor that accepts a
PageSize object as a parameter. For instance: new AreaBreak(PageSize.A3).

i

There’s also an AreaBreak of type LAST_PAGE. This AreaBreakType is to be used when switching
between different renderers.

Switching between different renderers

Figure 2.12 shows a document for which we use the default DocumentRenderer for the first page.
Starting with the second page, we introduce a ColumnDocumentRenderer with two colums.

**http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-2#1899-c02e09_jekyllhydevs.java

http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-2#1899-c02e09_jekyllhydev5.java
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-2#1899-c02e09_jekyllhydev5.java

O N O O & W N~

NN N P 1 1 |l s |
N ~, © O 0 1 O O b WO N~ O O

Chapter 2: Working with the RootElement 41

] jekyll_hyde_v6.pdf - Adobe Acrobat Pra - O x
File Edit Wiew Window Help x
Doren |[Flaae- P o FE| e bR BT customize = | [
@ [1]re] O | (=) @) [s09% [-] | g Tools = Fill &Sign | Comment
i B
Be prepared to read a story about a London lawyer named Gabriel John Utterson who invesfigates THE STRANGE CASE OF DR. JEKYLL STORY OF THE DOOR
strange occurences between his old friend, Dr. Henry Jekyll, and the evil Edward Hyde. AND MR. HYDE

Mr. Utterson the lawyer was 3 man of
Tugged countenance that was never lighted by 3
smile; cold. scanty and embarrassed in discowse

backward in sentiment: lear, long, dusty, dreary
and yet somehow lovable. At fiendly mestings,
and when the wine was to his taste, something
eminently human beaconed from his eys

something indeed which never found its way into

by Robert Louis Stevenson

his talk, but which spoke not ozly in these silent
symbols of the after-dinmer face, but more often
and loudly in the scts of his life. He was sustere
with himeelf; drank gin when be was aloze, to
mortify a taste for vintages; and though he
enjoyed the theatre, had not crossed the doors of
ome for twenty years. But he had an approved fol-
exance for others; sometimes wondering, almost
with emvy, at the hizh pressure of spirits imvolved
in their misdeeds; 3nd in amy extremity inclined
to belp rather thaz to reprove. "I incline to Cain's
heresy,” be used to say quaintly: "] let my brother
g0 to the devil in his own way.” In this character,
it dx: hiz fiwhma. o ha fha lact anut.

Figure 2.12: Different renderers in the same document

If we look closely at the JekyllHydeV6* example, we see that we swith renderers two times.

public void createPdf(String dest) throws IOException {

PdfDocument pdf = new PdfDocument(new PdfWriter(dest));

Document document = new Document(pdf);

Paragraph p = new Paragraph()

.add("Be prepared to read a story about a London lawyer "

+ "named Gabriel John Utterson who investigates strange "
+ "occurrences between his old friend, Dr. Henry Jekyll, "

+ "and the evil Edward Hyde.");
document . add(p);
document .add(new AreaBreak(AreaBreakType.NEXT_PAGE));
... // Define column areas
document . setRenderer (new ColumnDocumentRenderer (document, columns));
document .add(new AreaBreak(AreaBreakType.l AST_PAGE));

. // Add novel in two columns

document .add(new AreaBreak(AreaBreakType.NEXT_PAGE));
document . setRenderer (new DocumentRenderer (document));
document .add(new AreaBreak(AreaBreakType.l AST PAGE));
p = new Paragraph()

.add("This was the story about the London lawyer
+ "named Gabriel John Utterson who investigates strange "
+ "occurrences between his old friend, Dr. Henry Jekyll, "

+ "and the evil Edward Hyde. THE END!");

*http://developers.itextpdf.com/node/3186/draft#1900-c02e10_jekyllhydeve.java

http://developers.itextpdf.com/node/3186/draft#1900-c02e10_jekyllhydev6.java
http://developers.itextpdf.com/node/3186/draft#1900-c02e10_jekyllhydev6.java

23
24
25

Chapter 2: Working with the RootElement 42

document.add(p);

document .close();

We add a long Paragraph to the first page (line 4-9). As we didn’t define any renderer, the default
DocumentRenderer is used. We introduce a page break (line 10) and change the renderer to a
ColumnDocumentRenderer with two columns. Right after we set this new renderer, we introduce
an AreaBreak that jumps to the last page. Why is this necessary?

0 Whenever you create a new DocumentRenderer, iText starts returns to the top of the
document —that is: from the first page. This allows you to use different renderers on the
same document next to each other on the same page. If that is needed, we’ll have to instruct
iText not to flush the content to the OutputStream; otherwise we won’t have access to
previous pages. In this case, we don’t need to change anything on previous pages. We just
want to switch to another renderer on the next page. Introducing a page break that goes to

the last page will avoid that new content overwrites old content.

If we would omit document.add(new AreaBreak(AreaBreakType.LAST_PAGE));, then the new
content, organized in columns, would be added on the first page, overwriting the long paragraph.

We introduce another page break after we’ve finished adding the novel (line 15). We change the
renderer back to the standard DocumentRenderer (line 17), but we add another LAST_PAGE area break
(line 17) before we add another paragraph (line 18-23).

The AreaBreak examples explaining the difference between NEXT_AREA, NEXT_PAGE, and LAST_PAGE
have led us somewhat astray. We overlooked an important question we need to ask when rendering
PDF: when do we flush the content to the OutputStream?

Flushing the Document renderer

If you look at the API documentation for Canvas, Document, CanvasRenderer, DocumentRenderer
and ColumnDocumentRenderer, you’ll notice that all of these objects have at least one constructor
that accepts a Boolean parameter named immediateFlush. So far, we’ve never used one of these
constructors. As a result, iText always used the default value: true. All the content we’ve added was
always flushed immediately.

In the next three examples, we’ll set the value to false. In these three examples, we’ll postpone
flushing the content for three very specific reasons: to change the layout after content was added,
to change the content of objects after they were added, and to add content to previous pages.

Q In iText 5, content added to a Document was flushed to the OutputStream as soon as a page

was full. Once content was added to a page, there was no way to change (the layout of)

that content. With iText 7, there’s a way to postpone the actual rendering of the content,
allowing us to apply changes after the content was added to the Canvas or Document.

Chapter 2: Working with the RootElement 43

Let’s return to the example in which we converted text to a PDF document with two columns, more
specifically to the example in which we introduced page breaks before every new chapter. These
page breaks result in different pages having only one column. As we can tell from figure 2.11, this
column is on the right side of the page.

Now suppose that we want to move these solitary columns to the middle of the page as shown in
figure 2.13.

@s _hyde_v7.pdf - Adobe Acrobat Pro _ O 'Y
File Edit View Window Help *
BOpen | EL} Create - | E/ @ @ @ | fé} ® @ E@ @) @ Customize ~ | Iz‘
® @ [44 | Iy ‘ (=) (o) | | Tools Fill & Sign Comment

L

DR. JEKYLL WAS QUITE AT EASE

A formight lster, by excellent zood for-
runa, the doctor gave one of his pleasant dinnars
to some five or six old cronies, all intelligent,
reputable men and all judzes of zood wine; and
Mr. Utterson so contrived that he remained
behind after the others had departed. This was no
new srrangement, but a thing that had befallen
many scores of times, Where Uttarson was likad,
he was liked well. Hosts loved to detain the dry
lawyer. when the lizhe-heaned and loose-tongued
had already their foot on the threshold; they liked
to sit a while in his unobtrusive company, prac-
tising for solimde, sobering their minds in the
man's rich silence after the expense and strain of
zaiety. To this rule, Dr. Jekyll was 1o sxception;
and 25 he now sat on the opposite side of the fire-
-a large, well-made, smooth-faced man of Sfty,
with something of a stylish cast perhaps, but
every mark of capacity and kindness—you could
see by his looks that he cherished for Mr. Utter-
son a sincers and warm affection.

"I bave been wantiag to speck to you,
Jekyll," began the latter. "You know that will of
yours™

A close observer might have gatherad
that the topic was distasteful; but the doctor car-
ried it off gaily. "My poor Unerson,” said he,
"you are unformmate in such a client. I never saw
2 man so distressed as you were by my will;
unless it were that hide bound pedant, Lanyoen, at
what be called my scientific heresies. O, I know

"My will? Yes, certaialy, I know that,”
said the doctor, a trifle sharply. "You have told
me z0."

"Well, I tell you so again" continued the
lawyer. "I have beea learning something of
young Hyds."

The large handsome face of Dr. Jekyll
grew pale to the very lips, and there came 3
blackness sbour hiz eyes "T do not care to hear
more." said be “This is a matter I thought we had
agreed to drop.”

"What I heard was abominable,” said
Utterson.

"It can make no change You do not
understand my position,” remurned the doctor,
with a certain incoherency of manner. T am
painfully situated, Utterson; my position is 3 vary
strange--a very strange one. It is one of those
affairs that cannot be mended by talking "

"Jakyll," said Utterson, "you know ma: [
am 3 man to be tusted. Make a clean breast of
this in confidence; and I make no doubt I can get
you out of it."

"My good Utterson." said the doctor,
“this is very good of you, this is downright good
of you, and T cannot find werds to thank you in T
believe you fully; I would trust you before any
man alive, ay, before myself, i T could make the
choice; but indeed it fsn't what you fancy; it is
1ot a5 bad as that; and just to put your good heart
ar rest, T will tell you one thing: the moment T

"Well. but since we have touched upon
this business, and for the last time I hope,” con-
tinued the doctor, “there iz ona point I should like
you to understand. I have really a very great
interest in poor Hyds 1know you have seen him:
he rold me so; and I fear he was rude. But Ido
sincerely take a great, a very great interest in that
youns man; and if I am taken away, Utterson, T
wish you to promise me that you will bear with
‘him and get his rights for him. I think you would,
if you knew all; and it would be a weight off my
‘mind if you would promise "

"I can't pretend that T shall ever like him "
said the lawyer.

"I don't ask that," pleaded Jekyll, laying
his hand upon the other's arm; "T enly ask for
justice; I only ask you to help him for my sake,
when I am no longes here”

Utterson heaved an irrepressible sigh
"Well," szid he, "I promise"

he's 1 zood fallow--you needn't frown—an excel- choose, T can be rid of Mr. Hyde. I give you my
Janmr Fallam: _and T almasre masm sa cas mases of hand ymeom_that-_and T thank vom azain and azain-

Figure 2.13: Moving a column to the middle of the page

We can’t tell in advance when this situation will occur. We parse the text line by line, and we don’t
know what the next line will bring us when we add a Paragraph to the document. It could be another
Paragraph or aLineBreak. This means that we shouldn’t render the content right away. If we did, we
couldn’t move it to the middle if a chapter ends somewhere in the left column. We need to postpone
flushing. We can do so in the renderer as demonstrated in the JekyllHyderV7*¢ example.

In this example, we took the code of the ColumnDocumentRenderer class and we adapted it to our
specific needs.

%http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-2#1901-c02e11_jekyllhydev7.java

http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-2#1901-c02e11_jekyllhydev7.java
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-2#1901-c02e11_jekyllhydev7.java

1
2
3
4
5
6
7
8

9
10
1
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Chapter 2: Working with the RootElement

class MyColumnRenderer extends DocumentRenderer {
protected int nextAreaNumber;
protected final Rectangle[] columns;
protected int currentAreaNumber;
protected Set<Integer> moveColumn = new HashSet<>();

public MyColumnRenderer (Document document, Rectangle[] columns) {
super(document, false);
this.columns = columns;

@0verride
protected LayoutArea updateCurrentArea(lLayoutResult overflowResult) {
if (overflowResult != null
&& overflowResult.getAreaBreak() != null
&& overflowResult.getAreaBreak().getType()
= AreaBreakType.NEXT_AREA) {
nextAreaNumber = 0;

}

if (nextAreaNumber % columns.length == 0) {
super.updateCurrentArea(over flowResult);

}

currentAreaNumber = nextAreaNumber + 1;
return (currentArea = new LayoutArea(currentPageNumber,
columns[nextAreaNumber++ % columns.length].clone()));

@0verride
protected PageSize addNewPage(PageSize customPageSize) {
if (currentAreaNumber != nextAreaNumber
&& currentAreaNumber % columns.length != 0)
moveColumn.add(currentPageNumber - 1);
return super.addNewPage(customPageSize);

@0verride
protected void flushSingleRenderer(IRenderer resultRenderer) ({
int pageNum = resultRenderer.getOccupiedArea().getPageNumber();
if (moveColumn.contains(pageNum)) {
resultRenderer .move(columns[Q] .getWidth() / 2, @);
}

super. flushSingleRenderer(resultRenderer);

44

43
44

Chapter 2: Working with the RootElement 45

O O b W N

Let’s take a closer look at this custom DocumentRenderer:

+ Line 2-5: we reuse two member-variables from the ColumnDocumentRenderer: the nextAre-
aNumber integer keeps track of the column count; the columns array stores the position and
dimension of each column. We add an extra integer currentAreaNumber that remembers the
current column count and a moveColumn collection in which we’ll store the page numbers of
the pages with a single column.

« Line 7-9: we construct a MyColumnRenderer instance. We call the constructor of the Documen-
tRenderer superclass and set the immediateFlush parameter to false: content will not be
flushed immediately.

 Line 12-26: the updateCurrentArea() method is identical to the method with the same name
in the ColumnDocumentRenderer class, except for one tiny difference: we set the value of
currentAreaNumber to nextAreaNumber + 1. This method is called each time a new column
is started. Note that the currentAreaNumber is set to @ each time a page break is introduced.

« Line 28-34: we override the newPage() method. This method is triggered every time a new
page is started. Whether or not the content was rendered to the previous page, depends on the
value of immediateFlush. We use this method to check if the previous page consisted of only
one column. This is the case if currentAreaNumber and nextAreaNumber aren’t equal and if
the value of currentAreaNumber is odd (this assumes that columns is an array with only two
elements). If there’s only one column in the previous page, we add the page number of that
page (currentPageNumber - 1) to the moveColumns collection.

« Line 36-43: we override the flushSingleRenderer () method. This is the method that renders
the content. If immediateFlush is true, this method is called automatically. If immediateFlush
is false, we have to trigger the rendering process ourselves. We override this method because
we want to move the coordinates of the IRenderer to the right with half a column width for
every page we registered as a single-column page in the newPage() method.

Now let’s take a look at how we can use this custom column renderer.

Rectangle[] columns = {
new Rectangle(offSet, offSet, columnWidth, columnHeight),
new Rectangle(
offSet + columnWidth + gutter, offSet, columnWidth, columnHeight)};
DocumentRenderer renderer = new MyColumnRenderer (document, columns);
document .setRenderer (renderer) ;

We define an array with two Rectangle objects. We use this array to create an instance of our
custom MyColumnRenderer object. We use this instance as the renderer for our Document. The rest

Chapter 2: Working with the RootElement 46

of our code is identical to what we had before: we set the default values for the Document; then we
parse the text file and we add content while doing so.

If we would close the document object after adding all the content, we’d end up with a document
that consists of nothing but empty pages. In our renderer, we jump from area to area, and we create
new page after new page, but we aren’t rendering anything because the flushSingleRenderer()
method is never called. We have to trigger this method ourselves, and we can do so like this:

renderer. flush();
document.close();

When we flush() the renderer, all the content we’ve been adding without flushing will be rendered.
The flushSingleRenderer () method will be called as many times as there are objects added to the
Document. Every time it’s called on a page marked as a single-column page, the content will be
moved to the right so that the column appears in the middle of the page.

, This is one of the more complex examples in this book. Writing your own RootRenderer
J implementation isn’t easy, but this functionality gives you a lot of power to create PDF
documents the way you want to, as opposed to the way iText wants to.

Let’s continue with a couple of examples in which we use the immediateFlush parameter when
creating a Document instance.

Changing content that was previously added

Take a close look at figure 2.14. At first sight, it isn’t all that different from examples we've seen
before, but there’s something special about the first line of text.

B W N -

Chapter 2: Working with the RootElement 47

T jekyll_hyde_vE.pdf - Adobe Acrobat Pro - O X
File Edit View Window Help x

BOpen |@Create' ‘ D @ C% @ | @’ ® b % @ @) @ Customize ~ | |Z|
® j34| i3 | (=) = ‘ ‘ Tools Fill & Sign . Comment

This document has 34 pages.

THE STRANGE CASE OF DR. JEKYLL AND MR. HYDE

by Robert Louis Stevenson

STORY OF THE DOOR

Mr. Utterson the lawyer was a man of a rugged countenance that was never lighted by a smile: cold. scanty
and embarrassed in discourse: backward in sentiment; lean. long. dusty. dreary and yet somehow lovable. At friendly
meetings. and when the wine was to his taste, something eminently human beaconed from his eye: something indeed
which never found its way into his talk. but which spoke not only in these silent symbols of the after-dinner face, but
more often and loudly in the acts of his life. He was austere with himself; drank gin when he was alone. to mortify a
taste for vintages; and though he enjoyed the theatre, had not crossed the doors of one for twenty years. But he had an
approved tolerance for others:; sometimes wondering. almost with envy. at the high pressure of spirits involved in their
misdeeds: and in any extremity inclined to help rather than to reprove. "I incline to Cain's heresy." he used to say
quaintly: "I let my brother go to the devil in his own way." In this character, it was frequently his fortune to be the last
reputable acquaintance and the last good influence in the lives of downgoing men. And to such as these. so long as
they came about his chambers. he never marked a shade of change in his demeanour.

Figure 2.14: Start by showing the total number of pages

The first line of text says “This document has 34 pages.” From previous examples, we know that
we’re building a document as we go, reading a text file line by line. When we parse the first lines
of text, there is no way we can predict how many pages will be needed for the full document. How
did we guess that we’d end up with 34 pages?

Truth be told, we didn’t have to guess; we used a little trick. The JekyllHydeV8?” example reveals the
magic we used. We created a Document instance with the immediateF lush parameter set to false.

Document document = new Document(pdf, PageSize.A4, false);
The first object we add to this document is some text saying “This document has {totalpages} pages.”
Text totalPages = new Text("This document has {totalpages} pages.");

IRenderer renderer = new TextRenderer(totalPages);

totalPages.setNextRenderer (renderer);

document .add(new Paragraph(totalPages));

As you can see, we used a placeholder {totalpages} for the total number of pages. We created a
TextRenderer instance and added this renderer as the next renderer for the Text object. We wrap

*"http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-2#1902-c02e12_jekyllhydevs.java

http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-2#1902-c02e12_jekyllhydev8.java
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-2#1902-c02e12_jekyllhydev8.java

O O b W N

Chapter 2: Working with the RootElement 48

the Text object in a Paragraph and add this paragraph to the document. Then we add all story of Dr.
Jekyll and Mr. Hyde. Because of the fact that immediateF1lush is false, no text will be rendered until
at the very last moment. This very last moment could be when we close the document, in which
case the first line would still read “This document has {totalpages} pages”

Obviously, that’s not what we want. We want to change {totalpage} into the actual number of
pages before the text is rendered. This can be achieved using the TextRenderer object.

String total = renderer.toString().replace("{totalpages}",
String.valueOf(pdf.getNumberOfPages()));

((TextRenderer)renderer) .setText(total);

((Text)renderer.getModelElement()).setNextRenderer(renderer);

document .relayout();

document .close();

In line 1-2, we change the String “This document has {totalpages} pages.” to “This document has
34 pages.” As you can see, we can retrieve the original content of the Text object from the renderer
and we replace the placeholder with pdf.getNumberOfPages(). In line 3-4, we change the text of
the TextRenderer and we add this altered text renderer to the Text object.

If we would close the document after line 4, the PDF would still show “This document has
{totalpages} pages.” For the change to take effect, we need to re-layout the document. This is done
using the relayout() method in line 5. Only after the layout has been recreated, we can close the
document, as is done in line 6.

Q In iText 5, we could have achieved more or less the same result by adding a placeholder
with fixed dimensions. Once the complete document was rendered, we could then fill out
the total number of pages on the placeholder. We will use the same approach with iText 7
in chapter 7, but iText 7 now also provides an alternative solution by allowing us to change

the content of a Text object and then recreate the layout.

Changing the content of a Text object is still somewhat complex. There are many cases where we
don’t need to recreate the layout. In those cases, the complexity can be reduced substantially as
demonstrated in the next example.

Adding a Page X of Y footer

In figure 2.15, we see that each page has a footer that indicates the current number and the total
number of pages.

Chapter 2: Working with the RootElement 49

jekyll_hyde_v9.pdf - Adobe Acrobat Pro — O *
T jekyll_hy p
File Edit View Window Help *

Open |fril,Create' | EI | 4:%} e g |} @ @) @ Customize ~ ‘ lz‘
=N ,"34‘ Ik@” —

Tools Fill & Sign Comment

Toniz unopened. The cellay, mdesd, was flled Witk crazy FEmber, mostly dafinE Fom the (et of the S 2eon who Was

"So it will walk all day. sir.” whispered Poole: "ay. aud the better part of the night. Ouly when 2 new sample Jekyll's predecessor, bat even as they opened the doar they were advertised of the uselessness of further search. by the
comes from the chemist, there's a bit of a break b if's an ll conscience thar's such an enemy to rest! Ah, sir, there's Il of a persact mat of cobweb which had for years sealed up the earance. No where was there amy frce of Heury
blood foully shed in every step of if! But hark again, a little closer—put your heart in your ears, Mr. Utterson, and tall Jekyll dead or aive.

me, is that the doctor's foor?"

The steps £ lighdly and oddly, with a certain swing, for all they went so slowiy; it was different indeed from
the heavy creaking tread of Henry Jekyll Utterson sighed. “Is here never anything else™ he asked

Poole nodded "Omce." he said "Once Theard it weeping!”

“Waeping? how that?" said the lawyer, conscious of a sudden chill of hamror.

“Weeping like 2 woma or a lost soul” said the butler. *T came away with that upor zy heart. that I could

Poole stmped on the fags of the corridor. "He mast be buried here.” he said, hearkening o the sound
"Or he may have flad " said Unarson. and he mrnad to examine the door in the by-sweat. It was locked: and
Iying near by on the flags. they found the key. already stained with rust
"This does not look ke use." observed the Lawyer.
“Use!* echoed Posle. “Do you not see. six. it is broken” much as if a man bad siamped o it."
"Ay." continued Utterson. "and the fractures, too, are misty.” The two men looked at each other with a scare.

Bave wept 0o "This i heyond me, Pools.” said the lawyer. "Lat us 20 hack to the cabines”
Page190f34 Page200f34

They mounted the stair in silence, and still with an occasional awestruck glance at the dead body, procesded The lawyer put it in his pocket. "T would say nothing of this paper. If your master has flad or is dead, we may
more thoroughly to examine the comtents of the cabinet. At ane table, thers were maces of chemical work, various at least save his cradit Tr is now ren: T must 20 home and read these documents in quiar: but T shall be back befor
measured heaps of some white salt being laid on glass saucers. 25 though for an experiment in which the unhappy man midnight. when we shall send for the police.”
bad been prevented They went out, locking the door of the theatre behind them; and Utterson, once more leaving the servamts

“That is the same drug that [was always bringing him," said Poole; and even as he spoke, the kettle with gathered about the firs in the hall, trudged back o his affice to read the two namatives in which this mystery was now
startling poise boilsd over. to be explained.

This brought them to the freside, where the easy-chair was drawn cosily up, and the tea things stood ready to
the siter's elbow, the very sugar in the cup. There were several books on a shelf; one lay beside the tza things apen, DR. LANYON'S NARRATIVE

and Unerson was amazed to find it 2 copy of a pious work, for which Jekyll had several imes expressad a grear

On the ninth of January, now four days ago, I received by the evening delivery a ragistersd envelope,
esteemm. annotated. in his own hand with starling blasphemies.

addressed in the hand of my colleague and old school companion, Henry Jekyll Twas a good deal surprised by this,

Next, in the course of their review of the chamber, the ssarchers came fo the cheval-glass, into whase depths Sor we were by a0 means in the habit of comespondence; | had seen the man, dined with him, indesd, the nisht before;
they looked with an invaluntary heror. But it was so rumed as o show them nothing bt the rosy glow playing on the a2d [could imagine nothing in our infercourse that should justify formality of registration. The contents increased my
rouf. the fire spukling in a bundred repetitions along the glazed front of the presses. and their own pale and fearful wonder; for this is how the letter ran-

counienances stooping o lock ia 10tk December. 15—

“This glass has seen some strange Gungs, sir,” whispered Poole. “Dear Lanyon.—You ars ons of my alest fnands, and although we may have differed at times on scientific

"And surely none smanzer than itself" echoed the lawyer in the sume tones. "For what did Jebvil"~he cauzht questions, I cannot remember. at least on my side. any break in our afection. There was never a day when. if you had

himself up at the word with a start, and then conquering the weakness—"what could Tekyll want with it?" he said said to me, *TekylL. my life, my honouw. my r=ason. depend upon you' T would not have sacrificed my left hand to help
You may say that!” said Paoie you. Lanyon my life, my honous, my reason, are all at your mercy: if you fail me to-night, T am lost. You mizht sup-
N i i N . , 2, after this preface, that I am going to ask you for something dishoneurable fo 2 for yoursalf

Figure 2.15: Page X of Y footer

To achieve this, we used a much easier approach than what we did in the previous example. Let’s
take a look at the JekyllHydeV9*® example.

Once more, we tell the Document that it shouldn’t flush its content immediately.
Document document = new Document(pdf, PageSize.A4, false);

After adding the complete text of the short story by Robert Louis Stevenson, we loop over every
page in the document and we add a Paragraph to each page.

8http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-2#1903-c02e13_jekyllhydev9.java

http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-2#1903-c02e13_jekyllhydev9.java
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-2#1903-c02e13_jekyllhydev9.java

0 = O O b W N =

Chapter 2: Working with the RootElement 50

int n = pdf.getNumberOfPages();
Paragraph footer;
for (int page = 1; page <= n; page++) {
footer = new Paragraph(String. format("Page %s of %s", page, n));
document . showTextAligned(footer, 297.5f, 20, page,
TextAlignment.CENTER, VerticalAlignment.MIDDLE, 0@);
}

document.close();

The showTextAligned() method can be used to add text at an absolute position on any page, using a
specific horizontal and vertical alignment with respect to the chosen coordinate, and using a specific
angle.

In this case, we loop over all the pages (from 1 to 34) and we add a line of text centered vertically
and horizontally at position x = 297.5f and y = 20 on every page. We didn’t need to change the
layout of any of the content that was already added, hence we don’t need to use the relayout()
method. All of the content is rendered at the moment we close() the document.

ﬁ This example only works if you set immediateFlush to false. If you forget setting this

parameter, you'll encounter the following exception:

Exception in thread “main” java.lang.NullPointerException at
com.itextpdf.kernel.pdf.PdfDictionary.get(PdfDictionary.java)

This exception occurs because you are trying to change the contents of a page dictionary
that has already been flushed to the OutputStream. iText still has a reference to that page
dictionary, but the dictionary as such is no longer there, hence the Nul1PointerException.

9 Why didn’t we get a NullPointerException in our low-
level CanvasReturn example?

In the CanvasReturn® example, we created PdfPage objects. As we are using low-
level functionality, it is our responsibility to manage the resources. We can use the
flush() method on a PdfPage object of a finished page to flush its content to the
OutputStream. Once this is done, we can no longer add anything to that page. We’ll get a
NullPointerException if we try to get (one of) its content stream(s).

Let’s take a look at some more showTextAligned() examples.

*http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter- 2#1894-c02e04_canvasreturn.java

http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-2#1894-c02e04_canvasreturn.java
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-2#1894-c02e04_canvasreturn.java

0 = O O & W N =~

O =Y
<N O O WD~ OO O

Chapter 2: Working with the RootElement 51

Adding text with showTextAligned

Different showTextAligned() methods are available in the RootElement class. These methods can
be used in the Canvas and the Document object to put a single line of text at an absolute position. If
this line of text doesn’t fit the Canvas or if it doesn’t fit the current page of the Document, it won’t
be split into different lines. It might even run off the page, outside the visible area of that page.

'E:" textaligned.pdf - Adobe Acrobat Pro — m}

File Edit View Window Help *

Bﬂpen ‘ ﬁ Create - | EI @ C% @ | {:é} © 2 (g @ @) @“ Customize ~ | lz‘
m /1 | n | (=) (o) | ‘ Tools Fill & Sign . Comment

The Strange Case of Dr. Jekyll and Mr. Hyde
by Robert Louis Stevenson

Jekyll
apAH

apAH
Jekyll
apiH

Figure 2.16: Text added at absolute positions

The PDF shown in figure 2.16 was created with the ShowTextAligned*® example.

Paragraph title = new Paragraph("The Strange Case of Dr. Jekyll and Mr. Hyde");
document . showTextAligned(title, 36, 806, TextAlignment.LEFT);
Paragraph author = new Paragraph("by Robert Louis Stevenson");
document .showTextAligned(author, 36, 806,

TextAlignment .LEFT, VerticalAlignment.TOP);
document . showTextAligned("Jekyll", 300, 800,

TextAlignment .CENTER, 0.5f * (float)Math.PI);
document . showTextAligned("Hyde", 300, 800,

TextAlignment.CENTER, -0.5f * (float)Math.PI);
document . showTextAligned("Jekyll", 350, 800,

TextAlignment .CENTER, VerticalAlignment.TOP, ©.5f * (float)Math.PI);
document . showTextAligned("Hyde", 350, 800,

TextAlignment .CENTER, VerticalAlignment.TOP, -0.5f * (float)Math.PI);
document .showTextAligned("Jekyll", 400, 800,

TextAlignment .CENTER, VerticalAlignment.MIDDLE, ©.5f * (float)Math.PI);
document . showTextAligned("Hyde", 400, 800,

TextAlignment .CENTER, VerticalAlignment.MIDDLE, -0.5f * (float)Math.PI);

In line 1 and 3, we create two Paragraph objects. We add these objects to the current page using the
showTextAligned() method.

*%http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter- 2#1904-c02e14_showtextaligned.java

http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-2#1904-c02e14_showtextaligned.java
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-2#1904-c02e14_showtextaligned.java

Chapter 2: Working with the RootElement 52

« In line 2, we add the Paragraph at position x = 36; y = 806 and we align the content to
the left of this coordinate. We didn’t define a vertical alignment. The default VerticalAlign-
ment .BOTTOM will be used, which means that the coordinate will be considered as the bottom
coordinate of the content.

« In line 4-5, we add the content at the exact same coordinate, but we define a different value
for the vertical alignment: VerticalAlignment.TOP. Now the coordinate is considered as the
top coordinate of the content.

In lines 6 to 17, we add text as a String instead of as a Paragraph. We also introduce rotation values
of 90 degrees (0.5f * (float)Math.PI)and -90 degrees

+ In lines 6-9, we add two names at the same coordinate, but with a different rotation angle.
We do the same in lines 10-13. Notice the difference between the apparent order in which the
names “Jekyll” and “Hyde” appear depending on the value of the VerticalAlignment (as we
introduce a rotation of 90 degrees, vertical becomes horizontal, and vice-versa).

« In lines 14-17, we add both names at the same coordinate with a different angle, but with
VerticalAlignment.MIDDLE. The names are written on top of each other and have become
almost illegible.

This example demonstrates the different variations of showTextAligned() methods. There’s also a
showTextAlignedKerned() method, but we need to learn more about using iText 7 add-ons before
we can use that method in an example.

Using iText 7 add-ons

The core libraries of iText 7 are available as open source software under the AGPL license. This
means that you can use iText in your applications without having to pay a license fee as long as you
distribute your own software based on iText under the same license. To put it simple: you can use
iText for free if you also make your own source code available for free. The moment you distribute
your code under another license —for instance: you work for a customer who uses your code in a
closed source environment—, you or your customer have to purchase a commercial license.

There’s more to it, but it would lead us too far to discuss the AGPL; this is a technical tutorial, not
a book of law.

O O b W N~

Chapter 2: Working with the RootElement

, Many developers aren’t aware of the implications of using AGPL software. This can be
J very annoying for many different reasons. These are some examples of such annoyances:

« Companies at the verge of getting funding or being acquired, fail the due diligence

process because they don’t have a commercial license for their use of iText.

iText Group successfully sued a company for blatant abuse of our intellectual
property as an example proving that the AGPL can be enforced. The case was won in
about one and a half month. That was fast, but at iText Group, we all agree that there
are better ways to spend our time than by going to court because some company
wrongly assumes that open source software is software that is free of obligations
and free of charge.

Some companies ignore the implications of the AGPL license deliberately. This
leads to unfair competition between customers who buy a commercial license,
allowing us to invest in further development, and users who benefit from the further
development, refusing to contribute in any way.

To create more awareness and to avoid misunderstandings, we decided to make part of
iText closed source. We've defined a series of valuable add-ons that won’t be available as
open source software. We used to work with a dual licensing model and we’ll continue
to do so, but now we’re also using the open core model. If developers want to use the
functionality that is only available in a closed source add-on, a commercial license will
have to be purchased.

53

The pdfCalligraph® module (aka the typography jar) is one example of such a closed source add-
on. We’ve spent a lot of time and effort into improving the typography. With pdfCalligraph, iText
finally supports Indic writing systems such as Devanagari and Tamil. iText now also supports special
features such as the visualization of vowels in Arabic. All of this functionality is available in a
separate typography jar.

You can use the pdfCalligraph add-on by introducing the following dependency:

<dependency>

<groupId>com.itextpdf</groupld>
<artifactId>typography</artifactId»

<version>1.0.0</version>

<scope>compile</scope>

</dependency>

When importing a closed source add-on, you need a license-key in order to use that add-on. You need
the itext-licensekey jar to import that key into your code. This is the dependency for the license-key

jar:

*http://itextpdf.com/itext7/pdfcalligraph

http://itextpdf.com/itext7/pdfcalligraph
http://itextpdf.com/itext7/pdfcalligraph

O O B W N~

Chapter 2: Working with the RootElement 54

<dependency>
<grouplId>com.itextpdf</groupld>
<artifactlId>itext-licensekey</artifactId>
<version>2.0.0</version>
<scope>compile</scope>

</dependency>

Loading the license key into your code is done like this:
LicenseKey.loadlLicenseFile(new FilelnputStream(KEY));

In my case, the KEY value is a constant with the path to my personal license key for using the
typography jar.

- If you introduce an add-on, but you forget adding the line using the loadLicenseFile()
n method, you’ll run into the following exception:

Exception in thread “main” java.lang.RuntimeException:
java.lang.reflect.InvocationTargetException . Caused by:
com.itextpdf.licensekey.LicenseKeyException: License file not loaded.

n If you try to load the license key, but it’s missing, the following exception will be thrown:

Exception in thread “main” java.io.FileNotFoundException:itextkey.xml (The
system cannot find the path specified)

n If the key was found at this location, but it was corrupted, you’ll get this

LicenseKeyException:

Exception in thread “main” com.itextpdf.licensekey.LicenseKeyException:
Signature was corrupted.

ﬁ If you are using a license key that is expired, you’ll get yet another message:

Exception in thread “main” com.itextpdf.licensekey.LicenseKeyException:
License expired.

Chapter 2: Working with the RootElement 55

These are the most common exceptions that can occur. Usually, a verbose message will tell you what
went wrong. In the next example, we're going to use the typography jar to introduce kerning.

Improving the typography

Figure 2.17 shows the difference between text without kerning and text with kerning.

|
File Edit View Window Help *
[open | TE Create ~ | = & C% & | & © p (B @ & = Customize ~ ol

.f1| ILY @H =) (s | | Tools | Fill & Sign Comment

The Strange Case of Dr. Jekyll and Mr. Hyde
The Strange Case of Dr. Jekyll and Mr. Hyde
AWAY AGAIN
AWAY AGAIN

Figure 2.17: Kerned text

The kerning mechanism isn’t that obvious in the title of Stevenson’s short story. The devil is in the
details: the . after Dr and Mr has been slightly moved in the kerned line. When kerning is active, the
font program is consulted for kerning information. In this case, the font program knows that when
a combination of r and . is encountered, the . should moved closer to the r.

The mechanism is easier to spot in the word "AwAY". In the kerned version, the A characters
move closer to the W on both sides. The distance between the A and the Y has also been reduced.
The ShowTextAlignedKerned®? example demonstrates how we used the showTextAlignedKerned()
method to achieve this.

**http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-2#1905-c02e15_showtextalignedkerned.java

http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-2#1905-c02e15_showtextalignedkerned.java
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-2#1905-c02e15_showtextalignedkerned.java

0 = O O b W N =

Chapter 2: Working with the RootElement

document . showTextAligned(

"The Strange Case of Dr. Jekyll and Mr. Hyde", 36, 806, TextAlignment.LEFT);
document . showTextAlignedKerned(

"The Strange Case of Dr. Jekyll and Mr. Hyde", 36, 790,

TextAlignment.LEFT, VerticalAlignment.BOTTOM, Q);
document . showTextAligned("AWAY AGAIN", 36, 774, TextAlignment.LEFT);
document . showTextAlignedKerned("AWAY AGAIN", 36, 758,

TextAlignment.LEFT, VerticalAlignment.BOTTOM, 9);

56

The pdfCalligraph add-on is made an optional because improved typography requires more
extensive processing power to examine character combinations and to look up if the font program
contains kerning or ligature information for these combinations.

Q,

In iText 5, R2L script was supported, but only in the context of ColumnText and PdfPCell.
You had to change the writing system explicitly. Ligatures were supported, but only in
Arabic text. There was no support for Hindi or other Indic writing systems whatsoever.
With iText 7, it’s sufficient to add the typography jar to the CLASSPATH. As soon as iText
7 detects the pdfCalligraph add-on, The writing system will be automatically changed from
left to right (L2R) to right to left (R2L) if Hebrew or Arabic is detected. When Devanagari
or Tamil content is detected, ligatures will be made automatically.

All of this extra work may be overkill for straightforward English text, in which case you don’t
really need the pdfCalligraph add-on.

2/

I have tried using kerning / support for Arabic, Indic
languages / ligatures, but it doesn’t work. Why not?

The showTextAlignedKerned() method won’t have any effect if you don’t have the
typography jar in your CLASSPATH. If the typography jar is missing, there will be no
difference between the normal text and the kerned text. If you want to render Hindi or
Arabic, the text will be rendered incorrectly without the typography jar. Ligatures won’t
be made unless you add the typography jar to your CLASSPATH.

Currently not all writing systems are supported. We started with Arabic, Devanagari and
Tamil. Support for other writing systems will follow depending on what iText customers
request.

We could continue with many more examples involving pdfCalligraph and typography, but we’ll
leave that for another tutorial. This chapter was about the RootE lement objects Canvas and Document,
and we’ve covered quite some ground.

Chapter 2: Working with the RootElement 57

Summary

In this chapter, we discussed the Canvas and the Document object, both subclasses of the abstract
RootElement class. We also made some examples with the corresponding RootRenderer classes,
CanvasRenderer and DocumentRenderer. While doing so, we discovered that we can easily render
content in columns using the ColumnDocumentRenderer. The column examples allowed us to learn
more about the AreaBreak object, which is a subclass of the abstract AbstractElement class.

We rendered the text of the short story “The Strange Case of Dr. Jekyll and Mr. Hyde” many times
tweaking different properties of the Document object. We learned that content is flushed to the
OutputStream as soon as possible by default, but that we can ask iText to postpone the rendering of
elements so that we can change their content or layout afterwards.

Finally, we discussed the mechanism of closed source add-ons for iText 7. These add-ons require
a license key that needs to be purchased from iText Software. We've experimented with the
pdfCalligraph add-on also known as the typography jar. In the next chapter, we’ll dig into the
ILeafElement implementations. We've already used the Text object many times, but in the next
chapter, we’ll also take a look at the Link, Tab and Image object.

Chapter 3: Using ILeafElement
implementations

The ElementPropertyContainer has three direct subclasses: Style, RootElement, and AbstractEle-
ment. We’ve briefly discussed Style at the end of chapter 1. We’ve discussed the RootElement
subclasses Canvas and Document in the previous chapter. We’ll deal with the AbstractElement class
in the next three chapters:

« We'll start with the ILeafElement implementations Tab, Link, Text, and Image in this chapter.

« We'll continue with the BlockElement objects Div, LineSeparator, List, ListItem, and
Paragraph in the next chapter.

« We’ll conclude with the BlockElement objects Table and Cell in chapter 5.

Note that we’ve already discussed the AreaBreak object in chapter 2. We’ll have covered all of the
basic building blocks by the end of chapter 5.

In the previous chapter, we've used a txt file as a resource to create a PDF document. In this chapter,
and in the chapters that follow, we’ll also use a CSV file, jekyll_hyde.csv**, as data source. See figure
3.1.

*http://gitlab.itextsupport.com/itext7/samples/raw/develop/publications/highlevel/src/main/resources/data/jekyll_hyde.csv

http://gitlab.itextsupport.com/itext7/samples/raw/develop/publications/highlevel/src/main/resources/data/jekyll_hyde.csv
http://gitlab.itextsupport.com/itext7/samples/raw/develop/publications/highlevel/src/main/resources/data/jekyll_hyde.csv

Chapter 3: Using ILeafElement implementations 59
Igf’ Chitext-arya\samples\publications\highlevel\srchmaintresources data' jekyll_hyde.csv - Notepad++ — O >
File Edit Search View Encoding Language Settings Macre Run Plugins Window 7 X

33 A r= | FEIEE RN EEEREEIC
= jeleyll_hyde cav E3 ‘
1 IMDB|Year|Title|Director(s) |Country|Durationili@ ~
2 01268751808 |Dr. Jekyll and Mr. Hyde|Otis Turner|USA|lcilg
3 02005931910 |The Duality of Man| |UK|SHa
g 01268761910 | Den skebnesvangre opfindelse|August Blom|USA| 1706
5 00021431812 |Dr. Jekyll and Mr. Hyde|Lucius Henderson|USA|1206
& 00028131813 |Dr. Jekvll and Mr. Hyde|Herbert Brenon|USh|zZcilE
7 235738415813 |Dr. ‘Jekyll -and Mr. Hyde|Frank E. Woods|USA|
2 0256936|1813|A Modern Jekyll and Hyde| |US4]|
g 01546141815 |Horrible Hyde |Howell Hansel |US4|
10 0011130]1920|Dr. Jekyll and Mr. Hyde|John 5. Roberson|Denmark| 493
11 0011131]1820|Dr. Jekyll and Mr. Hyde|J.Charles Havdon|USA|400
12 00113481820 | Der Januskopf |F.W.Murnau|Germany | 1073
13 00228351931 |Dr. Jekvll and Mr. Hyde|Rouben Mamoulian|USA|Ssia
14 0211340]1932|Dr. Jekyll and Mr. Hyde|William WVance| |10083
15 00335531941 |Dr. Jekyll and Mr. Hyde|Victor Fleming|USA|11383
16 015156112844 |Mighty Mouse Meets Jekyll and Hyde Cat|Mannie Davis|USLh| oy
17 00393381947 |Dr. Jekvll and Mr. Mouse|Joseph Barbera, William Hanna|US54|siE
18 02283291850 |Gentleman Jekyll and Driver Hyde|David Bairstow| |Ziig
19 1336612]|1950|The Strange Case of Dr. Jekyll and Mr. Hyde| | |69 W
L4 >
length : 4427 lines: 73 Ln:1 Col:1 5Sel:0]0 UMIX ANSI INS

Figure 3.1: A simple CSV file that will be used as data source

As you can see, this CSV file could be interpreted as a database table containing records that consist

of 6 fields:

1. An IMDB number- the ID of an entry in the Internet Movie Database (IMDB) that was based

on the Jekyll and Hyde story by Robert Louis Stevenson.

2. A year- the year the corresponding movie, short film, cartoon, or video was produced.

3. A title- the title of the movie, short film, cartoon, or video.

4. Director or directors— the director or directors who made the movie, short film, cartoon, or

video.

5. A country- the country where the movie, short film, cartoon, or video was produced.

6. A run length— the number of minutes of the movie, short film, cartoon, or video.

We will use the CsvTo2DList* utilities class to read this CSV file, that was stored using UTF-8

encoding, into a two-dimensional List<List<String>> list.

**http://developers.itextpdf.com/content/itext-7-building-blocks/examples/util#1919-csvto2dlist.java

http://developers.itextpdf.com/content/itext-7-building-blocks/examples/util#1919-csvto2dlist.java
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/util#1919-csvto2dlist.java

(AN

_ O O 0 9 O O b W N =~

Chapter 3: Using ILeafElement implementations 60

public static final List<List<String>> convert(String src, String separator)
throws IOException {
List<List<String>> resultSet = new ArraylList<List<String>>();
BufferedReader br = new BufferedReader (
new InputStreamReader(new FilelnputStream(src), "UTF8"));
String line;
List record;
while ((line = br.readlLine()) != null) {
StringTokenizer tokenizer = new StringTokenizer(line, separator);
record = new Arraylist<String>();
while (tokenizer.hasMoreTokens()) {
record.add(tokenizer.nextToken());

}

resultSet.add(record);

}

return resultSet;

In this chapter, we’ll render this two-dimensional list to a PDF using Tab elements.

Working with Tab elements
Let’s take a look at the JekyllHydeTabsV1®® example:

List<List<String>> resultSet = CsvTo2DList.convert(SRC, "[");
for (List<String> record : resultSet) {
Paragraph p = new Paragraph();
p.add(record.get(0).trim()).add(new Tab())
.add(record.get(1).trim()).add(new Tab())
.add(record.get(2).trim()).add(new Tab())
.add(record.get(3).trim()).add(new Tab())
.add(record.get(4).trim()).add(new Tab())
.add(record.get(5).trim());
document .add(p);

In line 1, we use our CsvTo2DList* utilities class to create aresultSet of type List<List<String>>.
In line 2, we loop over the rows of this result set, and we create a Paragraph containing all the fields
in the record list. In-between, we add Tab objects.

*http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-3#1906-c03e01_jekyllhydetabsv1.java
*http://developers.itextpdf.com/content/itext-7-building-blocks/examples/util#1919-csvto2dlist.java

http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-3#1906-c03e01_jekyllhydetabsv1.java
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/util#1919-csvto2dlist.java
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-3#1906-c03e01_jekyllhydetabsv1.java
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/util#1919-csvto2dlist.java

O O b W N =~

Chapter 3: Using ILeafElement implementations 61

Figure 3.2 shows the resulting PDF.

m jekyll_hyde_tabs1.pdf - Adobe Acrobat Pro - m] x

File Edit View Window Help ®

B‘ Open | @ Create ~ | D & @ @ ‘ B = Iz & @\ @) = Customize ~ | lz‘
l ."4 ‘ M ‘ — -I- | Tools Fill & Sign Comment

-

IMDB [Year Title Director(g) |Country Puration
01268751908 Dr. Jekyl| and Mr. Hyde [Otis Turnpr USA]
0200593 (1910 [The Dualjty of Man| UK B

0126876 1910 Den skapnesvangfe opfindglse Pugust Blom USA 17
0002143 1912 Dr. Jekyl| and Mr. Hyde Lucius Henderson [JSA 2
00028131913 Dr. Jekyl| and Mr. Hyde Herbert Hrenon [JSA [26
23573841913 Dr. Jekyl|and Mr_ Hyde Frank E. Woods [USA
0256936 1913 IA Modem Jekyll and Hyde IUSA
01546141915 Horrible Hyde Howell Hansel USA
00111301920 Dr. Jekyl| and Mr. Hyde Hohn S. Hoberson Denmarki49
00111311920 Dr. Jekyl| and Mr. Hyde H.Charles Haydon USA 4o
0011348 1920 Der Janugkopf F.W_Murnau [Germany(107

0022835 1931 Dr. Jekyl| and Mr. Hyde Rouben Wamoulial USA g8
02113401932 Dr. Jekyl| and Mr. Hyde William Vjance no
0033553 [1941 Dr. Jekyl|and Mr_ Hyde ictor Fleiming USA 13

Figure 3.2: default tab positions

As you can see, we've added extra lines to show the default tab positions.

PdfCanvas pdfCanvas = new PdfCanvas(pdf.addNewPage());

for (int i =1; i <= 10; i++) {
pdfCanvas.moveTo(document.getlLeftMargin() + i * 50, 0);
pdfCanvas.lineTo(document.getlLeftMargin() + i * 50, 595);

}
pdfCanvas.stroke();

By default, each tab position is a multiple of 50 user units (which, by default, equals 50 pt), starting
at the left margin of the page. Those tab positions work quite well for the first three fields (‘IMDB”,
“Year”, and “Title”), but the “Director(s)” field starts at different positions, depending on the length
of the “Title” field. Let’s fix this and try to get the result shown in figure 3.3.

© 00 39 O O b W N =

Chapter 3: Using ILeafElement implementations

62

L jekyll_hyde_tabs2.pdf - Adobe Acrobat Pro O *
File Edit View Window Help *
[open ‘ @ Create ~ | B @ E% [| B © B (g - Customize ~ | Iz

@) [4 | 13 | (=) @ | (5 | Tools Fill & Sign Comment
IMDB [Year [Title Director(s) ICountry Duration
0126875 1908 Dr. Jekyll and Mr. Hyde Otis Turner USA 16
0200593 1910 [The Duality of Man UK 5
0126876 1910 |Den skazbnesvangre opfindelse ugust Blom USA 17
0002143 1912 Dr. Jekyll and Mr. Hyde lLucius Henderson IUSA 12
0002813 1913 Dr. Jekyll and Mr. Hyde Herbert Brenon USA 126
23573684 1913 Dr. Jekyll and Mr. Hyde IFrank E. Woods IUSA
0256936 1913 |A Modem Jekyll and Hyde USA
0154614 1915 |Horrible Hyde Howell Hansel IUSA
0011130 1920 Dr. Jekyll and Mr. Hyde Hohn S. Roberson IDenmark 19
0011131 1920 Dr. Jekyll and Mr. Hyde H.Charles Haydon IUSA 40
0011348 1920 Der Januskopf IF-W_Murnau IGermany 107
0022835 1931 Dr. Jekyll and Mr. Hyde Rouben Mamoulian IUSA 98
0211340 1932 Dr. Jekyll and Mr. Hyde William Vance 10
0033553 1941 Dr. Jekyll and Mr. Hyde Victor Fleming IUSA 13

Figure 3.3: defining tab positions

In the JekyllHydeTabsV2*” example, we define specific tab positions using the TabStop class.

float[] stops
List<TabStop> tabstops = new ArraylList();

new float[]{80, 120, 430, 640, 720};

PdfCanvas pdfCanvas = new PdfCanvas(pdf.addNewPage());

for (int i = 0; i < stops.length; i++) {
tabstops.add(new TabStop(stops[i]));

pdfCanvas.moveTo(document.getleftMargin() + stops[i], @);

pdfCanvas.lineTo(document.getleftMargin() + stops[i], 595);

}

pdfCanvas.stroke();

We’ve stored 5 tab stops in a float array in line 1, we create a List of TabStop objects in line 2,
we loop over the different float values in line 4 and add the 5 tab stops to the TabStop list in line
5. While we are at it, we also draw lines that will show us the position of each tab stop, so that we
have a visual reference to check if iText positioned our content correctly.

The next code snippet is almost an exact copy of what we had before.

*"http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-3#1907-c03e02_jekyllhydetabsv2.java

http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-3#1907-c03e02_jekyllhydetabsv2.java
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-3#1907-c03e02_jekyllhydetabsv2.java

Chapter 3: Using ILeafElement implementations

List<List<String>> resultSet = CsvTo2DList.convert(SRC, "[");

for (List<String> record : resultSe

Paragraph p = new Paragraph();
p.addTabStops(tabstops);
p.add(record.get(0).trim()).add(new Tab())
.add(record.get(1).trim()).
.add(record.get(2).trim()).
.add(record.get(3).trim()).
.add(record.get(4).trim()).
.add(record.get(5).trim());
document .add(p);

t) {

add(new Tab())
add(new Tab())
add(new Tab())
add(new Tab())

63

Line 4 is the only difference: we use the addTabStops() method to add the List<TabStop> object
to the Paragraph. The different fields are now aligned in such a way that the content starts at the
position defined by the tab stop; the tab stop is to the left of the content. We can change this alignment
as shown in figure 3.4.

ﬁ jekyll_hyde_tabs3.pdf - Adobe Acrobat Pro
File Edit View Window Help

[m} >

E3

[open | F2 Create ~ | B @« & Z | B @ o [- Customize ~ | @
@) /4 | Ik | (=) (o) [724% |~] | (5 | Tools | Fill & Sign = Comment
IMDB Year Title Director(s) [Country Duration
0126875 1908 Dr. Jekyll and Mr. Hyde Otis Turnen [USA 19"
0200593 1910 [The Duality of Man UK q°
0126876 1910 IDen skesbnesvangre opfindelse August Blom| JUSA 17"
0002143 1912 Dr. Jekyll and Mr. Hyde Lucius Henderson| JUSA 12"
0002813 1913 Dr. Jekyll and Mr. Hyde Herbert Brenon| [USA 249"
2357384 1913 Dr. Jekyll and Mr. Hyde Frank E. Woods| |USA
02565936 1913 A Modemn Jekyll and Hyde USA
0154614 1415 Horrible Hyde Howell Hansel [USA
0011130 19Q0 Dr. Jekyll and Mr. Hyde John S. Roberson| Denmark 49°
0011131 1920 Dr. Jekyll and Mr. Hyde J.Charles Haydon| JUSA 44"
0011348 1920 Der Januskopf F.W.Murnau| [Germany 107"
0022835 1931 Dr. Jekyll and Mr. Hyde Rouben Mamoulian| [JSA 98"
0211340 1932 Dr. Jekyll and Mr. Hyde William Vance 10"
0033553 1941 Dr. Jekyll and Mr. Hyde Victor Fleming| [USA m3y’

The JekyllHydeTabsV3*® example shows how this is done:

Figure 3.4: different tab stop alignments

*®http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-3#1908-c03e03_jekyllhydetabsv3.java

http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-3#1908-c03e03_jekyllhydetabsv3.java
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-3#1908-c03e03_jekyllhydetabsv3.java

© 00 9 O O b W N =

© 00 39 O O b W N =~

TN
N =~ O

Chapter 3: Using ILeafElement implementations 64

float[] stops = new float[]{80, 120, 580, 590, 720};
List<TabStop> tabstops = new ArraylList();

tabstops.add(new TabStop(stops[@], TabAlignment.CENTER));
tabstops.add(new TabStop(stops[1], TabAlignment.LEFT));
tabstops.add(new TabStop(stops[2], TabAlignment.RIGHT));
tabstops.add(new TabStop(stops[3], TabAlignment.LEFT));
TabStop anchor = new TabStop(stops[4], TabAlignment.ANCHOR);
anchor .setTabAnchor(' ');

tabstops.add(anchor);

We have 5 tabstops:

« The first tab stop will center the Year at position 80; for this we use TabAlignment .CENTER.

« The second tab stop will make sure that the title starts at position 120; for this we use
TabAlignment .LEFT.

« The third tab stop will make sure that the name(s) of the director(s) ends at position 580; for
this we use TabAlignment .RIGHT.

« The fourth tab stop will make sure that the country starts at position 590.

« The fifth tab stop will align the content based on the position of the space character; for this
we use TabAlignment.ANCHOR and we define a tab anchor using the setTabAnchor () method.

If you look at the CSV file, you see that we don’t have any space characters in the “Run length” field,
so let’s add adapt our code and add " \'" to that field. See line 10 in the following snippet.

List<List<String>> resultSet = CsvTo2DList.convert(SRC, "[|");
for (List<String> record : resultSet) {
Paragraph p = new Paragraph();
p.addTabStops(tabstops);
p.add(record.get(Q).trim()).add(new Tab())
.add(record.get(1).trim()).add(new Tab())
.add(record.get(2).trim()).add(new Tab())
.add(record.get(3).trim()).add(new Tab())
.add(record.get(4).trim()).add(new Tab())
.add(record.get(5) . trim() + " \'");
document.add(p);

Figure 3.5 shows yet another variation on this example.

© 00 39 O O b W N =

Chapter 3: Using ILeafElement implementations 65

FH jekyll_hyde_tabs4.pdf - Adobe Acrobat Pro - O X
File Edit View Window Help *

B‘Open |@Cremtev | D @ @ @ | @ & g % Customize ~ | @
‘ /4| 13 @H - '|' | & | Tools Fill & Sign Comment

Al

IMDB Yaar [Title Director(s) ICountry----------Duration’
0126875 1908 Dr. Jekyll and Mr. Hyde Otis Tumer JUSA-----—-----msommmm s 16"
0200593 1910 [The Duality of Man JUK == mmmmm oo oo =
0126876 1910 Den skabnesvangre opfindelse August Blom| USA--—m e e 17"
0002143 1912 Dr. Jekyll and Mr. Hyde Lucius Henderson|
0002813 1913 Dr. Jekyll and Mr. Hyde Herbert Brenon
2357384 1913 Dr. Jekyll and Mr. Hyde Frank E. Woods| JSA-----------rmmm '
0256936 1913 A Modemn Jekyll and Hyde USA---mom o oo e oo !
0154614 1915 Horrible Hyde Howell Hansel
0011130 1920 Dr. Jekyll and Mr. Hyde John 5. Roberson|
0011131 1920 Dr. Jekyll and Mr. Hyde J.Charles Haydon
0011348 1920 Der Januskopf F W _Murnau|
0022835 1931 Dr. Jekyll and Mr. Hyde Rouben Mamoulian
0211340 1932 Dr. Jekyll and Mr. Hyde William Vance| [----------mmmmmmeememem oemeee 1q°
0033553 1941 Dr. Jekyll and Mr. Hyde Victor Fleming| JUSA-------------eoemmees 3"

Figure 3.5: tab stops with tab leaders

In the JekyllHydeTabsV4** example, we add tab leaders.

float[] stops = new float[]{80, 120, 580, 590, 720};

List<TabStop> tabstops = new ArraylList();

tabstops.add(new TabStop(stops[0], TabAlignment.CENTER, new DottedLine()));
tabstops.add(new TabStop(stops[1], TabAlignment.LEFT));

tabstops.add(new TabStop(stops[2], TabAlignment.RIGHT, new SolidLine(©.5f)));
tabstops.add(new TabStop(stops[3], TabAlignment.LEFT));

TabStop anchor = new TabStop(stops[4], TabAlignment.ANCHOR, new DashedlLine());
anchor .setTabAnchor(' ');

tabstops.add(anchor);

A tab leader is defined using a class that implements the IL ineDrawer interface. We add a dotted line
between the IMDB id and the year, a solid line between the title and the director(s), and a dashed
line between the country and the run length.

**http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-3#1909-c03e04_jekyllhydetabsv4.java

http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-3#1909-c03e04_jekyllhydetabsv4.java
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-3#1909-c03e04_jekyllhydetabsv4.java

Chapter 3: Using ILeafElement implementations

i

You could implement the ILineDrawer interface to draw any kind of line, but iText ships
with three implementations that are ready to use: SolidLine, DottedLine, and DashedLine.

Each of these classes allows you to change the line width and color. The DottedLine class
also allows you to change the gap between the dots. In the next chapter, we’ll also use these
classes to draw line separators with the LineSeparator class.

66

At first sight, using the Tab object seems to be a great way to render content in a tabular form, but
there are some serious limitations.

Limitations of the Tab functionality

The previous screen shots looked nice because we chose our tab stops wisely. We rendered our
data on an A4 page with landscape orientation, leaving sufficient space to render all the data. This
won’t always be possible. In figure 3.6, we try to add the same content on an A4 page with portrait

orientation.

X jekyll_hyde_tabs5.pdf - Adobe Acrobat Pro - O 4
File Edit View Window Help %
open | Fcreater | [@ & & |l & © » B - Customize ~ R

L 2 /3 | iILY | =) [| | Tools Fill & Sign Comment
IMDB Ygar [Title Director(s)| |CountryDuration
0126875 1908 Dr. Jekyll and Mr. Hyde Otis Turner] |USA------------ 16
0200593 1910 [The Duality of Man UK --=mmmmmmmmeae 5
0126876 1910 |Den skaebnesvangre opfindelse August Blom| JUSA------------ 17
0002143 1912 Dr. Jekyll and Mr. Hyde Lucius Henderson| |JSA------------ 12
0002813 19113 Pr. Jekyll and Mr. Hyde Herbert Brenon| [USA------------ 26
2357384 1913 Pr. Jekyll and Mr. Hyde Frank E. Woods| [JSA------n-nereee-.
0256936 1913 |A Modem Jekyll and Hyde USA---mmmmmmmemmees
0154614 1915 Horrible Hyde Howell Hansel| JUSA-----=-snnsenvme
0011130 1920 Dr. Jekyll and Mr. Hyde John S. Roberson| [Denmark------49

Figure 3.6: using portrait orientation

This PDF was made with the JekyllHydeV5*° example. As you can see, this still looks quite nice,
apart from the fact that “Country” and “Duration” stick together on the first line.

“*http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-3#1910-c03e05_jekyllhydetabsv5.java

http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-3#1910-c03e05_jekyllhydetabsv5.java
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-3#1910-c03e05_jekyllhydetabsv5.java

Chapter 3: Using ILeafElement implementations 67

9 The Tab functionality contained some errors in iText 7.0.0. Due to rounding errors, some
text wasn’t aligned correctly in a seemingly random way. This problem was fixed in iText
7.0.1.

Another bug that was fixed in iText 7.0.1 is related to the SolidLine class. In iText 7.0.0,
the line width of a SolidLine was ignored.

When we scroll down in the document, we see a more serious problem when there’s no sufficient
space to fit the title and the director next to each other. Director “Charles Lamont” pushes the country
to the “Duration” column and the number of minutes gets shown on a second row.

X jekyll_hyde_tabs5.pdf - Adobe Acrobat Pro - O X
File Edit View Window Help *
[open | ﬂ Create ~ | SRS C% = | B © 2 (g = Customize ~ ul
¥ /3 | I3 | =) (f | | Tools Fill & Sign Comment
0043515 1951 [l extrafio caso del hombre y la bestia Mario Soffic| |USA=-=--=-==---- 8of
0713926 1951 Pr. JekyllandMr.Hyde | e 30(

0045469 1953 JAbbott and Costello Meet Dr. Jekyll and Mr. HydeCharles Lamopt-------------- USA
76"

0394419 1955 Dr. Jekyll and Mr. Hyde Allen Reisnen [--------------=--- 60|
1613620 1956 [Dr. Jekyll and Mr. Hyde Philip Savillel ------------------- 60[

Figure 3.7: trying to fit the data on a page with portrait orientation

We can solve these problems by using the Table and Cell class to organize data in a tabular form.
These objects will be discussed in chapter 5 of this tutorial. For now, we’ll continue with some more
ILeafElement implementations.

Adding links

In the previous examples, we’ve added the ID of the movie, short film, cartoon, or video as actual
content. This ID can help us find the movie on the Internet Movie Database (IMDB)*'. In Figure 3.8,

we don’t show the ID, but when we click on the title of a movie, we can jump to the corresponding
page on IMDB.

“'http://imdb.com

http://imdb.com/
http://imdb.com/

Chapter 3: Using ILeafElement implementations 68
X jekyll_hyde_tabs6.pdf - Adobe Acrobat Pro [m| X
File Edit View Window Help *

Al

Dopen |Raeate- |0 @ &8 & H| & © B B

Customize ~ | E

Year [Title Director{s| [Country Duration|'
1808 Pr. Jekyll and Mr. Hyde Otis Tumeq |JSA 18"
1210 [The Duality of Man 118 ER
1810 Pen ska=bnesvangre opfindelse August Blom| |USA 17
1812 Pr. Jekyll and Mr. Hyde Lucius Henderson| |USA 12
1813 Pr. Jekyll and Mr. Hyde Herbert Brenon| |JSA 28"
1213 Dr. Jekyll and Mr. Hyde Frank E. Woodg JUSA
1213 A Modemn Jekyll and Hyde HsA
1915 Homible Hyde Howell Hanse| JSA
1820 Pr. Jekyll and Mr. Hyde John 5. Roberson| Denmark a9
1820 Pr. Jekyll and Mr. Hyde J.Charles Haydon| |USA 0
1820 Per Januskopf F.W.Muman [Sermany 107
Mr. Hyde Rouben Mamoulian| |ISA a8’
httpffWWWImdbCOmftlﬂethDD1 1348; Mr. Hyde William Vancs] 10
1241 Dr. Jekyll and Mr. Hyde Victor Fleming| LISA 13
1244 Mighty Mouse Meets Jekyll and Hyde Cat Mannie Davig JSA [}
1247 Pr. Jekyll and Mr. Mouse Joseph Barbera, William Hanng JSA g
18560 [Sentleman Jekyll and Driver Hyde David Bairstow| g
1250 [The Strange Case of Dr. Jekyll and Mr. Hyde agy'
1251 Flextrafio caso del hombre y |a bestia Mario Soffic| |JSA an’

Figure 3.8: introducing links to IMDB

We create these links in the JekyllHydeTabsV6** example.

List<List<String>> resultSet = CsvTo2DList.convert(SRC, "[");
for (List<String> record : resultSet) {
Paragraph p = new Paragraph();
p.addTabStops(tabstops);
PdfAction uri = PdfAction.createURI(
String. format("http://www.imdb.com/title/tt%s", record.get(Q)));
Link link = new Link(record.get(2).trim(), uri);
p.add(record.get(1).trim()).add(new Tab())
.add(link).add(new Tab())
.add(record.get(3).trim()).add(new Tab())
.add(record.get(4).trim()).add(new Tab())
.add(record.get(5).trim() + " \'");
document .add(p);

© [1]/4] & G| ® @ [ssx]-]| & & Tools | Fill & Sign

Comment

In line 5-6, we create a PdfAction object that links to an URL. This URL is composed of
http://www.imdb.com/title/tt/ and the IMDB ID. In line 7, we create a L ink object using a String

“’http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-3#1911-c03e06_jekyllhydetabsveé.java

http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-3#1911-c03e06_jekyllhydetabsv6.java
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-3#1911-c03e06_jekyllhydetabsv6.java

Chapter 3: Using ILeafElement implementations 69

containing the title of the movie, and the PdfAction. As a result, you will be able to jump to the
corresponding IMDB page when clicking a title.

’J Interactivity in PDF is achieved by using annotations. Annotations aren’t part of the real
content. They are objects added on top of the content. In this case, a link annotation is used.
There are many other types of annotations, but that’s outside the scope of this tutorial.
There are also many types of actions. For now, we’ve only used a URI action. We’ll use

some more in chapter 6.

The Link class extends the Text class. Appendix A*’ lists a series of methods that are available for
the Link as well as for the Text class to change the font, to change the background color, to add
borders, and so on.

Extra methods available in the Text class

We’ve already worked with Text objects on many occasions in the previous chapters, but let’s take
a closer look at some Text functionality we haven’t discussed yet.

T jekyll_hyde_text.pdf - Adobe Acrobat Pro - O X
File Edit View Window Help *
E}Open | f\l Create ~ | =il @ C% @ | @‘ ® I (s e Customize ~ n‘

/1| L3 | =) (e | | Tools Fill & Sign Comment

The Strange Case of D' &KVl g 7 77

Figure 3.9: extra text methods

The first Text object shown in figure 3.9 is what text normally looks like. For the words “Dr. Jekyll”,
we defined a text rise. We scaled the word “and” horizontally. And we skewed the words “Mr. Hyde.”
The methods used to achieve this can be found in the TextExample** example.

“*http://developers.itextpdf.com/content/itext-7-building-blocks/appendix/appendix-abstractelement-methods
“*http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-3#1920-c03e07_textexample.java

http://developers.itextpdf.com/content/itext-7-building-blocks/appendix/appendix-abstractelement-methods
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-3#1920-c03e07_textexample.java
http://developers.itextpdf.com/content/itext-7-building-blocks/appendix/appendix-abstractelement-methods
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-3#1920-c03e07_textexample.java

O = W N =

Chapter 3: Using ILeafElement implementations 70

Text t1 = new Text("The Strange Case of ");

Text t2 = new Text("Dr. Jekyll").setTextRise(5);
Text t3 = new Text(" and ").setHorizontalScaling(2);
Text t4 = new Text("Mr. Hyde").setSkew(10, 45);

document .add(new Paragraph(t1).add(t2).add(t3).add(t4));
We distinguish three new methods:

« The parameter passed to the setTextRise() method is the number of user units above the
baseline of the text. You can also use a negative value if you want the text to appear below
the base line.

« The parameter of the setHorizontalScaling() method is the horizontal scaling factor we
want to use. In this case, the word " and " will be rendered double as wide as normal.

 The parameters of the setSkew() method define two angles in degrees. The first parameter is
the angle between the text and its baseline. The second parameter is the angle that will be used
to skew the characters. The setSkew() method is used to mimic an italic font (see chapter 1).

We’ll continue using the Text object explicitly or implicitly in every example that involves text. The
second half of this chapter will be dedicated entirely to the Image class.

Introducing images

In 1996, Stephen Frears made a movie with Julia Roberts in the role of Mary Reilly, a maid in the
household of Dr. Jekyll. Let’s take an image of the poster of this movie and add it to a document as
done in figure 3.10.

Chapter 3: Using ILeafElement implementations 71

E“?'__'E _V1.pdf - Adobe Acrobat Pro — [} s
File Edit View Window Help *
[open | ﬁr Create ~ | B & @ B | o @ [[y = Customize ~ | @

/1| LY | - '|' | | Tools Fill & Sign Comment

Mary Reilly is a maid in the household of Dr. Jekyll:

Figure 3.10: an image added to a document

The code to achieve this, is very simple. See the MaryReillyV1* example.

public static final String MARY = "src/main/resources/img/0117002. jpg";
public void createPdf(String dest) throws IOException {
PdfDocument pdf = new PdfDocument(
new PdfWriter(new FileOutputStream(dest)));
Document document = new Document(pdf);
Paragraph p = new Paragraph(
"Mary Reilly is a maid in the household of Dr. Jekyll: ");
document.add(p);
Image img = new Image(ImageDataFactory.create(MARY));
document .add(img) ;
document.close();

We have the path to our image in line 1. The ImageDataFactory uses this path in line 9 to get the
image bytes and to convert them into an ImageData object that can be used to create an Image object.

“Shttp://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-3#1921-c03e08_maryreillyv1.java

http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-3#1921-c03e08_maryreillyv1.java
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-3#1921-c03e08_maryreillyv1.java

Chapter 3: Using ILeafElement implementations 72

In this case, we are passing a JPEG image, and we add that image straight to the document object in
line 10.

’ JPEG images are stored inside a PDF as-is. It isn’t necessary for iText to convert the image
J bytes into another image format. PNG for instance, isn’t supported in PDF, hence iText
will have to convert each PNG image we pass into a compressed bitmap.

Images are stored outside the content stream of the page in an object named an image XObject.
XObject stands for eXternal Object. The bytes of the image are stored in a separate object outside
the content stream. Now suppose that we would add the same image twice as is done in figure 3.11.

'@ mary_reilly_V1.pdf 6/25/2016 16:48 PM Adobe Acrobat D... 16KB
'@ mary_reilly_V2.pdf 16:46 PM Adobe Acrobat D... 16 KB

@ mary_reilly_V3.pdf 116 16:46 PM Adobe Acrobat D... 31 KB
T mary_reilly_V2.pdf - Adobe Acrobat Pro - O X FX| mary_reilly_v3.pdf - Adobe Acrobat Pra - O X
File Edit View Window Help * File Edit View Window Help

X
E}Open | Ei Create v | D @ (% @ B‘Open | Eilr Create v | D @ (% @ |§
/1| s | Toolsé Fill & Sign !1| = | Toolsé Fill & Sign

Figure 3.11: adding the same figure twice

When we compare the files mary_reilly_V2.pdf*® and mary_reilly_V3.pdf*, they look exactly the
same to the naked eye. When we look at the file size of the files, we notice something strange:

« The file marked as V2 has the same file size as the file marked as V1. In other words, the file
with two images has more or less the same file size as the file with a single image. This is

“http://gitlab.itextsupport.com/itext7/samples/raw/develop/publications/highlevel/cmpfiles/chapter03/cmp_mary_reilly_V2.pdf
“"http://gitlab.itextsupport.com/itext7/samples/raw/develop/publications/highlevel/cmpfiles/chapter03/cmp_mary_reilly_V3.pdf

http://gitlab.itextsupport.com/itext7/samples/raw/develop/publications/highlevel/cmpfiles/chapter03/cmp_mary_reilly_V2.pdf
http://gitlab.itextsupport.com/itext7/samples/raw/develop/publications/highlevel/cmpfiles/chapter03/cmp_mary_reilly_V3.pdf
http://gitlab.itextsupport.com/itext7/samples/raw/develop/publications/highlevel/cmpfiles/chapter03/cmp_mary_reilly_V2.pdf
http://gitlab.itextsupport.com/itext7/samples/raw/develop/publications/highlevel/cmpfiles/chapter03/cmp_mary_reilly_V3.pdf

W N -

Chapter 3: Using ILeafElement implementations 73

consistent with what we said before: the file is stored inside the document only once as an
external object. We refer to this XObject twice.

« The file marked as V3 looks identical to the file marked as V2, but its file size is almost double
the size of the file marked as V2. It’s as if the image bytes of our JPEG are added twice to the
PDF document.

The code we used to create the file marked as V2 can be found in the MaryReillyV2*® example:

Image img = new Image(ImageDataFactory.create(MARY));
document .add(img) ;
document.add(img);

We create one img object; we add this image twice to the same document. As a result, the image is
shown twice, but the image bytes are stored in a single image XObject.

Now let’s take a look at the MaryReillyV3* example.

Image imgl = new Image(ImageDataFactory.create(MARY));
document .add(imgl);
Image img2 = new Image(ImageDataFactory.create(MARY));
document.add(img2);

In this snippet, we create two Image instances for the same image, and we add both of these
instances to the same document. Once more the image is shown twice, but now it’s also stored
twice (redundantly) inside the document.

’J There’s a direct relationship between an Image object in iText and an image XObject inside
the PDF. Every new Image object that is created and added to a document, results in a
separate image XObject inside the PDF. If you create two or more Image objects of the same
image, you’ll end up with a bloated PDF file with too many redundant image XObjects.

This is clearly something you want to avoid.

In these first examples, we added Image objects without defining a location. The first image was
added right under our first paragraph. The second image was added right under the first one. We
can also choose to add the Image at specific coordinates.

“®http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-3#1925-c03e09_maryreillyv2 java
“’http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-3#1926-c03e10_maryreillyv3.java

http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-3#1925-c03e09_maryreillyv2.java
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-3#1926-c03e10_maryreillyv3.java
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-3#1925-c03e09_maryreillyv2.java
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-3#1926-c03e10_maryreillyv3.java

Chapter 3: Using ILeafElement implementations 74

Changing the position and width of an image

The two PDFs in figure 3.12 look identical, yet there were created in slightly different ways.

Y mary_reilly_V4.pdf - Adobe Acrabat Pro - O X
File Edit View Window Help *
E}‘Open | @ Create ~ | D @ C% @ | {?} e B = Customize - | @

/1| LY | - '|' | | Tools Fill & Sign Comment

Mary Reilly is a maid in the household of Dr. Jekyill:

X mary_reilly_V5.pdf - Adobe Acrobat Pro - O *
File Edit View Window Help *
E}‘Open | @ Create ~ | D @ C% @ | & @ L s Customize ~ | @

/1 | LY | - '|' | | Tools Fill & Sign Comment

Mary Reilly is a maid in the household of Dr. Jekyill:

Figure 3.12: adding an image at absolute positions

The top PDF was created using the MaryReillyV4*° example:

Image img = new Image(ImageDataFactory.create(MARY), 320, 750, 50);
document .add(img) ;

In this example, we define the position and the size of the image in the Image constructor. We define
the position as x = 320; y = 750, and we define a width of 50 user units (which is, by default, a
width of 50 pt). The height of the image will be adjusted accordingly, preserving the aspect ratio of
the image.

The second PDF was created using the MaryReillyV5°" example.

%http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-3#1929-c03e11_maryreillyv4.java
Thttp://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-3#1930-c03e12_maryreillyvs. java

http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-3#1929-c03e11_maryreillyv4.java
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-3#1930-c03e12_maryreillyv5.java
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-3#1929-c03e11_maryreillyv4.java
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-3#1930-c03e12_maryreillyv5.java

Chapter 3: Using ILeafElement implementations 75

Image img = new Image(ImageDataFactory.create(MARY));
img.setFixedPosition(320, 750, UnitValue.createPointValue(50));
document .add(img);

In this case, we use the setFixedPosition() method to define the position and size of the image.
Note that we use the UnitValue to define that 50 is a value expressed in pt. The other option is to
define the width as a percentage.

There are different variations available for the Image constructor and the setFixedPosition()
method. For instance, you can also define a page number as is done in the MaryReillyV6°* example.

Image img = new Image(ImageDataFactory.create(MARY));
img.setFixedPosition(2, 300, 750, UnitValue.createPointValue(50));
document .add(img) ;

In this example, adding the image on page 2, triggers the creation of a new page. See figure 3.13.

X mary_reilly_V6.pdf - Adobe Acrobat Pro - O *
File Edit View Window Help *
E}Open | ﬁ Create ~ | = @ C% @ | -{:?} & g = Customize ~ .’

' /2| JLY | =) (e | | Tools Fill & Sign Comment

Mary Redly is a maid in the housshold of Dr. Jekyll ﬁ

Figure 3.13: adding an image on a specific page

If we had been adding the image on page 200, 199 new pages would have been added in order to
make sure that the image is actually on page 200. I'm not sure if there’s an actual use case for the
setFixedPosition() method that accepts a page number as a parameter when creating a document
from scratch, but that method can also be used when adding content to an existing document.

Adding an image to an existing PDF

In the iText 7: Jump-Start tutorial®®, we’ve been working with existing documents. We can import an
existing document into iText with a PdfReader instance and create a new PDF based on the original
document.

Q In iText 5, we would have worked with a PdfStamper object to add content to an existing

PDF. This PdfStamper object no longer exists in iText 7. Content is always added using

either a PdfDocument instance (low-level content), or a Document instance (high-level
content).

>?http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-3#1931-c03e13_maryreillyvé.java
**http://developers.itextpdf.com/content/itext-7-jump-start-tutorial

http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-3#1931-c03e13_maryreillyv6.java
http://developers.itextpdf.com/content/itext-7-jump-start-tutorial
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-3#1931-c03e13_maryreillyv6.java
http://developers.itextpdf.com/content/itext-7-jump-start-tutorial

S © 00 = O O b W N =~

Chapter 3: Using ILeafElement implementations 76

Let’s take a look how it’s done in the MaryReillyV7°* example.

public void manipulatePdf(String src, String dest) throws IOException {
PdfReader reader = new PdfReader(src);
PdfWriter writer = new PdfWriter(dest);
PdfDocument pdfDoc = new PdfDocument(reader, writer);
Document document = new Document(pdfDoc);
Image img = new Image(ImageDataFactory.create(MARY));
img.setFixedPosition(1, 350, 750, UnitValue.createPointValue(50));
document .add(img);
document.close();

We create a PdfDocument instance using a PdfReader and a PdfWriter object. We use the PdfDoc-
ument instance to create a Document. We add an Image to that document using specific coordinates
and a specific width on page 1. The result is shown in figure 3.14.

mary_reilly_V7.pdf - Adobe Acrobat Pro — O e
T mary_reilly_v7.p
File Edit View Window Help *

E'}Open |ﬁL1Cnez;|tlev | D @ C% @’ | i3 = g Customize ~ | @
®) /31| 13 | (=) (o) [100% | ||$7'9| Tools Fill & Sign Comment

Al

THE STRANGE CASE OF DR. JEKYLL AND MR. HYDE
by Robert Louis Stevenson .

STORY OF THE DOOR

Mr. Utterson the lawyer was a man of a rugged countenance that was never lighted by a smule; cold, scanty
and embarrassed i discourse; backward in sentiment; lean, long, dusty, dreary and yet somehow lovable. At friendly
meetings, and when the wine was to his taste, something eminently human beaconed from his eye; something indeed
which never found its way into his talk, but which spoke not only in these silent symbols of the after-dinner face, but

more often and loudly in the acts of his life. He was austere with himself; drank gin when he was alone, to mortify a

Figure 3.14: adding an image to an existing PDF

There are different ways to resize an image.

Resizing and rotating an image

We already changed the dimensions by defining a width in points, in the MaryReillyV8>° example,
we use a percentage.

>*http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-3#1932-c03e14_maryreillyv7.java
>*http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-3#1933-c03e15_maryreillyv8 java

http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-3#1932-c03e14_maryreillyv7.java
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-3#1933-c03e15_maryreillyv8.java
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-3#1932-c03e14_maryreillyv7.java
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-3#1933-c03e15_maryreillyv8.java

oW N -

Chapter 3: Using ILeafElement implementations 77

Image img = new Image(ImageDataFactory.create(MARY));
img.setHorizontalAlignment(HorizontalAlignment .CENTER);
img.setWidthPercent(80);

document .add(img);

As shown in figure 3.15, the image is now centered on the page (using the setHorizontalAlign-
ment () method) and it takes 80% of the available width on the page (using the setwidthPercent()
method).

X mary_reilly_V8.pdf - Adobe Acrobat Pro - O *
File Edit View Window Help *
Open | fj Create ~ | EI @ C% @ | B ® b = Customize ~ | @

/1 | 13 @l | (=) () | e | Tools Fill & Sign Comment

Mary Reilly is a maid in the household of Dr. Jekyll:

JULIA ROBERTS JOHN MALKOVICH

Figure 3.15: defining the width as a percentage

Note that iText will automatically scale the image to 100% of the available width when you’re trying
to add an image that doesn’t fit.

O b W N =

Chapter 3: Using ILeafElement implementations 78

,J Resizing an image doesn’t change anything to the original quality of the image. The number
of pixels in the image remains identical; iText doesn’t change a single pixel in your image.
This doesn’t mean the resolution doesn’t change when you resize an image. If an image
is 720 pixels by 720 pixels and you render this image as a 720 pt by 720 pt image, the
resolution will be 72 dots per inch. If you change the dimension to 72 pt by 72 pt, you will

have a resolution of 720 dots per inch.

So far, we’ve been adding Image objects straight to the document. You can also add Image objects to
BlockElement objects. In the MaryReillyV9°® example, we add an Image to a Paragraph.

Paragraph p = new Paragraph(

"Mary Reilly is a maid in the household of Dr. Jekyll: ");
Image img = new Image(ImageDataFactory.create(MARY));
p.add(img);
document.add(p);

The result is shown in figure 5.16.

3Shttp://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-3#1934-c03e16_maryreillyv9.java

http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-3#1934-c03e16_maryreillyv9.java
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-3#1934-c03e16_maryreillyv9.java

Chapter 3: Using ILeafElement implementations 79

X mary_reilly_Va.pdf - Adobe Acrobat Pro - O *
File Edit View Window Help *
E}Open | @ Create ~ | D @ C% @ | & @ L s Customize ~ | @

/ 1| 13 | (=) (o) | | Tools Fill & Sign Comment

JULIA ROBERTS JOHN MALKOVICH
. ~ :

N Y
Mary Reilly is a maid in the household of Dr. Jekyll: M

Figure 3.16: adding an image to a Paragraph

We see that the leading has been adjusted automatically, but also that the image is somewhat big. The
Mary Reilly poster is 182 by 268 pixels in size. In this case, iText will use the same size in user units. As
aresult, the image shown in figure 3.16 measures 182 by 268 pt. iText may scale images automatically
depending on the context. We already mentioned the situation where the image doesn’t fit the width
of the page; in chapter 5, we’ll see how images behave in the context of tables.

There are also different scale() methods that allow us to scale an image programmatically. In the
MaryReillyV10°” example, we scale the image to 50% in X- as well as in Y-direction.

*"http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-3#1935-c03e17_maryreillyv10.java

http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-3#1935-c03e17_maryreillyv10.java
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-3#1935-c03e17_maryreillyv10.java

~N O O B W N -

Chapter 3: Using ILeafElement implementations 80

Paragraph p = new Paragraph(

"Mary Reilly is a maid in the household of Dr. Jekyll: ");
Image img = new Image(ImageDataFactory.create(MARY));
img.scale(0.5f, ©.5f);
img.setRotationAngle(-Math.PI / 6);
p.add(img);
document .add(p);

We also set a rotation angle of -30 degrees, which results in the PDF shown in figure 3.17.

X mary_reilly_V10.pdf - Adobe Acrobat Pro - O *
File Edit View Window Help *
E}‘Open | @ Create ~ | D @ C% @ | & @ L s Customize ~ | @

/1 | LY | - '|' | | Tools Fill & Sign Comment

Mary Reilly is a maid in the household of Dr. Jekyill:

Figure 3.17: scaled and rotated image

These are the most common ways to change the dimensions of an Image object:

« the scale() method: accepts two parameters. The first one is the factor that will be used in
the X-direction; the second one is the factor that will be used in the Y-direction. For instance:
if you pass a value of 1 f for the X-direction and @.5f for the Y-direction, the image will be as
wide as initially, but the height will be reduced to 50% of the original height.

« the scaleAbsolute() method: also accepts two parameters. The first one is the absolute width
in user units; the second one is the absolute height in user units. For instance: if you use a value
of 72f for both the width and the height, the image will, by default, be rendered as an image
of 1 inch by 1 inch.

+ the scaleToFit() method: also accepts two parameters. Using the scaleAbsolute() method
can lead to awkward results if you don’t take the aspect ratio of the image into account.

Chapter 3: Using ILeafElement implementations 81

The first parameter of the scaleToFit() method defines the maximum width of the image;
the second one defined the maximum height. The image will be scaled preserving the aspect
ratio. This means that the resulting image may be smaller than expected.

So far, we've only been using JPEG images, but iText supports many other image types.

Image types supported by iText

iText supports the following image formats: JPEG, JPEG2000, BMP, PNG, GIF, JBIG2, TIFF, and
WMEF. iText also supports raw image data (if you provide the pixels or the CCITT bytes). If you
consider PDF to be an image format —which it isn’t—, you can even import PDF pages as if it were
images.

We’ve already covered JPEG sufficiently, we’ll cover all the other formats in the next couple of
examples, starting with the ImageTypes®® example.

Raw image data

When we use the ImageDataFactory, iText will examine the image that is provided. It will check
which image type is encountered, and it will create an ImageData object for that specific image type.
Most of the times, we’ll import an existing image, but we can also create the raw image data on the
fly. In figure 3.18, we see an image of a gradient that evolves from yellow to blue.

X image_types.pdf - Adobe Acrobat Pro - O *
File Edit View Window Help *
E}Open | ﬁ Create ~ | = @ C% @ | {?} & g = Customize ~ .’

L /6| LY @H =) (dn | | TooIséFiII&Sign Comment

Figure 3.18: raw image

The RGB code for yellow is #FFFFo0; the RGB code for blue is #0000FF . If we want to create an RGB
images that shows gradient from yellow to blue, we could create an image with 256 pixels that is
256 pixels wide and 1 pixel high. We could then loop from 0 (0x@0) to 255 (0xFF) creating pixels that
vary from [Red = 255, Green = 255, Blue = 0] to [Red = 0, Green = 0, Blue = 255]. The total byte
size of that image would be the number of pixels multiplied with the number of values needed to
describe the color of each pixel. The following code snippet shows how this is done:

*8http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-3#1936-c03e18_imagetypes.java

http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-3#1936-c03e18_imagetypes.java
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-3#1936-c03e18_imagetypes.java

© 00 N O U b W N =

Y
(]

Chapter 3: Using ILeafElement implementations 82

byte data[] = new byte[256 * 3];
Q; i < 256; i++) {

for (int i

data[i * 3] = (byte) (255 - i);
data[i * 3 + 1] = (byte) (255 - i);
data[i * 3 + 2] = (byte) i;

}
ImageData raw = ImageDataFactory.create(256, 1, 3, 8, data, null);

Image img = new Image(raw);
img.scaleAbsolute(256, 10);
document .add(img) ;

In this snippet, we ask the ImageDataFactory to create the ImageData for an image of 256 pixels
by 1 pixel. We are using 3 components for each pixel. Each component is expressed using 8 bits
per component (bpc); that’s 1 byte. The fourth parameter of the create() method is the data[].
The fifth parameter is an array we can use to define transparency. We don’t need this parameter
in our simple example. We use the ImageData to create a new Image and we scale this image in the
Y-direction. If we didn’t scale the image, we’d only see a very thin line that is 1 user unit high.

9 Which values are valid for the number of components?

You can work with 1, 3, or 4 components.

+ 1 component— means that you define the color of each pixel using one value. We
typically call this a gray value, although it’s actually a black / white (or rather color /
no color) value if you only use 1 bit per component. If you have 8 bits per component,
you can define gray values with an intensity varying between 0 (black) and 255
(white).

+ 3 components— means that you define RGB colors using three values: Red, Green,
and Blue.

+ 4 components— means that you define CMYK colors using four values: Cyan,
Magenta, Yellow, and blacK.

Usually, we don’t have to worry about all of this, we can just pass a reference to an image
or abyte[] containing an existing image, and we let iText do all the low-level work.

Let’s take this first batch of image files and see what happens what we add them to a Document.

~N O O B W N -

Chapter 3: Using ILeafElement implementations 83

public static
public static
public static
public static
public static
public static
public static

final
final
final
final
final
final
final

String
String
String
String
String
String
String

TEST1
TEST2
TEST3
TEST4
TESTS
TEST6
TEST7

"src/main/resources/img/test/map. jp2";
"src/main/resources/img/test/butterfly.bmp”;
"src/main/resources/img/test/hitchcock.png”;
"src/main/resources/img/test/info.png";
"src/main/resources/img/test/hitchcock.gif";
"src/main/resources/img/test/amb. jb2";
"src/main/resources/img/test/marbles.tif";

We start with the . jp2 file which is an image in JPEG2000 format.

JPEG / JPEG2000

The code to add a JPEG2000 image doesn’t look any different than the code to add a JPEG image.

Image imgl =

document .add(imgl);

The result is shown in figure 3.19.

new Image(ImageDataFactory.create(TEST1));

'@ image_types.pdf - Adobe Acrobat Pro
File Edit View Window Help

- O X

*®

Open |ﬁL},Crr.--z;|tr.--v | B @ (% @ | B © B =

Customize ~ | @

'|' | = B | Tools Fill & Sign Comment

® @ [2]r6| & [@]] =

Figure 3.19: JPEG2000

JPEG and JPEG200 are supported natively in PDF, this isn’t the case for PNG.

© 00 39 O O b W N =

Chapter 3: Using ILeafElement implementations 84

BMP / PNG / GIF

GIF is supported in PDF (it’s called LZW), but whenever iText encounters a BMP file, a PNG file, or
a GIF file, that file gets converted into a raw image that consists of a bytes that define pixels. These
pixels are then compressed and stored in the PDF.

Figure 20 shows one BMP (the butterfly), two PNG files (the first Hitchcock image and the
information sign) and one GIF file that is added twice (a second Hitchcock image).

X image_types.pdf - Adobe Acrobat Pro - O *
File Edit View Window Help *
Open | fj Create ~ | EI @ C% @ | & ® b = Customize ~ | @
® @ [3]76] N [T = @ []-]| 5 B | & Tools | Fill & Sign Comment

L]

Figure 3.20: BMP, PNG, GIF

The code for the page to the left looks like this:

// BMP

Image img2 = new Image(ImageDataFactory.create(TEST2));
img2.setMarginBottom(1Q);

document .add(img2) ;

// PNG

Image img3 = new Image(ImageDataFactory.create(TEST3));
img3.setMarginBottom(19);

document .add(img3);

// Transparent PNG

10
11
12

Chapter 3: Using ILeafElement implementations 85

Image img4 = new Image(ImageDataFactory.create(TEST4));
img4.setBorderlLeft(new SolidBorder(6));
document .add(img4) ;

As you can see, we're using the setMarginBottom() method for img2 and img3 to introduce 10 user
units of white space between the images. There is something special with img4; info.png is partly
transparent. We introduce a left border with a thickness of 6 user units. We see that border, because
the image is transparent. If the image were opaque, that border would have been invisible because
it would have been covered by the image.

’ Transparent images aren’t supported in PDF, at least not in the way you’d expect. When
J you add an image with transparent parts to a PDF, iText will add two images:

+ Anopaque image: for instance, an image where the transparent part consists of black
pixels,

« An image mask: this is an image with 1 component that defines the transparency.

A PDF viewer will use both images to compose the transparent image.

If the image mask has 1 bpc, we talk about a hard mask. The pixel of the opaque image
underneath the mask is either visible or invisible. If the image mask has more than 1 bpc,
we talk about a soft mask. The pixel underneath the mask can be partly transparent.

The same is true for background colors. We define a gray background for the first Hitchcock image
in the page on the right:

Image img5 = new Image(ImageDataFactory.create(TEST5));
img5.setBackgroundColor(Color.LIGHT_GRAY);
document .add(img5) ;

We only see this background, because hitchcock.gif is a GIF file with transparency. The second
Hitchcock image is added in a completely different way.

AWT images

If you're working in a Java environment, you may have to work with the AWT image class
java.awt.Image; iText also support these images.

O O B W N~

Chapter 3: Using ILeafElement implementations 86

java.awt.Image awtlmage =
Toolkit.getDefaultToolkit().createImage(TESTS);
Image awt =
new Image(ImageDataFactory.create(awtImage, java.awt.Color.yellow));
awt.setMarginTop(10);
document .add(awt) ;

We read the hitchcock.gif image into a java.awt.Image object in line 1-2. We get an ImageData
object from the ImageDataFactory in line 4. The first parameter is the AWT image, the second
parameter defines the color that needs to be used for the transparent part (if there is any). You can
also add a Boolean as third parameter. If that parameter is true, the image will be converted to a
black and white image.

JBIG2 / TIFF

Figure 3.21 shows a JBIG2 image and a TIFF image.
X image_types.pdf - Adobe Acrobat Pro - O *
File Edit View Window Help *
Open | fj Create ~ | EI @ C%I @ | B ® b = Customize ~ | @
O) @ / 6| LY @l | (=) (o) | = B | Tools Fill & Sign Comment

i

Figure 3.21: JBIG2, TIFF

The code is pretty straightforward:

O O B W N~

B W N -

Chapter 3: Using ILeafElement implementations 87

// JBIGZ2

Image img6 = new Image(ImageDataFactory.create(TEST6));
document .add(img6) ;

// TIFF

Image img7 = new Image(ImageDataFactory.create(TEST7));
document .add(imgT7);

It isn’t always that easy to convert the full JBIG2 or TIFF image to PDF though. A JBIG2 image and
a TIFF image can contain different pages. In that case, we need to loop over the pages and extract
every page as a separate image. The same is true for animated GIF images that consist of different
frames.

Animated GIFs / Paged images

In the PagedImages® example, we define three new constants that refer to three different images.

public static final String TEST1 =
"src/main/resources/img/test/animated_fox_dog.gif";

public static final String TEST2 = "src/main/resources/img/test/amb. jb2";

public static final String TEST3 = "src/main/resources/img/test/marbles.tif";

Figure 3.22 shows the different frames of an animated GIF that shows an animation of a fox jumping
over a dog.

>*http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-3#1937-c03e19_pagedimages.java

http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-3#1937-c03e19_pagedimages.java
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-3#1937-c03e19_pagedimages.java

O O b W N =~

Chapter 3: Using ILeafElement implementations 88

X paged_images.pdf - Adobe Acrobat Pro - O *
File Edit View Window Help *
Open | fﬁ} Create ~ | EI @ (% @ | & ® b = Customize ~ | @

® m / 4| L3 @H (=) @ | =5 8 | Tools Fill & Sign Comment

Figure 3.22: frames from an animated GIF

Animated GIFs aren’t supported in PDF, so you can’t add the animation as-is to the document. We
can only add every frame to the document as a separate image. That’s what we do in the next code
snippet.

URL urll = UrlUtil.toURL(TEST1);
List<ImageData> list = ImageDataFactory.createGifFrames(urll);
for (ImageData data : list) {

img = new Image(data);

document .add(img);

We create an URL object that uses the path to the file as input. We then create a List of ImageData
objects containing the ImageData of every frame in the animated GIF. Finally, we add each frame
as a separate Image to the Document.

The code to read the different pages from a JBIG2 and a TIFF file is more complex.

O N O O & W N~

NN N P |l |l |l s
N ~, © O 0 1 0O O b 0O N~ O O

2

Chapter 3: Using ILeafElement implementations 89

// JBIGZ2
URL url2 = UrlUtil.toURL(TEST2);
IRandomAccessSource ras2 =
new RandomAccessSourceFactory().createSource(url2);
RandomAccessFileOrArray raf2 = new RandomAccessFileOrArray(ras2);
int pages2 = Jbig2ImageData.getNumberOfPages(raf2);
for (int i = 1; i <= pages2; i++) {
img = new Image(ImageDataFactory.createdbig2(url2, i));
document .add(img) ;
}
// TIFF
URL url3 = UrlUtil.toURL(TEST3);
IRandomAccessSource ras3 =
new RandomAccessSourceFactory().createSource(url3);
RandomAccessFileOrArray raf3 = new RandomAccessFileOrArray(ras3);
int pages3 = TifflmageData.getNumberOfPages(raf3);

for (int i = 1; i <= pages3; i++) {
img = new Image(
ImageDataFactory.createTiff(url3, true, i, true));
document .add(img);

}

document.close();

We first need to know the number of pages in the JBIG2 or TIFF file. This requires us to create
a RandomAccessFileOrArray object. With this object, we can ask the Jbig2ImageData or the
TiffImageData class for the number of pages in the JBIG2 or TIFF file. We can then loop over
the number of pages in that file, and we use the createJbig2() or createTiff() method to get the
ImageData object needed to create an Image.

Up until now, all the Image objects that we have created, resulted in an image XObject stored in the
PDF document. In the next example, we’ll create a different type of XObject.

WMF / PDF

All the image types we’ve worked with so far were raster images. Raster images consist of pixels of a
certain color put next to each other in a grid. In the XObjectTypes®® example, we have the following
source files:

public static final String WMF = "src/main/resources/img/test/butterfly.wmf";
public static final String SRC = "src/main/resources/pdfs/jekyll_hyde.pdf";

*http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-3#1938-c03e20_xobjecttypes.java

http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-3#1938-c03e20_xobjecttypes.java
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-3#1938-c03e20_xobjecttypes.java

Chapter 3: Using ILeafElement implementations 90

WMEF is a vector image format. Vector images don’t have pixels. They are made up of basic geometric
shapes such as lines and curves. These lines and curves are expressed as a mathematical equation,
which means that you can easily scale them without losing any quality.

’ The concept of resolution doesn’t exist in the context of vector images. The resolution only

J comes into play when you render the image to a device. The resolution of the device -a
printer, a screen— will determine the resolution you perceive when looking at the vector
image.

A PDF can contain raster images, and each of these raster images will have its own resolution, but
the PDF itself doesn’t have a resolution. The content of the PDF is also made up of geometric shapes
defined using PDF syntax.

In figure 3.23, you see a WMF file representing a butterfly and a page from an existing PDF file that
were added to a Document using the Image object.

B W N -

Chapter 3: Using ILeafElement implementations 91

T xobject_types.pdf - Adobe Acrobat Pro - O X
File Edit View Window Help *
E'}Open | @ Create ~ | D @ C% @ | & ® b = Customize ~ | @

/1 | 13 | (=) () | | Tools Fill & Sign Comment

THE STRANGE CASE OF DR. JEKYLL AND MR. HYDE
try Robert Louis Stveascn

STORY OF THE DOOR

ry brothar go 1o the dendl in hiz

reputsbls acquaintince and the last good influanc i .
thay cama sbout his chasibars, be sever marked 2 thade of changs in his dimesnoes.

s doubt the Seat was sasy to Mr. Urtarsea: for he was undsemonsative at the best, 3nd sven ks Friendihip
veamad to be Soundad in a similas cathelicity of good-maturs. It is the mask of a modest man to accept his Sisadly

Figure 3.23: WMF, PDF

If you look inside this PDF file, you won’t find any image XObject; instead you’ll discover two
form XObjects. A form XObject uses the same mechanism as an image XObject, except that a form
XObject doesn’t consist of pixels; it’s a snippet of PDF syntax that is external to the page content.

If we want to add a WMF file to a Document using the Image class, we need to create a
PdfFormXObject first. The WmfImageData object will help us create the ImageData that is needed
to create this form XObject. We can use that xObject1 to create an Image instance.

PdfFormXObject xObjectl =

new PdfFormXObject(new WmfImageData(WMF), pdf);
Image imgl = new Image(xObjectl);
document .add(imgl);

We need to do something similar to import a page from an existing PDF file if we want to import
that page as if it were an image.

N O O & W N =

Chapter 3: Using ILeafElement implementations 92

PdfReader reader = new PdfReader(SRC);

PdfDocument existing = new PdfDocument(reader);
PdfPage page = existing.getPage(1);

PdfFormXObject xObject2 = page.copyAsFormXObject(pdf);
Image img2 = new Image(xObject2);

img2.scaleToFit(400, 400);

document.add(img2);

We start by creating a PdfReader object (line 1) and a PdfDocument based on that reader (line 2). We
obtain a PdfPage from that existing document (line 3), and we copy that page as a PdfXFormOb ject.
We can use that xOb ject?2 to create an Image instance.

O The content of the existing page will be added as if it were a vector image. All interactive
features that may exist in the original page, such as links, form fields, and other annotations,
will be lost.

This concludes the overview of the objects that implement the ILeafElement interface.

Summary

In this chapter, we've covered the building blocks that implement the ILeafElement interface. These
elements are atomic building blocks; they aren’t composed of other elements.

« Tab— is an element that allows you to put some space between two other building blocks,
either using white space, or by introducing a leader. You can also use the Tab element to align
an element.

« Text- is an element that contains a snippet of text using a single font, single font size, single
font color. It’s the atomic text building block.

e Link— is a Text element for which we can define a PdfAction, for instance: an action that
opens a web site when we click on the text. We’ll discuss more examples of links and actions
in chapter 6.

« Image— is an element that can be used to create an image XObject so that you can use
raster images in your PDF. For reasons of convenience, we also allow developers to wrap
a PdfFormXOb ject inside an Image object so that they can use form XObjects using the same
functionality that is available for image XObjects.

We haven’t finished talking about these objects. We’ll continue using them in the chapters that
follow, starting with the next chapter that will discuss the Div, LineSeparator, Paragraph, List,
and ListItem object.

Chapter 4: Adding AbstractElement
objects (part 1)

In previous chapters, we’ve already discussed five classes that implement the AbstractElement class.
We've discussed the AreaBreak class in chapter 2, and we’ve discussed the four classes implementing
the ILeafElement —Tab, Link, Text, and Image— in chapter 3. In this chapter, we’ll start with a first
series of AbstractElement implementations. We’ll take a look at the Div class to group elements
and at the LineSeparator to draw lines between elements. We’ve already used the Paragraph class
many times in previous chapters, but we’ll revisit it in this chapter. Finally, we’ll introduce the List
and the ListItem class. We’ll save the Table and Cell class for the next chapter.

Grouping elements with the Div class

The Div class is a BlockElement implementation that can be used to group different elements. In
Figure 4.1, we see an overview of movies based on the Jekyll and Hyde story. Each entry consists of
at most three elements:

« aParagraph showing the title of the movie,
« aParagraph showing the director, the country, and a year,
+ an Image showing the movie poster (if any).

We combined these three elements in a Div and we defined a left border, left padding and bottom
margin for that Div.

(AN

, O © 0 9 O O b W N+~

Chapter 4: Adding AbstractElement objects (part 1)

94

@ jekyll_hyde_overviewV1.pdf - Adobe Acrobat Pro
File Edit View Window Help

[m} >

*

Customize - | lz‘

f13|{“_‘; |

Eoen |[Rome- | @O RFEH| GO RBBB D
[er]-]| B B

Tools |

Fill & Sign

Comment

Dr. Jekyll and Mr. Hyde
Directed by Otis Tumer (USA, 1808)

The Duality of Man
Directed by (UK, 1810)
Den skebnesvangre opfindelze

Directed by August Blom (USA, 1010)

Dr. Jekyll and Mr. Hyde
Dwected by Lucius Henderson (USA. 1812)

Dr. Jekyll and Mr. Hyde
Directed by Herbert Brenon (USA, 1913}

Dr. Jekyll and Mr. Hyde
Directed by Frank E. Woeds (USA. 1813}

A Modem Jekyll and Hyde
Directed by {USA, 1813)

Horrible Hyde
Directed by Howell Hansel (USA, 1815}

Dr. Jekyll and Mr. Hyde
Directed by John 5. Roberson (Denmark, 1220)

Dr. Jekyll and Mr. Hyde
Directed by J Charles Haydon (USA_ 1820)

Der Januskopf
Directed by FW.Mumau (Germany, 1820)

Dr. Jekyll and Mr. Hyde
Directed by Rouben Mamoulian (USA, 1831}

Dr. Jekyll and Mr. Hyde

Directed by Willam Vance { , 1832)

Figure 4.1: Grouping elements in a Div

The DivExample1®' example shows how this is done:

public void createPdf(String dest) throws IOException {
PdfDocument pdf = new PdfDocument(new PdfWriter(dest));

Document document = new Document(pdf);

List<List<String>> resultSet = CsvTo2DList.convert(SRC, "|");

resultSet.remove(0);
for (List<String> record
Div div = new Div()

resultSet) {

.setBorderlLeft(new SolidBorder(2))

.setPaddinglLeft(3)
.setMarginBottom(10);
String url = String. format(

“'http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter- 4-examples-abstractelement-part- 1#1962-c04e01_

divexamplel.java

http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-4-examples-abstractelement-part-1#1962-c04e01_divexample1.java
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-4-examples-abstractelement-part-1#1962-c04e01_divexample1.java
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-4-examples-abstractelement-part-1#1962-c04e01_divexample1.java

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

Chapter 4: Adding AbstractElement objects (part 1) 95

"http://www.imdb.com/title/tt%s", record.get(0));
Link movie = new Link(record.get(2), PdfAction.createURI(url));
div.add(new Paragraph(movie.setFontSize(14)))

.add(new Paragraph(String. format(

"Directed by %s (%s, %s)",
record.get(3), record.get(4), record.get(1))));
File file = new File(String. format(

"src/main/resources/img/%s. jpg", record.get(0)));
if (file.exists()) {

Image img = new Image(

ImageDataFactory.create(file.getPath()));

img.scaleToFit (10000, 120);

div.add(img);

}

document .add(div);

}

document.close();

As usual, we create a PdfDocument and a Document instance (line 2-3). We reuse the CSV file that was
introduced in the previous chapter, and we loop over all the movies listed in that CSV file, excluding
the header row (line 4-6). We create a new Div object (line 7) and we define the left border as a solid
border with a thickness of 2 user units (line 8), we set the left padding to 3 user units (line 9), and
we introduce a bottom margin of 10 user units (line 10). We add the title Paragraph to this Div (line
14), as well as a Paragraph with additional info (line 15 - 17). If we find a movie poster, we add it as
an Image (line 24). We add each Div to the document (line 26) and we close the document (line 28).

If we look at the bottom of the first page and at the top of the second page in Figure 4.1, we see
that the Div containing the information about the movie “Dr. Jekyll and Mr. Hyde” directed by John
S. Roberson, is distributed over two pages. The movie poster didn’t fit on the first page, so it was
forwarded to the second page. Maybe this isn’t the behavior we desire. Maybe we want to keep the
elements added to the same Div together as shown in figure 4.2.

O b W N =

Chapter 4: Adding AbstractElement objects (part 1)

96

ﬁ jekyll_hyde_overviewV2.pdf - Adobe Acrobat Pro
File Edit View Window Help

- [m} =

E3

| Beate- | B @ O DPHE| @020 D

Customize ~ | lz‘

D[WG| @ @ el B

]

Tools Fill & Sign Comment

Dr. Jekyll and Mr_ Hyde
Directed by Otis Tumer (USA, 1008)

The Duality of Man
Directed by (UK, 1810)

Den skebnesvangre opfindelze

Directed by August Blom (USA, 1010)

Dr. Jekyll and Mr. Hyde
Directed by Lucius Henderson (USA. 1912)

_![A

Dr. Jekyll and Mr. Hyde
Directed by Herbert Brenon (USA, 1913}

Dr. Jekyll and Mr. Hyde
Directed by Frank E. Woeds (USA. 1813}

A Modem Jekyll and Hyde
Directed by ({USA, 1813)

Horrible Hyde

Directed by Howsll Hanssl (US4, 1815}

Dr. Jekyll and Mr. Hyde

Dr. Jekyll and Mr. Hyde
Directed by J Charles Haydon (USA. 1020)

Der Januskopf
Directed by FW.Mumau (Germany, 1820)

Dr. Jekyll and Mr. Hyde
Directed by Rouben Mamoulian {LISA, 1231)

Figure 4.2: Keeping a Div on one page

We use only one extra method to achieve this; see the DivExample2°* example.

Div div = new Div()
.setKeepTogether (true)

.setBorderlLeft(new SolidBorder(2))

.setPaddinglLeft(3)
.setMarginBottom(10);

By adding setKeepTogether (true), we tell iText to try to keep the content of a Div on the same
page. If the content of that Div fits on the next page, all the elements in the Div will be forwarded
to the next page. This is the case in figure 4.2 where the title and the info about the 1920 movie “Dr.
Jekyll and Mr. Hyde” directed by John S. Roberson is no longer added on the first page. Instead it’s

forwarded to the next page.

*http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-4-examples-abstractelement-part- 141963-c04e02_

divexample2.java

http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-4-examples-abstractelement-part-1#1963-c04e02_divexample2.java
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-4-examples-abstractelement-part-1#1963-c04e02_divexample2.java
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-4-examples-abstractelement-part-1#1963-c04e02_divexample2.java

Chapter 4: Adding AbstractElement objects (part 1) 97

This approach won’t work if the content of a Div doesn’t fit on the next page. In that case, the
elements are distributed over the current page and subsequent pages as if the setkeepTogether ()
method wasn’t used. There’s a workaround in case you really want to keep one element on the same
page as the next element. We'll look at an example demonstrating this workaround after we’ve
discussed the LineSeparator object.

Drawing horizontal lines with the LineSeparator object

The building blocks created for iText are inspired by the tags that are available for HTML. That’s
not a secret. The Text object roughly corresponds with , Paragraph corresponds with <p>,
Div corresponds with <div>, and so on. The best way to explain what the LineSeparator is about,
is to say that it corresponds with the <hr> tag. Figure 4.3 shows a horizontal rule consisting of a red
line, 1 user unit thick, that takes 50% of the available width, for which a top margin of 5 user units
was defined.

T jekyll_hyde_overviewV3.pdf - Adobe Acrobat Pro - O X
File Edit View Window Help *
Dopen | Flaae- | @O FPH| &g B BT customize ~ | [

lr /14 | 4 | — -|- | = [Tools Fill & Sign Comment

Ll

Dr. Jekyll and Mr. Hyde Dr. Jekyll and Mr. Hyde
Directed by Otis Tumer (USA, 1808) Directed by John 5. Roberson (Denmark, 1820}

The Duality of Man
Directed by (UK, 1810)

Den skabnesvangre opfindelse

Directed by August Blom (USA, 1010)

Dr. Jekyll and Mr. Hyde
Directed by Lucius Henderson (USA, 1812)

=8

Der Januskopf
Dr. Jekyll and Mr. Hyde Directed by FW.Mumau (Gemmany, 1820)
Directed by Herbert Brenon (USA, 1813}

Dr. Jekyll and Mr. Hyde
Directed by Frank E. Woods (USA, 1913)

A Modem Jekyll and Hyde

Directed by (USA, 1813) Dr. Jekyll and Mr. Hyde

Directed by Rouben Mamoulian [USA, 1821)
Horrible Hyde r

Directed by Howell Hansel [USA, 1015}

Figure 4.3: Using a LineSeparator

O = W N =

Chapter 4: Adding AbstractElement objects (part 1) 98
The LineSeparatorExample®* example shows how it’s done.

SolidLine line = new SolidLine(1f);
line.setColor(Color.RED);

LineSeparator 1ls = new LineSeparator(line);
ls.setWidthPercent(50);

ls.setMarginTop(5);

We create a SolidLine object, passing a parameter that defines the thickness. We remember from
the previous chapter that SolidLine is one of the implementations of the ILineDrawer interface. We
set its color to red and we use this ILineDrawer to create a LineSeparator instance. In this case,
we define the width of the line using the setwidthPercent() method. We could also have used
the setwidth() method to define an absolute width expressed in user units. Finally, we set the top
margin to 5 user units.

In the LineSeparatorExample®* example, we add the 1s object to our Div element containing
information about a movie.

div.add(ls);

There isn’t much more to be said aboutL ineSeparator. Just make sure that you use the right methods
to set properties. For instance: you can’t change the color of a line at the level of the LineSeparator,
you have to set it at the level of the ILineDrawer. The same goes for the thickness of the line. Check
Appendix B* to find out which AbstractElement methods are implemented for the LineSeparator
class, and which methods are ignored.

Keeping content together

We’ve been working with the Paragraph class many times in previous examples. For instance: in
chapter 2, we've used the Paragraph class to convert a text file to PDF by creating a Paragraph object
for each line in the text file, and by adding all of these Paragraph objects to a Document instance one
way or another. The screen shots in the previous chapters showed that we can make some really
nice PDF documents, but there’s always room for improvement.

Figure 4.4 demonstrates one of the flaws that we still need to fix: we have the title of a chapter on
page 3, but the content of that chapter starts on page 4.

“http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-4-examples-abstractelement-part-1#1964-c04e03_
lineseparatorexample.java

**http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-4-examples-abstractelement-part- 141964-c04e03_
lineseparatorexample.java

http://developers.itextpdf.com/content/itext-7-building-blocks/appendix/b-blockelement

http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-4-examples-abstractelement-part-1#1964-c04e03_lineseparatorexample.java
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-4-examples-abstractelement-part-1#1964-c04e03_lineseparatorexample.java
http://developers.itextpdf.com/content/itext-7-building-blocks/appendix/b-blockelement
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-4-examples-abstractelement-part-1#1964-c04e03_lineseparatorexample.java
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-4-examples-abstractelement-part-1#1964-c04e03_lineseparatorexample.java
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-4-examples-abstractelement-part-1#1964-c04e03_lineseparatorexample.java
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-4-examples-abstractelement-part-1#1964-c04e03_lineseparatorexample.java
http://developers.itextpdf.com/content/itext-7-building-blocks/appendix/b-blockelement

© © 00 N O O b W N -~

Chapter 4: Adding AbstractElement objects (part 1)

99

File

ﬁ jekyll_hydeV1.pdf - Adobe Acrobat Pro
Edit View Window Help

- [m}

X

»

Dowen [Boate- B @ ER| 026D

2| NG |=@ @ [ex]-]| 5 3

Tools Fill & Sign

From this e was recallod by Mr. Uttarson asking rathar snddanly: "And you don't know if the drawar of the
chequa lives thare?"

"A Iikely placs, iss't it?” returned Mr. Exfield. "Bat I happen to kave aoticed his address: he Lves in some
sqquare or othar.”

"And younever aked shost the—place with the doar”" said Mr. Uttarsca.

Mo, sir: [had a dlicacy,” was the roply. "T foel very stremgly about putting quostion:: & partikes too much of
tha style of the day of judgment. You starta question, and ifs ks stasting a stone. You sit quietiy on the top of a hill;
and wway the stose goss, starting otbers: and presently same bland old bird (the Last you would have thought of) is
knocked oa the head i his own back garden and the faily have to change thair aame. No sir, I make it a rela of
ing: the mere it looks ke Qrosar Strost, the luss Tack.™

"A vary good ruls, too.” said the Lysryur.

"But 1 bave studied tha place Sor myself” contimued M. Enfiald. Tt seemns scarcaly a housa. Thars & no céber
doar, and mobody goes in ar aut of that one but, once i 2 geat whils, the gestleman of oy adventers. There are thres
windows looking oa the court o the Hrst floor; nooe below: tha windows are abways shet but thay'ra clean. And then
tharw is a chinemgy which is ganseally smeking; 5o somebody must ve thers. And yet it's Dot 5o wure; for the buildings
ars 50 packed togethar abost the court, that ifs bard o say whers ooe ands and another begins.”

The paix walked cn again for a while i sdence; and then "Enfeld.” said br. Unesson, "that's a good rule of
yours.”

"Yes, I think it is,” returned Enfiald

"But for all that.” continned the lawyse, "there's o point [wast to ask: T want o ik the zame of that man
whe walked over the child ™

“Wall.” said Mr. Enfiald, 'T cas't see what harms it would do. Tt was 2 mam of the mame of Hyda.”

“Hma,” said Mr. Unerson. “What sort of 2 man is he to e

"Ha s Dot eaey i describe. Thers is somerhing wrong with bis appearance; something displeasing, scosething
dowzrright detustable. T never saw 2 man T so disliked, and yet T scarce know wiy. He st be deformed somewhers;
b igives a strong fesling of daformity, altbough I couldn't specify the peint. He's an extmerdinary locking mas, and
et T roally can nama nothing ot of the way. Mo, sir; I can make no hand of it: T can't describe kim And if's st want
of memmary: for I daclare I cam soe him this momsat ™

Mr. Utteson again walked soma way in silence and obviously undar 2 weight of comsideraticn. "You are sare
be nsod akey?" be inquired at Iaat.

"My dear sir..” began Enfiold, sarprised ost of himalf

"Yes. T know.” said Uttarsen: "] know it st seem strangs. The fict is, i1 do 2ot ask you the nams of the
e party, & is bocause Tknow i already. Yom see, Richard, your taks has gens home. If you have besn inexact in any
point you knd battar corect it

"] think yom might have warned ma,” returaed tha ofher with a toach of salleaness. "But T kave besn pedantic-
ally axact, s you call it. The fallow had a key: 2nd what's mors, be bas it stil. T saw bim use it not a weak ago.”

Mr. Uttarsca sighad desply but said never a word: and the young man presendy resamed. "Hare i anothes les-
s0m o say nothing,” said be. T am askamed of my Jong tomgue. Lat = make a bargain never to rufi to this again *

Wit all my bear,” said the lrwryer. T shake hand: on that, Richard ™

SEARCH FOR MR. HYDE

That evening Mr. Ukterson cane bome to bis bachalor houss in scesbre spirits and sat down to dinner witbont
rulish Trwas bis custons of 2 Susdyy. whea this meal was ower. to sit closs by the fre. 2 volime of some dry divinity
o ks reading deck, until the clock of the eighbouring church rang ost tha howr of twelve, when ba would g0 scbarly
and ratafully to bed. On this might bowsvar, a5 s00n a5 the cloth was taken #way, be tock =p a candle and weat ixte
i business rocm. Thars b opesed kis safs, tock from the most private part of it a document endorsed on the aavel-
ope a5 Dr. Jekeyll's Will and sat down with a clouded brow to study it comteats. The will was balograph, for Mr. Utter-
won though he took chargs of it now that it was made, had refused 1o Jend the Jeas: assistnce in the making of ir; it
provided not anly that. in case of the decease of Hemry Jekyll, MD., D.CL., LLD. FRS., etc., all ks possssions
wars bo pass into the hands of his "Fiend and benofactor Edward Hyds.” but $hat in cass of Dr. Jakyll's "disappearancs
o mmaxglained absence for amy period axcesding thea calsndar months,” the said Edwasd Hyda should step into the
said Huary Febyll's shoss withont further dalry and free from 2oy burthen o obligation beyond the paymeat of a few
smmall sems to the mambers of the doctar’s Bousehold. This docemant bad long been the lwysr's eyssors. It offanded
him both 25 lwyss and 2 2 lovar of the sans 2ad customary sids of 1, to whem the fanciful was the immodest
And hitharto it was his ignorance of Mr. Hyde that had swelled his indignation; aow, by 2 sudden farn, it was his
koowledge. It was alady bad anough whea the name was but a mume of which he cold leam 0o mars. It was wane
whem it bogan o be clothed npon with detertbls atibutes; and ot of the thiffing, imsubrtntal mizs that bad 2 long
baffled Kis uys. thara laaped up the snddsn, definite presentment of 2 Sand.

T themght i dnass,” he said, as thio chaexions paper in the safs, "and now T begin to fear it
s disgrace.”

With that ha blew omt bis candle. pet oa 2 greatcoat. and set forth in the direction of Cavendish Squars, that
citadal of medicine, whars his friand, the gwat Dr. Lamyon, had bis house and recaived his crowding pasiants. "I any-
ome knows. it will be Lanyon,” bahad thought.

The solamn betlar knew and welcomed hiss; ba was sebjected 1 0o stage of delay, bat ushered direct Som the
doar to the dining-room where Dr. Layon sat aloos over his wine. This was a bearty, bealthy, dapper, rod-faced gen-
fleman, with 2 shock of knir prematuraly white, and a baisterous and decided mamar. At sight of Mr. Uttsrscn, b
sprang up from ks chair and walcomed hims with borh hands. The geamiality, as was the way of the man, was semewhat
theatical to the eyw; but it reposed on geanine fesling. Far these two wers old fisads, cld mates both 21 school and
callege, both thorough respectars of themmsalves and of sach other, and what does st always follow. men who ther-
oaghly amjoyed sach otbar's company

After a Ettlo rasmbling talk, the bruryes led o to the subject which 5o disaprsesbly preoccupied his mind.

T suppess, Lamyon” said be, "yos and Dot be the twe cldest Siends that Hemry Tkl Baa?

“Twish the friands wers younger.” chuckled Dr. Lanyon. "But T suppose we are. Asd what of that? 1 sea Little
of him now. ™

“TndosdT" said Utrson. 'T thomght you kad a bend of common intarest.”

“We bad " was the reply. "Bt it is mose than ten years since Esary Jekyl becamse too faacifil for me. He
began to go wrong, wreng in mind; and though of course I continua to take an inferest i bim for old sake's sake, 3
thay say. I se 224 1 kave sosa devilish litte of the man. Such unscisntific baldardash.” added the doctor, fusking md-
danly perple, "would bav sstranged Damen and Pythias.”

This litls spicit of tamper was scmswhat of 2 reliaf to Mr. Uttersan. "Thay have anly diffaced oz some peint
of sciance.” be thought; 1nd being 2 man of 5o scieatific passions (sxcept in the matter of comveyancing), be sven
added: Tt is nothing worse than that!” Ha gave kis fiend a fw seconds to recover his composars, and then
approacked the quastion e bad coms to put. "D you eves come across 3 protege of Kii—cme Hyde? ba acked.

"Hiyds" repeated Lasyon. "No. Naver beard of kim. Since mry time.”

That was the amount of information that the Livwyer carried back with him to the great, durk bed on which be

Customize - | |Z|

Comment

Figure 4.4: a widowed title

We’d like to avoid this kind of behavior. We’d like the title to be on the same page as the start of the
content of the chapter. We do a first attempt to fix this problem in the ParagraphAndDiv1°® example.

public void createPdf(String dest) throws IOException {

PdfDocument pdf = new PdfDocument(new PdfWriter(dest));
Document document = new Document(pdf);
PdfFont font = PdfFontFactory.createFont(FontConstants.TIMES_ROMAN);
PdfFont bold = PdfFontFactory.createFont(FontConstants.HELVETICA BOLD);
document . setTextAlignment(TextAlignment . JUSTIFIED)

.setHyphenation(new HyphenationConfig("en", "uk", 3, 3));
BufferedReader br = new BufferedReader(new FileReader(SRC));
String line;
Div div = new Div();

“http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter- 4-examples-abstractelement- part- 1#1965-c04e04 _
paragraphanddiv1.java

http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-4-examples-abstractelement-part-1#1965-c04e04_paragraphanddiv1.java
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-4-examples-abstractelement-part-1#1965-c04e04_paragraphanddiv1.java
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-4-examples-abstractelement-part-1#1965-c04e04_paragraphanddiv1.java

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

Chapter 4: Adding AbstractElement objects (part 1) 100

while ((line = br.readlLine()) != null) {
Paragraph title = new Paragraph(line)
.setFont(bold).setFontSize(12)
.setMarginBottom(Q);
div = new Div()
.add(title)
.setFont(font).setFontSize(11)
.setMarginBottom(18);
while ((line = br.readLine()) != null) {
div.add(
new Paragraph(line)
.setMarginBottom(0Q)
.setFirstLineIndent(36)
),
if (line.isEmpty()) {
document .add(div);
break;

}
document .add(div);

document.close();

This example is very similar to the examples we made in chapter 2. The main difference is that we no
longer add the Paragraph objects straight to the Document. Instead, we store the Paragraph objects
in a Div object, and we add the Div object to the Document at the end of each chapter.

We could add . setKeepTogether (true) between line 15 and 16, but that wouldn’t have any effect as
the full content of the Div doesn’t fit on a single page. As documented before, the setkeepTogether ()
method is ignored. We’ve had long discussions at iText on how to solve this problem. We decided
that the most elegant way to avoid widowed objects consisted of introducing a setkKeepWithNext ()
method.

A The setKeepWithNext() method was introduced in iText 7.0.1. You won’t find it in the
very first iText 7 release. We’re investigating if we could support the method for nested
objects. We're reluctant to do this because this could have a significant negative impact on

the overall performance of the library.

The ParagraphAndDiv2®” example shows how it’s used.

"http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-4-examples-abstractelement-part- 141966-c04€05_
paragraphanddiv2.java

http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-4-examples-abstractelement-part-1#1966-c04e05_paragraphanddiv2.java
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-4-examples-abstractelement-part-1#1966-c04e05_paragraphanddiv2.java
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-4-examples-abstractelement-part-1#1966-c04e05_paragraphanddiv2.java

O N O O & W N~

NN N P |l |l |l s
N ~, © O 0 1 0O O b 0O N~ O O

23
24

Chapter 4: Adding AbstractElement objects (part 1) 101

BufferedReader br = new BufferedReader(new FileReader(SRC));
String line;

Div div = new Div();

while ((line = br.readLine()) != null) {

document .add(new Paragraph(line)
.setFont(bold).setFontSize(12)

.setMarginBottom(Q)
.setKeepWithNext(true));

div = new Div()
.setFont(font).setFontSize(11)
.setMarginBottom(18);

while ((line = br.readlLine()) != null) {
div.add(

new Paragraph(line)
.setMarginBottom(@)
.setFirstLineIndent(36)
)i
if (line.isEmpty()) {
document . add(div);
break;

}

document . add(div);

We use a Paragraph added straight to the Document for the title (line 5); we create a Div to combine
the rest of the content in the chapter (line 9). We indicate that the Paragraph needs to be kept on the
same page as (the first part of) the Div by adding setKeepWithNext(true). The result is shown in
figure 4.5. The title “SEARCH FOR MR. HYDE” is now forwarded to the next page when compared
to figure 4.4.

Chapter 4: Adding AbstractElement objects (part 1) 102

2 jekyll_hydeV2.pdf - Adobe Acrobat Pro — O X
File Edit View Window Help *

@Open|@Crﬁte'|D@%@|@@@@@)@)@ Customize'||2|
@[] [N@|= []-]| B B Fill & Sign

Tools Comment

From this b was recalled by Mr. Uttsrson asking rathar snddanly: "Asd you don't know if the drawar of the
chaqua livas thare?”

"A 1kaly placs, isa't it?” returaed Mr. Exfield. "Bat 1 happen to byws noticed his address: ba Lves in some
sqgeare o othas”

"And you naver asked short tha—place with the doos”” said Mr. Uttarsea.

"Ne, sir: Thad a delicacy,” was the reply. "I fosl veey strongly about putting questions: i partakes too mach of
th styls of the duy of fudgment. You start a question, and i's ks starting a stone. ¥ou sit quistiy on the top of a hill;
and away the stone goss, starting otbers: and presently samss bland old bird (the Last you would have thought of) is
ksocked ca the head i his own back gardea md the famsily have to changs thair same. No sir, I meke it arele of
ming: the more it looks ke Graser Strest, the lass Tack.”

"A ey good ruls, too.” said the Lywryer.

"But T kave studied the place for myself” contimued Mr. Enfisld. Tt sesens scarcaly a bousa. Thars & 1o cfbar
doas, and obody goss in or out of that one but, ance i 2 great whils, the geatleman of oy adventers. Thers are thres
windows looking ca the court oa the Srst foor, noze balow: the windows are abways diet but thay'ra clean. And then
thara is2 chimaey which is gunscally smoking: 5o somebody ust Eva thers. And yet its ot so ure; for the buildings
s 50 packed teguther abowt the cowt, that ifs bard to s1y whars ooe ends and aother begins.”

The pair walksd on again for 2 whils i sileaca: and than "Enfiald.” said Mr. Utterson, "that's a good rula of
youn."

"Yos, Ithizk it is,” retwned Exfisld.

“But for all that.” contizued the lrwyer, "there's ane point I wast to aik: T want o sk the zame of that man
who walked ovar the chdd”

“Wall." said Mr. Enfiald, "T cax't se what hasms it would do. Jtvas 2 mom of the mame of Hyde.”

"Hee " said Mr Ustsrson "What sort of 3 man is he to we™

"Ha £ 0ot atsy to describe. Thars is somering wrong with bis appearance; something displeasing, scmething
dowa-right datustablo. T nover saw 2 man T oo disliked, and yee T scarce know why. o mmst be deformed somauara;
be gives a strong fesling of deformity, althongh I couldn't specify the point. Fe's an extcrdinary locking mas, and
yat I rally can nama nething oat of the way. No. sir;] can make 0o hand of it. T can't dsscribe Bim. And if's 20t wamt
efmamary; for] declare I can ee kim this momaat.”

Mr. Utiarsom 2gain walked soma way in silance and cbvioushyundar 2 weight of consideration. "You are sare
be used a key?" be inquired at Inat.

"My dear sir..” began Enfiald. verprized ont of himualf

"Yes, T know.” said Uttarson; " know it oust seemm strange. The factis, i1 do 2ot ask you the nams of the
ofher party, it is bacause T know it alraady. Yom sos, Richard, your tals has gone homs. If you have bean inexact in any
point you kad battar comect it

"T think you might have warned me.” returned the other with a towch of rallonnos:. "But I have bess pedansic-
ally axact, 2 you call it The Sllow had a key; 1od what's mors, be hasit st T saw kim use it not a weak ago.”

M. Uttarsen sighed desply but said sever a werd: and the yowmg man presandy resamed. “Hers is mothar les-
s0m fo sy notking,” said be. "l am askamed of ey) Lat s make 3 bargai o ruflar o this again”

"Wk all my beart,” said the lawyer. "] shake hands on that, Richand ™

SEARCH FOR MR. HYDE

That evening Mr. Uttursan came homa to his bachelar houss i scoshes spirits and sat down to dinnar witbont
ralish It was his custom of a Sundy, whea this meal was aver, o sit close by the fire, 2 vohume of some dry divinity
a bis reading duk, untl e clock of the neigbbouring chirch rang owt the bowr of twslve, whan be would go scbaly
and gramfully to bed. On this sight bowsver, 3 soon 2 the cloth was takea away, be tock =p 2 candle and wat into
bis business room. Thare be opeaed his safa, tock from the most private part of i a documant sodorsed an the eavel-
ope 2s Dr. Jakyll's Will and sat down with a clouded brow to study i comteats. The will was bolograph, for Mr. Uttr-
som though he took charge of it now that it was mada, had refused to lend the least audstance i the making of it; it
provided not oxly that, in case of the decease of Homry Jekyll, MD., D.CL. LLD., FRS., etc.. all bis possossions
wars bo pass into the hands of his "fiend and benefactor Edward Hyde.” but at in caw of Dr. Jekyll's "disappeasance
or eexplained shsencs for 2y pariod excesding thres calendr months,” the said Edward Hyds sheuld step into the
2aid Hsary Fekyll's thoss withent Sarthar dolay and free Soms amy burthan or chlipation bayoad the payment of 3 fouw
samall sms to the meambars of the doctar's bonshald. This docement bad long bean the lrmryec's syesars. It offanded
bim both a5 2 rwyer and 23 2 lovar of tha sans 2nd customary sides of 1, to whom the fanciful was the immodast
And hitharto it was bis ignorance of Mr. Hyds that had swlled bis indignation; now, by a suddea tarn, it was bis
keowledge. It was already bad ancugh whea the nama was but a mme of which he could leara no mors. It was wome
when itbegan to be clothed upon with detestable attributes: and oxt of the shiffing, Esshstmtial mists that had s Jang
baffled ks v, therw laxped up the suddsn, dafinite presentmant of 2 Sead.

T thomght i dness,” be said, 2 the obnoxions papsr in the safs, "2ad now I begin to fearit
s disgrace.”

With that be blew owt bis candle, put ca 2 greatcoat, and set forth in the direction of Cavendish Squars, that
citadal of maedicins, whars his fiand, the great Dr. Lanyon, had kis housa and recaived his crowding patiats. "Tf any-
2% knows, it will be Lanyon,” be had fiought.

Tha solamn belar knew and weloomed hire; ba was sshjected © 0o stage of delay, bt ushared direct Som the
oo to the dining-room whare Dr. Lazyon sat aloos over his wine. This was bearty, bealthy, dapper, red-faced gao-
tlaman, with 2 sbock of bair prematuzaly white, and a boistarons and decided mammar. At sight of Ms. Uttarica, be
speang up from kis chair and welcamed him with boch bands. The geaialicy, as was the way of the man, was scmewhat
theatrical o the eye; but it reposed ca geamine feeling. For thesa two wars old fisnds, cld mates both at school and
callegs, both therongh reapectors of themsabrss and of sach other, and what doss mot abways S:llow, men whs thor-
cughly ajoyed sach other’s company.

Afier a Ettle rambling ik, the bryss led =p to the subject which so disagreasbly preoccupied his mind

"I sugposs, Lanyen.” said be, "you and I osust b the two oldsst Eisads that Heary Rkl hasT

"Twish the fiends ware youngar.” chuckled Dr. Lamyon. "But] suppose we are. And what of tat? T sea little
ofbimzow.”

“Indoed?” s2id Utiarsan. *T thought you kad a bend of common imntarwst ™

"W bad” was the reply. "Bt it is move than ten years since Heary Tekyll becamss too fancifel for me. He
began to go wrong, wreng in mind; and though of course | continu to take intarest i him for old sake's sake, s
thay sy, I sea 22d T bave sesa dewlish litde of the man Such macientifc baldsrdaih,” added the docter, Susking sud-
danly perple, "would have estranged Damea and Pythin.”

This Litle spirit of tamper was semewiat of 2 rlief to Mr. Utersan. "Thay have oaly diffaced oz some peint
of science,” b thomght; and being a man of 2o scietific pastions (sxcopt in the mattsr of conveyancing). be even
added: Tt is nothing worse than that!” He gave his Eiend a fow seccads to recover bis composars, 2d then
approached the questioa b kad cons to pur. “Did you ever came cros: a promge of kii—ome Hyde?™ be acked.

Figure 4.5: keeping the title together with the text

The setKeepWithNext() method can be used with all other AbstractElement implementations,
except Cell. The method only works for elements added straight to the Document instance. It doesn’t
work for nested objects such as a Cell that is always added to a Table and never straight to a
Document. In the case of our example, it wouldn’t work if the title Paragraph was added to the Div
instead of to the Document.

Changing the leading of a Paragraph

The Paragraph class has some extra methods on top of the methods defined at the AbstractElement
level. We've already used the methods involving TabStops in the previous chapter. We also
introduced the setFirstLineIndent() method on the sly. Now we are going to look at a method to

change the leading.

Chapter 4: Adding AbstractElement objects (part 1) 103

0 The word leading is pronounced as ledding, and it’s derived from the word lead (the metal).

When type was set by hand for printing presses, strips of lead were placed between lines

of type to add space. The word originally referred to the thickness of these strips of lead

that were placed between the lines. The PDF standard redefines the leading as “the vertical
distanced between the baselines of adjacent lines of text” (ISO-32000-1, section 9.3.5).

There are two ways to change the leading of a Paragraph:

 setFixedLeading()— changes the leading to an absolute value. For instance: if you define a
fixed leading of 18, the distance between the baseline of two lines of text will be 18 user units.

+ setMultipliedLeading—changes the leading to a value relative to the font size. For instance,
if you define a multiplied leading of 1.5f and the font is 12 pt, then the leading will be 18 user
units (which is 1.5 times 12).

These methods are mutually exclusive. If you use both methods on the same Paragraph, the last
method that was invoked will prevail. Figure 4.6 shows yet another conversion of the story to PDF.
The total number of pages is lower because we changed the distance between the lines by adding
.setMultipliedLeading(1.2f).

O O B W N~

Chapter 4: Adding AbstractElement objects (part 1)

104

@ jekyll_hydeV3.pdf - Adobe Acrobat Pro
File Edit View Window Help

- [m]

X

x

Open |@Create' |B@@@|@

LB RIS vt

IE|

U |

Tools

Fill & Sign

Customize ~ | lz‘

Comment

THE STRANGE CASE OF DR. JEKYLL AND MR. HYDE
oy Robarr Lowis Stavsmson.

STORY OF THE DOOR

Ms. Uttarsca the brwysr was 2 men of a mugged countsmance that was oewer Lighted by a somile; cold, scasty
and sesharrassed in discourss; backward i samtimsat: Jeas, long, dusty, dreary 20d yot somsbow lovable. At Eieadly
mostings, and whan the wing was t5 bis tast, semuthing eminanthy human bascenad from kis eys: something indsed
which never found its way into bis talk. but which spoke not caly in these sdiat symbols of the after-dimer face, but
mare often and lowdly in the acts of his 1ife. Ho was austacs with hinsself, drunk gin when be was aos, to mortify a
taste for vimtiges; and thowgh b sxjoyed the theatre, had not crossed the doars of ome for twenty yuars. But be bad an
approved tolsrasce for othars: iometimes wondaring, almost with eavy, 2t the high prossare of spixits involved in their
misdesds; and i any extremnity inclined to balp rather than to reprove. *T incline to Cain's beresy.” b used to say
ity T lat oy brother 9o o the devil in bis own way.” o this character, it was frequantly his fortune to be tha laat
reputable acqmaintance 2od the last good infieace & e kves of downgoing meo. And to such as these, 5o loag 2
they come shont his chambers shads of ch: his dsmsances.

o doubt the fuat was easy to Mr. Uttericn: for be was sademonstrative at the best, 20d even hi Siandskip
samed to be founded in 2 similar catholicity of good-nature. It s the mark of 2 medest man to acoept bis Eisadly
circla resdy-made fom the hands of oppertmity; and $iat was e lowryr's way. His iends wese those of his own
blood or those whom b kad knows the longest; his sffoctions like iy, wers the growth of time, ey imglisd no apt-
a3 in the object. Heacs, 2o doubt the band that mited him to Mr. Richard Enfield. bis distant kinsman, the well-
kzow man abost town. ft was 2 amt to crack for mmany, what thess twe could see in sach otber, o what subject thay
could find in common. It was reperted by those who encountured them in their Sunduy walks, that they said notking,
loaked singularty dull and would hail with obvicss selisf the appearance of 3 Sisnd. For all that, the two men pat the
vatast store by these excunsions, couxted them the chisf jowsl of sach weak. and not asly set aside accasions of
pleasure, but oven resisted the calls of business, Sat ey might eajoy tham EmintarTepted.

Tt chinced a ans of these rashiles that their way led thers down a by-strwst in a by quartes of Loadon. The
sareat was small and what i called quist, but it érove a furiving trad on the weskdays. Tha inhabitints ware all doing
sl it semed and ll semlosly b 0 do et il and aying out te sples of e s i coquay: 30
that the shop Eroats stood along with 2 air of iswitation, liks ruws of il o
SmdayMn\ﬂﬂmmnnwmmh«m‘hmdpﬂiﬂnhimmmmmt
o its Singy saigthonrhood, like 3 fra in a forsst and with : Setkhy printed shustars, well-polithed brassez, and gan-
anal cleanliness and gaiety of note. instantly crught and pleased the eys of the pasianger.

Town dears from oms comer, on the left Band going sat tha lin was broken by the emiry of a conrt and fust at
that pointa cartain sinistar block of bilding thrust forward its gabla on e street. It was two sioreys high: showsd 1o
window. notking bt 2 docs oa the lewer storsy and a blind forabead of discaloured wall on the upper: and bore in
wvary featuzs, the marks of prolonged 2ad sordid negligence. The deor, which was equipped with naitbar bell nor
kzocksr, was blistared and distained. Tramps slouched into the recess and strack matches on the paals; children kept
skop wpon the steps: tha schoalboy bad tried kis knifa oa the mosldings; and for close a2 gunaration. nc one bad
appeared to drévs aay e rndam visitars of to repair their Trvages.

M. Eaxfisld and the Lawysr wars on the other side of the by-strest; but when they came abreast of the satry,
ths formar lifted p s cane and painted.

*Tid you aver remark that door?” be asked: and whan bis compamion kad replisd in the affirmative. Tt s con-
nectod in oy mmind.” 2dded b, "with a very odd story.”

“Tndeed?" 523 Mr. Utterson, with a slight change of voice, "and whatwas that?”

“WalL, it was this way.” retermed Mr. Enfiald: T was coming home fom some place at the sad of the world,
about thres o'clock of a black winter moring, and ey way lay through 2 pant of town whare there was Lisrally oth-
gt b sesa bt g, St afar stroet a3 all e folka alasp--smeat aftor siost, 2 lighted 5 a3 i fr a procas
sion and all s senpty & & chrasch~4ill at st got into whaa 2 man lstens and lissos 2ad begizs to

lomg for the sight of apobiceman. All atance. Tsaw two figures: one a little man who was stumping aloag sastward at
a good walk, and the other a gixl of maybe eight or tan who Was Taming 2 hard 2 she was able down 2 cross stmeet.
Wall, 3, the two ran into o2s anothar noagh at the cornes; 20d then cam the borribla part of the thing: for
2 man trampled calmly over the child's body and eft bac screaming on the gromnd. It sounds nothing to beas, bt it
was Biallish o sse. It waaa't Hke 2 man: it was ke scme damsed Joggsrnant [gave a Sew halloa, tock to my heels,
collured my gendlaman, and brought 2im back 12 whers thare was aleady quie s gnupm‘mnimmmsml.d Ha
was parfactly cocl b loak, 5o ugly that it brewg ke run-
ning. The pecple wha bad rumed out were the gils nmﬁmﬂyaﬂdwmamﬂnhm for whoam she bad bean
vamt put in biz appearsnce. Wl the child was not sk the wors, mere Sightemed sccarding % the Sywhones; and
thara you might hovs supposed wonld bs as end to it But thars was ons curions circemstance [had takan loathing
o 1y gantleman at it sight So bad e childs fmily, which was only aataral. But the doctar's case was what struck
6. Howas the mmal o=t and dry apothecary, of no paticular age and colowr, with a strong Edinbusgh accent and
about 2 emotiozal as a bagpipe. W, sir, be was ke the rust of us; every time be looked at oy prisens, [sawr that
Samwboses tumm sick and white with desire o kill him T koo what was i bis mind, Jast 2s b knew what vwas in aine;
and killing being ot of the question, we di the naxt best. We told the man we could and woeld maks sach a scandal
out of this ¥ should make his names stink from ons snd of London 1o the other. If he had any frisnds or any credit, we
undtook that he should lose team. And all the tine, 2 we wees pitching it in ed bot, we were kesping the woman
off hizn 2 best we could for they were 2 wild as barpies. I never saw 2 cizcle of such hatefal faces: and there was e
mxam in the middls, with s kind of black msering coslness—-frigktensd oo, T could ses that—but carrying it of, sir,
roally ko Satan If yom choosa to maka capital out of this accidset. said be, T am asmmally helplsss. No gentloman
et wishas to avoid a scase,” a2y be. Nama your Sgure’ Wll, we scrvwed kim up o a bmdred pomnds for the childs
family, be woald bave chearty lked to stick out but thars was something about tha lot of us that meumt mischicf, and
at Iast bo struck. The nat thing was to get tha moosy; 2nd whars do you think be carried us but fo that place with e
doar?-whipped out 2 key, went in, and pressatly came back with the matter of %2 pount: i gold and a cheque for
2 balancs on Contts's, drawn payable to bearer and signed with 2 name that I can't manticn, thomgh if's me of the
podnts of mey story, bur it was a nams ar Jeast very woll knows and ofien prizted. The Sgurs was soff bat the sigmanms
was good for moze than that if it was anly gemuine. I took the liberty of poisting out fo my gwnteman that the whels
buzinos: looked apocryphal, and that 2 man doss net, in rual lifs, walk into » callar docr at fouw o the moming and
o et with anothar pan's chaqus for close npes » bundred pounds. Bt ha was quite sasy and mearing “Setyour
mind at st says ba. ‘T will stay with you il the banks opea 2ad cash the chegee mysalf! So ws all sat off. the doc-
tor, 2nd th child's Exther, and owr Ssed and mysalf, and passed the rest of the night in my chambers; md sext day,
when we bad breakfaited. went in 2 body to tha bank. I gave in the cheqee myssls, and said I knd every ressan to
Ybalivws it was a forgary. Mot a bit ofit. The cheqes was gumize.”

“Tatut” said Mr. Uttarson.

"T ss% you foal 26 T do.” said Mr. Exfiald. "Ves. ifs a bad story. For my man was a fallow that aobody coxld
havs to do with, 2 really damnable man: 2nd tha person that drvw the cheqes i the wary pink of the propristiss, celsb-
rated too, and (what makes it worss) ome of your Sillows who do what Sy call good. Black mail T supposs; an bamsst
mam paying through the nose for some of f1e capars of his youth. Black Mail House i what I call the place with the
doc, in consequence. Though even that, you know, is fir Eom explaining all.” he 288d. 1nd with the words &1l ixto
3 vein of musing.

From this be was recallod by Mr. Utterson asking rathar suddenly: "Asd you don't know if the drawar of the
cheque lives there?™

"A Ikl place, isalt if?" returned Mr. Exfisld. "Bat I hnppen to byvs aoticed his address: ha bves in some
sqgere ot ofhac.”

"And you never asked showt the—place with the dooe?” said Mr. Uttarscn.

"No sir: Thad a dalicacy,” was the reply. "I fosl vecy strongly about puting questions; & partakes too mach of
e style of the day of judgmeent Yo start a question, and if's 1hke stasting 2 stone. You 52 quistly on the top ofa kil
and away the stome goss, starting otbars: and presantly soms bland old bird (e bast you would have thought of) is
knocked ca the head in his own back garden and the famsily have to change their azme. No sir, I maks &t a rale of
muing: the more it looks like Quaer Soest, the less Tadk.”

Figure 4.6: changing indentation and leading

The code of the ParagraphAndDiv3°® example is identical to what we had in the previous example,
except for the following snippet.

div.add(

new Paragraph(line)

);

.setMarginBottom(Q)
.setFirstLineIndent(36)
.setMultipliedLeading(1.2f)

When we add an object to a Document either directly or indirectly (e.g. through a Div), iText uses
the appropriate IRenderer to render this object to PDF. In the “Before we start” section of this
book, figure 0.4 shows an overview of the different renderers. Normal use of iText hardly ever

http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-4-examples-abstractelement-part- 11967- c04€05_
paragraphanddiv3.java

http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-4-examples-abstractelement-part-1#1967-c04e05_paragraphanddiv3.java
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-4-examples-abstractelement-part-1#1967-c04e05_paragraphanddiv3.java
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-4-examples-abstractelement-part-1#1967-c04e05_paragraphanddiv3.java

W N -

Chapter 4: Adding AbstractElement objects (part 1) 105

requires creating a custom renderer, but we’ll take a look at one example in which we create a
MyParagraphRenderer extending the default ParagraphRenderer.

Creating a custom renderer

When we look at figure 4.7, we see two Paragraphs with a different background. For the first
Paragraph, we used the .setBackgroundColor() method. This method draws a rectangle based
on the position of the Paragraph. For the second Paragraph, we wanted a rectangle with rounded
corners. As iText 7 doesn’t have a method to achieve this, we wrote a custom ParagraphRenderer
class.

T custom_paragraph.pdf - Adobe Acrobat Pro - [m] X
File Edit View Window Help ®
o B |H o O PH 80720 0T customize ~ | [

»'1

m | =) (e | Tools Fill & Sign Comment

-

The Strange Case of Dr. Jekyll and Mr. Hyde

The Strange Case of Dr. Jekyll and Mr. Hyde

Figure 4.7: default and custom background for a Paragraph

Let’s take a look at the CustomParagraph® example to see the difference between the two
approaches. The first Paragraph was added like this:

Paragraph p1l = new Paragraph(

"The Strange Case of Dr. Jekyll and Mr. Hyde");
pl.setBackgroundColor(Color.ORANGE);
document .add(p1);

The second Paragraph was added like this:

*http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-4-examples-abstractelement-part- 141968-c04€06_
customparagraph.java

http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-4-examples-abstractelement-part-1#1968-c04e06_customparagraph.java
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-4-examples-abstractelement-part-1#1968-c04e06_customparagraph.java
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-4-examples-abstractelement-part-1#1968-c04e06_customparagraph.java

O b W N =~

0 N O O B W N~

W W W W WNDNDDNDDNDNDNDDNDNDNDNDNDASRARA B~ 2 2 2 2 2
B O NP2 OO O 00 N0 0k WODNAOO O N0 Ok N~ ©

Chapter 4: Adding AbstractElement objects (part 1) 106

Paragraph p2 = new Paragraph(

"The Strange Case of Dr. Jekyll and Mr. Hyde");
p2.setBackgroundColor (Color.ORANGE) ;
p2.setNextRenderer (new MyParagraphRenderer(p2));
document .add(p2);

This second approach requires an extra class:

class MyParagraphRenderer extends ParagraphRenderer {
public MyParagraphRenderer (Paragraph modelElement) {
super(modelElement);
}
@0verride
public void drawBackground(DrawContext drawContext) {
Background background =
this. <Background>getProperty(Property.BACKGROUND) ;
if (background != null) {
Rectangle bBox = getOccupiedAreaBBox();
boolean isTagged =
drawContext.isTaggingEnabled()
&& getModelElement() instanceof IAccessibleElement;
if (isTagged) ({
drawContext.getCanvas().openTag(new CanvasArtifact());
}
Rectangle bgArea = applyMargins(bBox, false);
if (bgArea.getWidth() <= 0@ || bgArea.getHeight() <= 0) {
return;
}
drawContext.getCanvas().saveState()
.setFillColor(background.getColor())
.roundRectangle(
(double)bgArea.getX() - background.getExtraleft(),
(double)bgArea.getY() - background.getExtraBottom(),
(double)bgArea.getWidth()
+ background.getExtraleft() + background.getExtraRight(),
(double)bgArea.getHeight()
+ background.getExtraTop() + background.getExtraBottom(),
5)
.fill().restoreState();
if (isTagged) ({
drawContext.getCanvas().closeTag();

35
36
37

Chapter 4: Adding AbstractElement objects (part 1) 107

We extend the existing ParagraphRenderer class and we override one single method. We take
the original drawBackground() method from the AbstractRenderer class, and we replace the
rectangle() method with the roundRectangle() method (line 23). As you can see in line 24-29.
the dimension of the rectangle can be fine-tuned with extra space to the left, right, top, and bottom.
These values can be passed to the internal Background object by using a different flavor of the
setBackgroundColor () method that takes 4 extra float values (extralLeft, extraTop, extraRight,
and extraBottom).

We’ll conclude this chapter with some examples involving the List and ListItem class.

Lists and list symbols

Figure 4.8 shows the different types of lists that are available by default. We recognized numbered
lists (roman and arabic numbers), lists with letters of the alphabet (lowercase, uppercase, Latin,
Greek), and so on.

© 00 9 O O b W N =

(RN
N~ O

Chapter 4: Adding AbstractElement objects (part 1)

108

ﬁ list_types.pdf - Adobe Acrobat Pro
File Edit View Window Help

[m] s

Doven |[Roaer | @O FE @02 0D G T

»®
Customize ~ | lz‘

RN ARSI IR =1 =

Tools

Fill & Sign |

Comment

- Dr. Jekyll I. Dr. Jekyll
- Mr. Hyde ii. Mr. Hyde
1. Dr. Jekyll [. Dr. Jekyll
2. Mr. Hyde [I. Mr. Hyde
a. Dr. Jekyll @ Dr. Jekyll
b. Mr. Hyde @ Mr. Hyde
A. Dr. Jekyll ® Dr. Jekyll
B. Mr. Hyde @ Mr. Hyde
o. Dr. Jekyll @ Dr. Jekyll
B. Mr. Hyde @ Mr. Hyde
A. Dr. Jekyll O Dr. Jekyll
B. Mr. Hyde ® Mr. Hyde

Figure 4.8: different types of lists

The ListTypes™ example shows how the first three lists are added.

List list = new List();

list.add("Dr. Jekyll");

list.add("Mr. Hyde");

document.add(1list);

list = new List(ListNumberingType.DECIMAL);
list.add("Dr. Jekyll");

list.add("Mr. Hyde");

document.add(1list);

list = new List(ListNumberingType.ENGLISH_LOWER);
list.add("Dr. Jekyll");

list.add("Mr. Hyde");

document.add(1list);

"http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-4-examples-abstractelement-part- 11969-c04e07_listtypes.

java

http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-4-examples-abstractelement-part-1#1969-c04e07_listtypes.java
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-4-examples-abstractelement-part-1#1969-c04e07_listtypes.java
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-4-examples-abstractelement-part-1#1969-c04e07_listtypes.java

Chapter 4: Adding AbstractElement objects (part 1) 109

In line 1, we create a list without specifying a type. By default, this will result in a list with hyphens
as list symbols. We add two list items the quick and dirty way in line 2-3; then we add the 1ist to
the Document in line 4. We repeat these four lines many times, first we create a decimal list (line 5),
then we define an alphabetic list with lowercase letters (line 9).

The parameters we use to create different types of lists are stored in an enum. This ListNumbering-
Type enumeration consists of the following values:

« DECIMAL- the list symbols are arabic numbers: 1, 2, 3, 4, 5....

« ROMAN_LOWER- the list symbols are lowercase roman numbers: i, ii, iii, iv, V...

« ROMAN_UPPER- the list symbols are uppercase roman numbers: L, I, IIL, IV, V....

 ENGLISH_LOWER- the list symbols are lowercase alphabetic letters (using the English alphabet):
a,b,cde,..

 ENGLISH_UPPER- the list symbols are uppercase alphabetic letters (using the English alphabet):
A,B,C,D,E,...

+ CREEK_LOWER- the list symbols are lowercase Greek letters: o, B, v, 9, &,...

+ GREEK_UPPER- the list symbols are uppercase Greek letters: A, B, I, A, E,...

« ZAPF_DINGBATS_1- the list symbols are bullets from the Zapfdingbats font, more specifically
characters in the range [172; 181].

+ ZAPF_DINGBATS_2- the list symbols are bullets from the Zapfdingbats font, more specifically
characters in the range [182; 191].

+ ZAPF_DINGBATS_3- the list symbols are bullets from the Zapfdingbats font, more specifically
characters in the range [192; 201].

 ZAPF_DINGBATS_4- the list symbols are bullets from the Zapfdingbats font, more specifically
characters in the range [202; 221].

Obviously, we can also define our own custom list symbols, or we can use a combination of the
default list symbols (e.g. numbers) and combine them with a prefix or a suffix. That’s demonstrated
in figure 4.9.

O s W N =

Chapter 4: Adding AbstractElement objects (part 1) 110

L custom_list_symbols.pdf - Adobe Acrobat Pro - O 4
File Edit View Window Help *
Do |Baeate- | DO ZH| &0 kb BT customize ~ | [
| NG| =& | 8 Tools Fill &Sign | Comment

*Dr. Jekyll i. Dr.Jekyll

*Mr. Hyde ii. Mr. Hyde

Dr. Jekyll iii. Dr. Jekyll

Mr. Hyde iv. Mr. Hyde

© Dr. Jekyll v. Dr. Jekyll

O wmr. Hyde vi. Mr. Hyde

a- Dr. Jekyll vii. Dr. Jekyll

b- Mr. Hyde viii. Mr. Hyde

Part 1: Dr. Jekyll ix. Dr. Jekyll

Part 2: Mr. Hyde X. Mr. Hyde

5. Dr. Jekyll Xi. Dr. Jekyll

6. Mr. Hyde Xii. Mr. Hyde

Figure 4.9: custom list symbols

The PDF in the screen shot of figure 4.9 was the result of the CustomListSymbols” example. We’'ll
examine this example snippet by snippet.

First we take a look at how we can introduce a simple bullet as list symbol, instead of the default
hyphen.

List list = new List();
list.setlListSymbol("\u2022");
list.add("Dr. Jekyll");
list.add("Mr. Hyde");
document .add(list);

We create aList and we use the setListSymbol () method to change the list symbol. We can use any
String as list symbol. In our case, we want a single bullet. The Unicode value of the bullet character

"*http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter- 4-examples-abstractelement-part- 1#1970-c0408_
customlistsymbols.java

http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-4-examples-abstractelement-part-1#1970-c04e08_customlistsymbols.java
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-4-examples-abstractelement-part-1#1970-c04e08_customlistsymbols.java
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-4-examples-abstractelement-part-1#1970-c04e08_customlistsymbols.java

=N O O B W N =

=N O Ol B W N -

O O W W N =~

Chapter 4: Adding AbstractElement objects (part 1) 111

is /u2022. If you examine the screen shot, you notice that the bullet is rather close to the content of
the list items. We can change this by defining an indentation using the setSymbolIndent() method
as is done in the next code snippet.

list = new List();

PdfFont font = PdfFontFactory.createFont(FontConstants.ZAPFDINGBATS);
list.setlListSymbol (new Text("*").setFont(font).setFontColor(Color.ORANGE));
list.setSymbolIndent(19);

list.add("Dr. Jekyll");

list.add("Mr. Hyde");

document.add(1list);

Here we set the list symbol to *, but we use a Text object instead of a String. and we set the font
to ZapfDingbats. We also change the font color to orange. This results in a list symbol that looks as
an orange pointing finger. In the next snippet, we use an Image object as a list symbol.

Image info = new Image(ImageDataFactory.create(INFO));
info.scaleAbsolute(12, 12);

list = new List().setSymbolIndent(3);
list.setlListSymbol(info);

list.add("Dr. Jekyll");

list.add("Mr. Hyde");

document.add(1list);

In line 1. we create an Image object; INFO contains the path to a blue info bullet. We scale the image
so that it measures 12 by 12 user units, and we pass the Image as a parameter of the setL istSymbol()
method.

In the default list types, iText always added a dot after the list symbol of numbered lists: a., b., c.,
and so on. Maybe we don’t want this dot. Maybe we want the list symbols to look like this: a-, b-,
c-, and so on. The following code snippet shows how to achieve this.

list = new List();

list.setlListSymbol (ListNumberingType.ENGLISH LOWER);
list.setPostSymbolText("- ");

list.add("Dr. Jekyll");

list.add("Mr. Hyde");

document.add(list);

Line 1 and 2 are the equivalent of list = new List(ListNumberingType.ENGLISH_LOWER); It
results in a numbered list using the English alphabet. We use the setPostSymbolText() method
to replace the dot that is automatically added after each letter with "- .

There’s also a setPreSymbolText() method to add text in front of the default list symbol. The
following code snippet creates a decimal list (1., 2., 3.,...), but by adding a pre- and a post-symbol,
the list symbols have become list labels that look like this: Part 1: ,Part 2: ,Part 3: ,andsoon.

a & W N = O O B W N~

N O O B~ W N -

Chapter 4: Adding AbstractElement objects (part 1) 112

list = new List(ListNumberingType.DECIMAL);
list.setPreSymbolText("Part ");
list.setPostSymbolText(": ");

list.add("Dr. Jekyll");

list.add("Mr. Hyde");

document .add(list);

Not every numbered list needs to start with 1, i, a, and so on. You can also choose to start with a
higher number (or letter) using the setItemStartIndex() method. In the following code sample, we
start counting at 5.

list = new List(ListNumberingType.DECIMAL);
list.setItemStartIndex(5);

list.add("Dr. Jekyll");

list.add("Mr. Hyde");

document .add(list);

Finally, we’ll use the setListSymbolAlignment() to change the alignment of the labels. If you
compare the lowercase Roman numbers list in figure 4.8 with the one in figure 4.9, you’ll see a
difference in the way the list labels are aligned.

list = new List(ListNumberingType.ROMAN_[LOWER);
list.setListSymbolAlignment(ListSymbolAlignment . LEFT);
for (int i = 0; i < 6; i++) {

list.add("Dr. Jekyll");

list.add("Mr. Hyde");

}
document.add(list);

So far, we’ve always added list items to a list using Strings. These String values are changed into
ListItems internally.

Adding Listitem objects to a List

Looking at the class diagram in the “Before we start” section of this book, we notice that ListItem
is a subclass of the Div class. We can add different objects to a ListItem just like we did with the
Div object, but now we do so in the context of a list.

Let’s do the test and adapt one of the first examples of this chapter to use ListItems instead of Divs.
Figure 4.10 shows the result.

© © 0 I O O b W N+~

Chapter 4: Adding AbstractElement objects (part 1)

@ jekyll_hyde_overviewVd.pdf - Adobe Acrobat Pro
File Edit View Window Help

Customize ~ | lz‘

[N | @@ [=x]-]]| 5 B

1. Dr. Jekyll and Mr. Hyde
Directed by Otis Tumer (LISA, 1808)
2 The Duality of Man
Directed by (UK, 1910)
3. Den skabnesvangre opfindelse
Directed by August Blom (USA, 1910)
4 Dr. Jekyll and Mr. Hyde
Directed by Lucius Henderson (US4, 1912}

5. Dr. Jekyll and Mr. Hyde

Directed by Herbert Brenon (US4, 1813)
8. Dr. Jekyll and Mr. Hyde

Directed by Frank E. Woods (USA, 1913}
7. A Modem Jekyll and Hyde

Directed by (USA, 1813)
&. Homible Hyde

Directed by Howell Hansel (US4, 1915)

0. Dr. Jekyll and Mr. Hyde

Eopen |laeate- | @@L @0 BB D

10. Dr. Jekyll and Mr. Hyde

12. Dr. Jekyll and Mr. Hyde
Directed by Rouben Mamoulian (USA, 1831)

13. Dr. Jekyll and Mr. Hyde
Diracted by William Vance (. 1032}
14. Dr_ Jekyll and Mr. Hyde
Diracted by Victar Fleming (US4, 1041)

Figure 4.10: List items

Tools Fill & Sign Comment

The code of the ListltemExample’” example is very similar to the code of the Div examples.

public void createPdf(String dest) throws IOException {
PdfDocument pdf = new PdfDocument(new PdfWriter(dest));

Document document = new Document(pdf);

List<List<String>> resultSet = CsvTo2DList.convert(SRC, "[");

resultSet.remove(0);

com.itextpdf.layout.element.List list =

new com.itextpdf.layout.element.List(ListNumberingType.DECIMAL);

for (List<String> record
ListItem 1i = new ListItem();
1i.setKeepTogether (true);

resultSet) {

"?http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter- 4-examples-abstractelement-part- 1#1971-c04e09_

listitemexample.java

http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-4-examples-abstractelement-part-1#1971-c04e09_listitemexample.java
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-4-examples-abstractelement-part-1#1971-c04e09_listitemexample.java
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-4-examples-abstractelement-part-1#1971-c04e09_listitemexample.java

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

Chapter 4: Adding AbstractElement objects (part 1) 114

String url = String. format(
"http://www.imdb.com/title/tt%s", record.get(0));
Link movie = new Link(record.get(2), PdfAction.createURI(url));
li.add(new Paragraph(movie.setFontSize(14)))
.add(new Paragraph(String. format(
"Directed by %s (%s, %s)",
record.get(3), record.get(4), record.get(1))));
File file = new File(String. format(
"src/main/resources/img/%s. jpg", record.get(@)));
if (file.exists()) {
Image img = new Image(ImageDataFactory.create(file.getPath()));
img.scaleToFit (10000, 120);
li.add(img);
}
list.add(1li);
}
document .add(list);
document .close();

Aswealready use a java.util.List (line 4), we need to fully qualify com. itextpdf. layout.element.List
(line 6) to avoid ambiguity for our compiler. We use iText’s List class to create a numbered list (line

7). We create a ListItem for every item in the java.util.List (line 9). We add Paragraphs and an
Image (if present) to each ListItem (line 11-24). We add each ListItem to the List (line 25), and
eventually we add the List to the Document (line 27).

Nested lists

In the final example of this chapter, we’ll create nested lists as shown in figure 4.11.

Chapter 4: Adding AbstractElement objects (part 1)

115

m nested_list.pdf - Adobe Acrobat Pro
File Edit View Window Help

O X

*
Customize ~ ‘ IZI

Doen [Bee- [P 02 boE
[1]r1] O | =@ | Tools | Fill &Sign = Comment
-1.a. Dr. Jekyll - ® Dr. Jekyll
b. Mr. Hyde @ Mr. Hyde
2. A. Dr. Jekyll ® @ Dr. Jekyll
B. Mr. Hyde ® Mr. Hyde
- o Dr. Jekyll ® @ Dr. Jekyll
B. Mr. Hyde @ Mr. Hyde
A. Dr. Jekyll @ © Dr. Jekyll
B. Mr. Hyde ® Mr. Hyde
I. Dr. Jekyll
ii. Mr. Hyde
I. Dr. Jekyll
[l. Mr. Hyde

Figure 4.11: nested lists

The NestedLists” example is rather artificial, so please bear with me. We start with an ordinary list,
named 1ist. That’s the list with the hyphens as list symbol.

List list = new List();

We create a numbered list 1ist1 (line 1). This list will have two ListItems, 1iEL (line 5) and 1iEU
(line 11). We create a new List to be added to each of these list items respectively: 1istEL (line
2; lowercase English letters) and 1istEU (line 8, uppercase English letters). We add list items "Dr.
Jekyll" and "Mr. Hyde" to each of these lists (line 3-4; line 9-10).

"http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-4-examples-abstractelement-part- 141972-c04e10_

nestedlists.java

http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-4-examples-abstractelement-part-1#1972-c04e10_nestedlists.java
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-4-examples-abstractelement-part-1#1972-c04e10_nestedlists.java
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-4-examples-abstractelement-part-1#1972-c04e10_nestedlists.java

O N O O & W N~

SR R s s
O O b W N~ OO O

0 N O O & W N =~

U S YN
0 I O O b WON~=~ O O

Chapter 4: Adding AbstractElement objects (part 1) 116

List list1 = new List(ListNumberingType.DECIMAL);

List 1listEL = new List(ListNumberingType.ENGLISH_[OWER);
listEL.add("Dr. Jekyll");

listEL.add("Mr. Hyde");

ListItem 1iEL = new ListItem();

1iEL.add(1istEL);

list1.add(1iEL):

List 1istEU = new List(ListNumberingType.ENGLISH_UPPER);
1istEU.add("Dr. Jekyll"):

1istEU.add("Mr. Hyde");

ListItem 1iEU = new ListItem();

1iUL.add(1listEU);

list1.add(1liEU);

ListItem 1i1 = new ListItem();

1i1.add(1list1):

list.add(1i1);

When we look at figure 4.11, we see the hyphen, we see a numbered list with list symbols 1. and
2.. Nested inside these lists are two lists using the English alphabet (lower- and uppercase).

In the next snippet, we create an extra ListItem for 1ist, more specifically 11 (line 1). We add four
lists to this ListItem: 1istGL (line 2), 1istGU (line 6), 1istRL (line 10), and 1istRU (line 14). These
lists are added one after the other (Greek lowercase, Greek uppercase, Roman numbers lowercase,
Roman number uppercase) to the list item with the default list symbol.

ListItem 1i = new ListItem();

List 1istGL = new List(ListNumberingType.GREEK_LOWER);
listGL.add("Dr. Jekyll");

listGL.add("Mr. Hyde");

1i.add(1listGL);

List 1istGU = new List(ListNumberingType.GREEK _UPPER);
listGU.add("Dr. Jekyll");

listGU.add("Mr. Hyde");

li.add(1listGU);

List 1istRL = new List(ListNumberingType.ROMAN_ | OWER);
listRL.add("Dr. Jekyll");

listRL.add("Mr. Hyde");

li.add(1listRL);

List 1istRU = new List(ListNumberingType.ROMAN_UPPER);
listRU.add("Dr. Jekyll");

listRU.add("Mr. Hyde");

li.add(listRU);

list.add(1i);

o = W N = O = W N = O b W N =~

O b W N =

Chapter 4: Adding AbstractElement objects (part 1) 117

Furthermore, we create a list 1istZ1 with numbered ZapfDingbats bullets. We add this list to a list
item named 1istZ1.

List listZ1 = new List(ListNumberingType.ZAPF_DINGBATS 1);
listZ1.add("Dr. Jekyll");

listZ1.add("Mr. Hyde");

ListItem 1iZ1 = new ListItem();

1i71.add(1listZ1);

We create a second list 1istz2 with a different set of ZapfDingbats bullets. We add this list to a list
item named 1istZz2.

List 1istZ2 = new List(ListNumberingType.ZAPF_DINGBATS 2);
listZ2.add("Dr. Jekyll");

1istZ2.add("Mr. Hyde");

ListItem 1iZ2 = new ListItem();

1i72.2dd(1istZ2);

We create a second list 1istz3 with another set of ZapfDingbats bullets. We add this list to a list
item named 1istZ3.

List 1istZ3 = new List(ListNumberingType.ZAPF_DINGBATS 3);
listZ3.add("Dr. Jekyll");

listZ3.add("Mr. Hyde");

ListItem 1iZ3 = new ListItem();

1iZ3.add(1istZ3);

We create a final list 1istZ4 with yet another set of ZapfDingbats bullets. We add this list to a list
item named 1istz4.

List 1istZ4 = new List(ListNumberingType.ZAPF_DINGBATS 4);
listZ4.add("Dr. Jekyll");

listZ4.add("Mr. Hyde");

ListItem 1iZ4 = new ListItem();

1i74.add(1istZz4);

Now we nest these lists as follows:

« we add 1174 to 1istZ3, which was already added to 1123,

« we add 1iZ3 to 1istZ2, which was already added to 1172,

« we add 1172 to 1istZ1, which was already added to 1i71.

« we add 1121 to 1ist, which is the original list we created (the one with the hyphen as list
symbol).

Finally, we add 1ist to the Document.

O = W N =

Chapter 4: Adding AbstractElement objects (part 1) 118

1istZ3.add(1iz4):
listZ2.add(1iZ3):
listZ1.add(1iZ2);
list.add(1iZ1);
document.add(1list);

The nested ZapfDingbats list is shown to the right in figure 4.11. As you can see, the different
list items are indented exactly the way one would expect. This concludes the first series of
AbstractElement examples.

Summary

In this chapter, we discussed the building blocks Div, LineSeparator, Paragraph, List, and
ListItem. We used Div to group other building blocks and LineSeparator to draw horizontal
lines. We fixed a problem with the chapter 2 examples we weren’t aware of: we learned how to
keep specific elements together on one page. We didn’t go into detail regarding the IRenderer
implementations, but we looked at an example in which we changed the way a background is drawn
for a Paragraph. We created a custom ParagraphRenderer to achieve this. Finally, we created a
handful of List examples demonstrating different types of lists (numbered, unnumbered, straight-
forward, nested, and so on).

The next chapter will be dedicated entirely to tables, more specifically to the Table and Cell class.

Chapter 5: Adding AbstractElement

objects (part 2)

Once we’ve finished this chapter, we’ll have covered all of the basic building blocks available in
iText 7. We've saved two of the most used building blocks for last: Table and Cell. These objects
were designed to render content in a tabular form. Many developers use iText to convert the result
set of a database query into a report in PDF. They create a Table of which every row corresponds

with a database record, wrapping every field value in a Cell object.

We could easily create a similar table using our Jekyll and Hyde database to a PDF, but let’s start

with a handful of simple examples first.

My first table

Figure 5.1 shows a simple table that was created with iText 7.

X my._first_table.pdf - Adobe Acrabat Pro —] ®
File Edit View Window Help *
Boen |Ruate | D @ B PE| @000 RS customze + | [
] | [N O | = & | Tools | Fill &Sign | Comment
~
Cell with colspan 3
Cell with rowspan 2 row 1; cell 1 row 1; cell 2
row 2; cell 1 row 2; cell 2

Figure 5.1: my first table

The code to create this table is really simple; see the MyFirstTable”™ example.

"*http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-5#2031-c05e01_myfirsttable.java

http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-5#2031-c05e01_myfirsttable.java
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-5#2031-c05e01_myfirsttable.java

O N O O & W N~

1
12
13

Chapter 5: Adding AbstractElement objects (part 2) 120

public void createPdf(String dest) throws IOException {
PdfDocument pdf = new PdfDocument(new PdfWriter(dest));
Document document = new Document(pdf);
Table table = new Table(3);
table.addCell(new Cell(1, 3).add("Cell with colspan 3"));
table.addCell(new Cell(2, 1).add("Cell with rowspan 2"));
table.addCell("row 1; cell 1");
table.addCell("row 1; cell 2");
table.addCell("row 2; cell 1");
table.addCell("row 2; cell 2");
document .add(table);
document .close();

We create a table with 3 columns in line 4. We add 6 cells in line 5-10:

« The first cell has a rowspan of 1 and a colspan of 3.
« The second cell has a rowspan of 2 and a colspan of 1.
« The following four cells have a rowspan and colspan of 1.

For the first two cells we explicitly created a Cell object because we wanted to define a specific
rowspan or colspan. For the next four cells, we just added a String to the Table. A Cell object was
created internally by iText. Line 7 is shorthand for table.addCell(new Cell().add("row 1; cell

1")).

Q The PdfPTable and PdfPCell classes that we all know from iText 5 are no longer present.
They were replaced by Table and Cell, and we simplified the way tables are created. The
iText 5 concept of text mode versus composite mode caused a lot of confusion among first-

time iText users. Adding content to a Cell is now done using the add() method.

Figure 5.2 shows a variation of our first table. We changed the width of the table, its alignment, and
the width of the columns.

Chapter 5: Adding AbstractElement objects (part 2) 121

T column_widths.pdf - Adobe Acrobat Pro — m] x
File Edit View Window Help *
Eoren | Baae- | [@ & B 2o bbbk oY customize ~ | [
f1 | M | - (e | Tools Fill & Sign Comment
~
Cell with colspan 3
Cell with rowspan 2 row 1; cell 1 row 1; cell 2
row 2; cell 1 row 2; cell 2
v

Figure 5.2: defining column widths

This was achieved by changing the constructor and by adding two extra lines; see the Column-
Widths” example.

Table table = new Table(new float[]{2, 1, 1});
table.setWidthPercent(80);
table.setHorizontalAlignment(HorizontalAlignment.CENTER);

Instead of passing the number of columns to the Table constructor, we now pass an array with as
many elements as there are columns. Each element is a float value indicating the relative width of
the corresponding column. In this case, the first column will be twice as wide as the second and
third column.

We use the setWidthPercent() method so that the table takes 80% of the available width —that’s
the width of the page minus the width reserved for the left and right margin.

The default width percentage is 100%. There’s also a setwidth() method that allows you
to set the absolute width. Use this method if you prefer a value in user units over a width
that is relative to the available width.

We use the setHorizontalAlignment () method to center the table.

Table and cell Alignhment

In figure 5.3, we also change the alignment of the content inside the cells.

"http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-5#2032-c05e02_columnwidths.java

http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-5#2032-c05e02_columnwidths.java
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-5#2032-c05e02_columnwidths.java
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-5#2032-c05e02_columnwidths.java

0 N O O & W N~

N N B s s s
, O O 0 O O b W N~ O O

Chapter 5: Adding AbstractElement objects (part 2)

122

ﬁ cell_alignment.pdf - Adobe Acrobat Pro
File Edit View Window Help

[m] x

B‘Open|@treate' |a@@@|@}@@@'@)@>@

*®
Customize - | lz‘

i1 ‘ W | — III | [Tools Fill & Sign Comment
Cell with colspan 3
Cell with rowspan 2 row 1; cell 1 row 1; cell 2
row 2; cell 1 row 2; cell 2
Left
Center Middle
Right Bottom

Figure 5.3: alignment of cell content

We can change the alignment of the content of a Cell in different ways. The CellAlignment’®

example demonstrates the different options.

Table table = new Table(new float[]{2, 1, 1});
table.setWidthPercent(80);

table.setHorizontalAlignment(HorizontalAlignment.CENTER);

table.setTextAlignment(TextAlignment .CENTER);

table.addCell(new Cell(1, 3).add("Cell with colspan 3"));
table.addCell(new Cell(2, 1).add("Cell with rowspan 2")

.setTextAlignment(TextAlignment .RIGHT));
table.addCell("row 1; cell 1");
table.addCell("row 1; cell 2");
table.addCell("row 2; cell 1");
table.addCell("row 2; cell 2");

Cell cell = new Cell()

.add(new Paragraph("Left").setTextAlignment(TextAlignment.LEFT))

.add(new Paragraph("Center"))

.add(new Paragraph("Right").setTextAlignment(TextAlignment.RIGHT));

table.addCell(cell);
cell = new Cell().add("Middle")

.setVerticalAlignment(VerticalAlignment .MIDDLE);

table.addCell(cell);
cell = new Cell().add("Bottom")

.setVerticalAlignment(VerticalAlignment.BOTTOM);

"Shttp://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-5#2033-c05e03_cellalignment.java

http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-5#2033-c05e03_cellalignment.java
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-5#2033-c05e03_cellalignment.java

22
23

Chapter 5: Adding AbstractElement objects (part 2) 123

table.addCell(cell);
document .add(table);

Once more we use the setHorizontalAlignment() method to define the horizontal alignment of
the table itself (line 3). Additionally, we use the setTextAlignment() method to change the default
alignment of the content of the Cell added to this table. By default, this content is aligned to the
left (TextAlignment.LEFT); we change the alignment to TextAlignment.CENTER (line 4). As a result,
"Cell with colspan 3" will be centered in the first cell we add (line 5).

We change the alignment of "Cell with rowspan 2" to TextAlignment.RIGHT for the second cell.
This time, we use the setTextAlignment() method at the level of the Cell (line 6-7). We complete
the two rows in this rowspan by adding four more cells without specifying the alignment. The
alignment is inherited from the table; their content is centered.

In line 12, we define a Cell for which we define the alignment at the level of the content.

« In line 13, we add a Paragraph that is aligned to the left.

+ In line 14, we don’t define an alignment for the Paragraph. The alignment is inherited from
the Cell. No alignment was defined at the level of the Cel1 either, so the alignment is inherited
from the Table. As a result, the content is centered.

« In line 15, we add a Paragraph that is aligned to the right.

The next two cell demonstrate the vertical alignment and the setVerticalAlignment() method.
Content is aligned to the top by default (verticalAlignment.TOP). In line 17-18, we create a Cell of
which the alignment is set to the middle (vertically: VerticalAlignment .MIDDLE). In line 20-21, the
content is bottom-aligned (VerticalAlignment.BOTTOM).

Row and cell height

The height of a row will automatically adapt to the height of the cells in that row. The height of a
cell will depend on its content, but we can always increase its height. Let’s take a look at figure 5.4.

Chapter 5: Adding AbstractElement objects (part 2) 124

L column_heights.pdf - Adobe Acrobat Pro - m] X

File Edit View Window Help *

B Open | @ Create ‘ D @ % @ | 8 O 2 (& E% @) = Customize ~ | lz‘
/1 | o ‘ =) (o ‘ & Tools | Fill &Sign | Comment

~

The Strange Case of
Dr. Jekyll

and

Mr. Hyde

The Strange Case of
Dr. Jekyll

and

Mr. Hyde

The Strange Case of
Dr. Jekyll

and

Mr. Hyde

Figure 5.4: changing the cell height

In this table, we are adding the same Paragraph to a table with 1 column; see the ColumnHeights”
example.

Paragraph p =
new Paragraph("The Strange Case of\nDr. Jekyll\nand\nMr. Hyde")
.setBorder(new DashedBorder(0.3f));

We define a border of 0.3 user units for the Paragraph, so that we can clearly make the distinction
between the boundaries of the Paragraph and the borders of the Cell.

The first time, we add the Paragraph directly to the Table.

Table table = new Table(1);
table.addCell(p);

In this case, iText will determine the height in such a way that the content of the Paragraph fits the
Cell.

In the second row, we change the height of the Cell in such a way that the content wouldn’t fit.

""http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-5#2034-c05e04_columnheights.java

http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-5#2034-c05e04_columnheights.java
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-5#2034-c05e04_columnheights.java

Chapter 5: Adding AbstractElement objects (part 2) 125

Cell cell = new Cell().setHeight(16).add(p);
table.addCell(cell);

If iText would reduce the cell height to 16 user units, content would be lost. Usually this isn’t
acceptable, so iText ignores the setHeight() method. Just like before, the height of the Cell is
determined by its content.

For the third row, we define a height that is much higher than needed.

cell = new Cell().setHeight(144).add(p);
table.addCell(cell);

The dashed line shows the space needed for the Paragraph. The full line is the border of the Cel1l.
When we look at the third row in figure 5.4, we see that there’s quite some extra space between the
bottom boundary of the Paragraph and the bottom border of the Cel1.

We can also set a rotation angle for the Ce11. This is done in figure 6.5. The full block of the Paragraph
is rotated, and the height of the Cell adapts to the height that is necessary to render that rotated
block completely.

) column_heights.pdf - Adobe Acrobat Pro - m] X
File Edit View Window Help *
E:-’ Open | Ei Create ~ | D @ % @ ‘ {ﬁ} (;5) @ L,__ @ @ @ Customize ~ ‘ E

i1 | {“_‘] | (mm + | Tools Fill & Sign Comment

A

Figure 5.5: rotating the content of a cell

Rotating the content of a Cell is done using the setRotationAngle() method. The angle needs to
be expressed in Radians.

[N

© © 00 N O O b W N =~

Chapter 5: Adding AbstractElement objects (part 2) 126

cell = new Cell().add(p).setRotationAngle(Math.PI / 6);
table.addCell(cell);

The space between the dashed border of the Paragraph and the border of the Cell is called the
padding. In the next example, we’ll examine the difference between the margin and the padding.

Cell margins and padding

In figure 5.6, we have set the background of the table to orange. We've also defined a background
color for the different cells. This way, we can distinguish the difference between the margin of a cell
and its padding.

ﬁ cell_margin_padding.pdf - Adobe Acrobat Pro - m] ¥
File Edit View Window Help *
E;‘ Open | f,j Create ~ | E‘ @ @ @ | @ & g Eé. @ @) @ Customize ~ | |Z|

[1]r1] O | = @ \ 55 Tools | Fill &Sign | Comment

-

row 1; cell 1 row 1; cell 2

row 2; cell 1 row 2; cell 2

Cell with rowspan 2

Figure 5.6: the difference between the margin and the padding of a cell

Let’s take a look at the CellMarginPadding’® example to see how this PDF was created.

Table table = new Table(new float[]{2, 1, 1});
table.setBackgroundColor(Color.ORANGE) ;
table.setWidthPercent(80);
table.setHorizontalAlignment(HorizontalAlignment .CENTER);
table.addCell(

new Cell(1, 3).add("Cell with colspan 3")

.setPadding(1@) .setMargin(5) .setBackgroundColor (Color.GREEN));

table.addCell(new Cell(2, 1).add("Cell with rowspan 2")

.setMarginTop(5).setMarginBottom(5).setPaddingLeft(30)

.setFontColor(Color .WHITE) .setBackgroundColor(Color.BLUE));

"®http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter- 542035-c05¢05_cellmarginpadding.java

http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-5#2035-c05e05_cellmarginpadding.java
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-5#2035-c05e05_cellmarginpadding.java

11
12
13
14
15
16
17
18

Chapter 5: Adding AbstractElement objects (part 2) 127

table.addCell(new Cell().add("row 1; cell 1")
.setFontColor(Color.WHITE) .setBackgroundColor(Color.RED));
table.addCell(new Cell().add("row 1; cell 2"));
table.addCell(new Cell().add("row 2; cell 1").setMargin(10)
.setFontColor(Color .WHITE) .setBackgroundColor(Color.RED));
table.addCell(new Cell().add("row 2; cell 2").setPadding(10)
.setFontColor(Color .WHITE) .setBackgroundColor(Color.RED));
document .add(table);

We set the background for the full table to orange in line 2. We add six cells to this table:

1. line 5-7: a cell with a green background, a margin of 5 user units and a padding of 10 user
units. Looking at the screen shot, we see that the margin is the space between the border of the
cell and the green rectangle —the background. The padding is the space between the border of
that green rectangle and the content of the cell.

2. line 8-10: a cell with white text, a blue background, a top and bottom margin of 5 user units,
and a left padding of 30 user units. We don’t see any orange ribbons to the left and the right.
We only see 5 user units of orange at the top and the bottom. The default margin of a Cell
is 0 user units. The text doesn’t start immediately at the left. There’s 30 user units of space
between the left border and the text.

3. line 11-12: a cell with white text, a red background, and default values for the margin and the
padding. The text doesn’t stick to the border because iText uses a default padding of 2 user
units.

4. line 13: a cell with default properties. This cell has no background color. It’s orange because
of the background color of the table.

5. line 14-15: a cell with white text, a red background and a margin of 10 user units.

6. line 16-17: a cell with white text, a red background and a padding of 10 user units.

So far, we haven’t defined the border of any of the cells. The default border is a Border instance
define like this: new SolidBorder(@.5f). There is something special about cell borders that requires
more explanation.

Table and cell borders

Figure 5.7 shows three tables with different borders. We’ll discuss each of these tables one by one
by examining the CellBorders’ example..

"http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-5#2036-c05e06_cellborders. java

http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-5#2036-c05e06_cellborders.java
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-5#2036-c05e06_cellborders.java

0 N O O B~ W N -

B s
O P W N =~ O O

Chapter 5: Adding AbstractElement objects (part 2)

128

m cell_borders.pdf - Adobe Acrobat Pro
File Edit View Window Help

O X

°P="|E%CreatE' |a@%@|@@@@@@)@

®
Customize ~ ‘ |Z|

o ‘ O ‘ - "' | 5 Tools Fill & Sign Comment

Cell with colspan 3

Cell with rowspan 2 row 1; cell 1 row 1; cell 2
row 2; cell 1 row 2; cell 2
Cell with colspan 3
Cell with rowspan 2 row 1; cell 1 row 1; cell 2
row 2; cell 1 row 2; cell 2

[Cell with colspan 3
Cell with rowspan 2 [row 1; cell 1][row 1; cell 2]

row 2; cell 1

row 2; cell 2

Figure 5.7: changing table and cell borders

The first table was created like this:

Table tablel = new Table(new float[]|{2, 1, 1});
tablel.setWidthPercent(80);

tablel.setHorizontalAlignment(HorizontalAlignment.CENTER);

tablel.addCell(
new Cell(1, 3).add("Cell with colspan 3")

.setPadding(10) .setMargin(5).setBorder (new DashedBorder(0.5f)));

tablel.addCell(new Cell(2, 1).add("Cell with rowspan 2")
.setMarginTop(5).setMarginBottom(5)
.setBorderBottom(new DottedBorder(0.5f))
.setBorderlLeft(new DottedBorder(0.5f)));

tablel.addCell(new Cell().add("row 1; cell 1")
.setBorder (new DottedBorder(Color.ORANGE, ©.5f)));

tablel.addCell(new Cell().add("row 1; cell 2"));

tablel.addCell(new Cell().add("row 2; cell 1").setMargin(10)

.setBorderBottom(new SolidBorder(2)));

16
17
18

Chapter 5: Adding AbstractElement objects (part 2) 129

tablel.addCell(new Cell().add("row 2; cell 2").setPadding(1@)

.setBorderBottom(new SolidBorder(2)));

document.add(tablel);

Let’s compare the code and the resulting table, shown in figure 5.8.

Cell with rowspan 2

line 4-6: The first cell has a dashed border that is 0.5 user units wide. The border consists of a
complete rectangle.

line 7-10: For the second cell, we only defined a bottom border and a left border. A dotted line
is drawn to the left and at the bottom of the cell. The top and the right border are actually the
borders of other cells.

line 11-12: We introduce an orange dotted border that is 0.5 user units wide. Although we set
the border for the full cell, the top border isn’t drawn as an orange dotted line. The top border
is part of the dashed border of our first cell; iText won’t draw an extra border on top of that
already existing border.

line 13: We don’t define a border. By default, a solid border of 0.5 user units is drawn. Two
borders were already defined previously, in the context of other, previously added cells. The
borders of those cells prevail.

line 14-15 and line 16-17: We define a solid bottom border that is 2 user units wide. The top
borders of both cells are already defined: they are also the bottom borders of the corresponding
cells in the previous row. The left and right borders aren’t defined anywhere; iText will use
the default border: a solid line of 0.5 user units.

row 1; cell 1 row 1; cell 2

row 2; cell 1 row 2; cell 2

Figure 5.8: different borders for different cells

This behavior is the result of a design decision.

0 = O O b W N =~

UGN
0 3 0O O b WOWN~=~~ OO O

Chapter 5: Adding AbstractElement objects (part 2)

i

One way to deal with borders would be to let every Cell, or more specifically every
CellRenderer, draw its own borders. In that case, the borders of adjacent cells would
overlap. For instance: the dashed border at the bottom of the cell in the first row would
overlap with the orange dotted top border of a cell in the second row. This is what happened
in previous versions of iText. The border of two adjacent cells often consisted of two
identical lines that overlapped each other. The extra line wasn’t only redundant, it also
caused a visual side-effect in some viewers. Many viewers render identical content that
overlaps in a special way. In the case of overlapping text, a regular font looks as if it is bold.
In the case of overlapping lines, the line width looks thicker than defined. The line width
of two lines that are 0.5 user units wide and that are added at the exact same coordinates
is rendered with a width slightly higher than 0.5 user units. Although this difference isn’t
always visible to the naked eye, we made the design decision to avoid this. All the borders
are drawn at the level of the Table. That is: at the level of the TableRenderer.

130

In the next example, we define a border for the table, while setting the borders of every cell to
Border . NO_BORDER.

Table table2 = new Table(new float[]{2, 1, 1});
table2.setMarginTop(10);
table2.setBorder(new SolidBorder(1));
table2.setWidthPercent(80);
table2.setHorizontalAlignment(HorizontalAlignment.CENTER);
table2.addCell(new Cell(1, 3)

.add("Cell with colspan 3").setBorder(Border.NO_BORDER));
table2.addCell(new Cell(2, 1)

.add("Cell with rowspan 2").setBorder (Border.NO_BORDER));
table2.addCell(new Cell()

.add("row 1; cell 1").setBorder(Border.NO_BORDER));
table2.addCell(new Cell()

.add("row 1; cell 2").setBorder (Border.NO_BORDER));
table2.addCell(new Cell()

.add("row 2; cell 1").setBorder (Border.NO_BORDER));
table2.addCell(new Cell()

.add("row 2; cell 2").setBorder(Border.NO_BORDER));
document .add(table2);

The result is shown in figure 5.9. The table has a border, but the cells don’t have any “inside borders”.

0 = O O & W N =~

[UG
a B WO N =~ O O

Chapter 5: Adding AbstractElement objects (part 2) 131

Cell with colspan 3
Cell with rowspan 2 row 1; cell 1 row 1; cell 2

row 2; cell 1 row 2; cell 2

Figure 5.9: table border but no cell borders

Our design decision also has an impact on how we deal with custom renderers for cells. Suppose
that we’d want to create cells with rounded borders. In that case, we could extend the Cel 1Renderer
class and create a RoundedCornersCel 1Renderer like this:

private class RoundedCornersCellRenderer extends CellRenderer {

public RoundedCornersCellRenderer(Cell modelElement) {
super(modelElement);

}

@0verride

public void drawBorder(DrawContext drawContext) {
Rectangle occupiedAreaBBox = getOccupiedAreaBBox();
float[] margins = getMargins();
Rectangle rectangle = applyMargins(occupiedAreaBBox, margins, false);
PdfCanvas canvas = drawContext.getCanvas();
canvas.roundRectangle(rectangle.getX() + 1, rectangle.getY() + 1,

rectangle.getWidth() - 2, rectangle.getHeight() -2, 5).stroke();

super.drawBorder (drawContext) ;

In the previous chapter, we’ve used the setNextRenderer() method to replace the default Para-
graphRenderer of a Paragraph by our custom renderer. We could do the same with every Cell we
create. In that case, we’d have something like:

Cell cell = new Cell();
cell.setNextRenderer (new RoundedCornersCellRenderer(cell));

However, we don’t like having to do this for every Cell we create. It’s much easier to extend the
Cell class, overriding the makeNewRenderer () method.

0 N O O &~ W N -

Y ==Y
O© 00 1 O O P WO N~ O ©

Chapter 5: Adding AbstractElement objects (part 2) 132

private class RoundedCornersCell extends Cell {

public RoundedCornersCell() {
super();

}

public RoundedCornersCell(int rowspan, int colspan) {
super(rowspan, colspan);

}

@0verride

protected IRenderer makeNewRenderer() {
return new RoundedCornersCellRenderer(this);

We can now use the RoundedCornersCell object instead of the Cell object.

Table table3 = new Table(new float[]|{2, 1, 1});

table3.setMarginTop(10);

table3.setWidthPercent(80);

table3.setHorizontalAlignment(HorizontalAlignment .CENTER);

Cell cell = new RoundedCornersCell(1, 3).add("Cell with colspan 3")

.setPadding(10) .setMargin(5) .setBorder (Border.NO_BORDER);

table3.addCell(cell);

cell = new RoundedCornersCell(2, 1).add("Cell with rowspan 2")
.setMarginTop(5).setMarginBottom(5);

table3.addCell(cell);

cell = new RoundedCornersCell().add("row 1; cell 1");

table3.addCell(cell);

cell = new RoundedCornersCell().add("row 1; cell 2");

table3.addCell(cell);

cell = new RoundedCornersCell().add("row 2; cell 1").setMargin(10);

table3.addCell(cell);

cell = new RoundedCornersCell().add("row 2; cell 2").setPadding(10);

table3.addCell(cell);

document .add(table3);

We removed the border of the first cell in line 6. We didn’t remove the borders of the other cells.
Looking at figure 5.10, we see that those cells have two borders.

Chapter 5: Adding AbstractElement objects (part 2) 133

Cell with colspan 3

(Cell with rowspan 2 1[row 1; cell 1 Yrow 1; cell 2)
[row 2: cell 1 J row 2; cell 2

Figure 5.10: custom borders

This may be surprising: now that we’ve overridden the drawBorder () method of the Cel1Renderer,
why is iText still drawing that extra border? We’ve already answered that question. We have made
the design decision to draw the borders at the level of the Table. The original drawBorder () method
in the Cel1Renderer class is empty. It doesn’t draw any borders. If we want to use a custom border,
we can either do what we’ve done in line 6 for every cell we create. The better solution would be to
add setBorder (Border .NO_BORDER) ; to every RoundedCornersCell constructor.

In the next example, we’ll add tables inside tables.

Nesting tables

Figure 5.11 shows two or four tables, depending on how you look at the screen shot. There are two
outer tables. Each of these tables has an inner table nested inside.

Y nested_tables.pdf - Adobe Acrabat Pro - O X
File Edit View Window Help ®
=7 open ‘ @ Create ~ ‘) @ & =2 ‘ @ o 02 (s e & T Customize v =]

1 | @ | =) & | Tools Fill & Sign Comment

~

Cell with colspan 2

Cell with rowspan 1 row 1; cell 1 row 1; cell 2

row 2; cell 1 row 2; cell 2

Cell with colspan 2

Cell with rowspan 1 row 1; cell 1 row 1; cell 2

row 2; cell 1 row 2; cell 2

Figure 5.11: nested tables

Let’s examine the NestedTable® example. This is how the first table was created:

8%http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-5#2037-c05e07_nestedtable.java

http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-5#2037-c05e07_nestedtable.java
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-5#2037-c05e07_nestedtable.java

© 00 9 O O b W N =

[ENEN
= o

Chapter 5: Adding AbstractElement objects (part 2) 134

Table table = new Table(2);

table.setWidthPercent(80);
table.setHorizontalAlignment(HorizontalAlignment.CENTER);
table.addCell(new Cell(41, 2).add("Cell with colspan 2"));
table.addCell(new Cell().add("Cell with rowspan 1"));
Table inner = new Table(2);

inner.addCell("row 1; cell 1");

inner.addCell("row 1; cell 2");

inner.addCell("row 2; cell 1");

inner.addCell("row 2; cell 2");

table.addCell(inner);

We create a Table object named table. We add four Cell objects to this table, but one Cell object
is special. We created another Table object named inner and we added this table to the outer table
table using the addCell() method. If we look at figure 5.11, we see that there’s a padding between
the border of the fourth cell and the border of the inner table. That’s the default padding of 2 user
units.

The second table was created in almost the exact same way as the first table. The main difference
can be found in the last line.

table.addCell(new Cell().add(inner).setPadding(0));

Instead of adding the nested table straight to the table object, we now create a Cell object to which
we add the inner table. We set the padding of this cell to 0. Now it looks as if the cell with content
"Cell with rowspan 1" has a rowspan of 2. This isn’t the case. We have mimicked a rowspan of 2
by using a nested table.

o If you look closely at the screen shot, you may see why you should avoid using nested
tables. Common sense tells us that nesting tables has a negative impact on the performance
of an application, but there’s another reason why you might want to avoid using them in
the context of iText. As mentioned before, all cell borders are drawn at the Table level. In
this case, the border of the cell containing the nested table is drawn by the TableRenderer
of the outer table table. The border of the cells of the nested table are drawn by the
TableRenderer of the inner table inner. This results in overlapping lines, which may cause
an undesired effect. In some PDF viewers, the width of the overlapping lines may seem to
be wider than the width of each separate line.

Now let’s switch to some examples that are less artificial. Let’s convert our CSV file to a Table and
render it to PDF.

Chapter 5: Adding AbstractElement objects (part 2) 135

Repeating headers and footers

In chapter 3, we used Tab elements to render a database containing movies and videos based on
Stevenson’s story about Dr. Jekyll and Mr. Hyde in a tabular structure. Although this worked well, we
experienced some disadvantages, for instance when the content didn’t fit the space we had allocated.
It’s a much better idea to use a Table for this kind of work. Figure 5.12 shows how we introduced
a repeating header with the column names and a repeating footer that reads “Continued on next

3

page...” when the table doesn’t fit the current page.

Chapter 5: Adding AbstractElement objects (part 2) 136
T jekyll_hyde_tablel.pdf - Adobe Acrobat Pro - O X
File Edit View Window Help *
B Open ‘ @ Create ~ | \:/ @ @ @ ‘ & o g % @J = Customize ~ ‘ E

@ [1]ra) O | = = Tools : Fill &Sign | Comment
I! ~
_ IMDB Wear |Title Director(s) Country Duration
!-_[0126875 |1908 |Dr. Jekyll and Mr. Hyde Otis Tumer usa 16
0200592 (1910 |The Duality of Man UK 5
0126876 |1910 |Den skabnesvangre opfindelse August Blom usa 17
0002143 |1912 |Dr. Jekyll and Mr. Hyde Lucius Henderson usa 12
L&A 0002813 [1913 |Dr. Jekyll and Mr. Hyds Herbert Brenon usa 26
2357384 |1913 |Dr. Jekyll and Mr. Hyde Frank E. Woods usa
® % 0256936 1913 |A Modern Jekyll and Hyde Usa
0134614 |1915 [Homible Hyde Howell Hansel usa
0011130 |1920 |Dr. Jekyll and Mr. Hyde John 5. Roberson Denmark 49
0011131 |1820 |Dr. Jekyil and Mr_ Hyde J Charles Haydon usa 40
0011348 |1920 |DerJanuskopf F.W Mumau Gemany 107
0022835 |1931 |Dr. Jekyll and Mr. Hyde Rouben Mamoulian usa a8
0211340 |1932 |Dr. Jekyll and Mr. Hyde William Vance 10
0033553 (1941 |Dr.Jekyll and Mr. Hyde Victor Fleming Usa 113
0151561 1844 |Mighty Mouse Meets Jekyll and Hyde Cat Mannie Davis usa B
0039338 |1947 |Dr. Jekyll and Mr. Mouss Joseph Barbera, William Hanna usa g
02258329 |1950 |Gentleman Jekyll and Driver Hyde David Bairstow i1
1336612 (1950 |The Strange Case of Dr. Jekyll and Mr. Hyde 69
0043515 |1951 |El extrario caso del hombre y |a bestia Maric Soffici usa g0
0713926 (1951 |Dr. Jekyll and Mr. Hyde 30
Continued on next page...
IMDB Wear |Title Director{s) Couniry Duration
0045469 (1953 |Abbott and Costello Meet Dr. Jekyll and Mr. Hyde Charles Lamont Usa 76
0394419 |1955 |Dr. Jekyll and Mr. Hyde Allen Reisner 60
1613620 |1956 |Dr. Jekyll and Mr. Hyde Philip Saville &0
00332348 (1939 |Le testament du Docteur Cordelier Jean Renoir L] W

Figure 5.12: repeating headers and footers

The JekyllHydeTableV1** example shows how it’s done.

#'http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter- 542038-c05¢08_jekyllhydetablev1.java

http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-5#2038-c05e08_jekyllhydetablev1.java
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-5#2038-c05e08_jekyllhydetablev1.java

© 00 9 O O b W N =

SR R s s
O O b WO N~ O

Chapter 5: Adding AbstractElement objects (part 2)

Table table = new Table(new float[]{3, 2, 14, 9, 4, 3});
table.setWidthPercent(100);
List<List<String>> resultSet = CsvTo2DList.convert(SRC, "[");
List<String> header = resultSet.remove(Q);
for (String field : header) {

table.addHeaderCell(field);
}
Cell cell = new Cell(1, 6).add("Continued on next page...");
table.addFooterCell(cell)

.setSkipLastFooter(true);
for (List<String> record : resultSet) {

for (String field : record) {

table.addCell(field);

}
document .add(table);

137

We get our data from a CSV file (line 3) and we get the line containing the header information (line
4). Instead of using addCell(), we add each field in that line using the addHeaderCel1() method.
This marks these cell as header cells: they will be repeated at the top of the page every time a new

page is started.

We also create footer cell that spans the six columns (line 8). We make this cell a footer cell by using
the addFooterCell() method (line 9). We also instruct the table to skip the last footer (line 10). This
way, the cell won’t appear as a footer after the last row of the table. This is shown in figure 5.13.

Chapter 5: Adding AbstractElement objects (part 2)

138

@ jekyll_hyde_tablel.pdf - Adobe Acrobat Pro
File Edit View Window Help

— O X

*x

Customize - ‘ @

I RVA

B‘Open |Eerreate' ‘D@@ @‘@@@&@ =

Tools

Fill & Sign Comment

0385664

2003

The Dr. Jekyll & Mr. Hyde Rock "n Roll Musical

Andre Champagne

usa a1 ~

0385137

2003

Dr. Jekyll & Mistress Hyde

Tony Marsiglia

usa a3

0340083

2003

Dr. Jekyll and Mr. Hyde:

Maurice Phillips

98

Continued on next page...

IMDB Year |Title Director(s) Country Duration
0443656 [2004 |The Strange Game of Hyde and Seek MNathan Hill Austalia 30
2090535 (2004 |InHyde Alvaro Fernandez, Alberto Hermida |Spain 14
04721868 |2006 |The Strange Case of Dr. Jekyil and Mr. Hyde John Carl Buechler usa g0
0425150 2006 |Jekyll + Hyde Mick Stillwell usa 89
0393384 2007 |Jekyll Scott Zakarin Usa

3281326 |2008 |The Man with Two Faces James lan Mair Usa T8
1159484 |2008 |Dr. Jekyll and Mr. Hyde Paolo Barzman usa baz]
3475292 |2011 |Theoretics Presents: Jekyll & Hyde Garrett Wesley Gibbons usa B
5227978 |2015 |Dr. Jekyll and Mr. Hyde: The Game - The Movie James Rolfe Usa 4
4357284 [2015 |Hyde, Jekyll, Me South-Korea
3132614 |20M16 |Dr. Jekyll and Mr. Hyde B. Luciano Barsuglia usa

4249644 |2016 |The Strange Case of Jekyll and Hyde Jesse MaGill

Figure 5.13: repeating headers and footers

There is also a way to skip the first header. See figure 5.14.

Chapter 5: Adding AbstractElement objects (part 2)

139

T jekyll_hyde_table? Adobe Acrobat P -] ®
File Edit View Window Help ®
B‘ Open | ﬁr Create ~ | D @ @ @ ‘ {E‘J = Oz % E‘%J - Customize - ‘ Iz‘
© /4| & | (= @ | Tools | Fill &Sign = Comment
I! A
_ IMCB Year |Title Diirector(s) Country Dration

ﬁ 0126875 |1908 |Dr. Jekyll and Mr. Hyde Otis Tumer Usa 16

0200593 |1910 |The Duality of Man UK S5

0126876 (1910 |Den skabnesvangre opfindelse August Blom Usa 17

0002143 [1912 (Dr. Jekyll and Mr. Hyde Lucius Henderson Usa 12
LG DD02813 |1913 |Dr. Jekyll and Mr. Hyde Herbert Brenan uUsa 26

2357384 (1913 [Dr. Jekyll and Mr. Hyde Frank E. Woods USA
" S 0256936 |1913 |A Modem Jekyll and Hyde usa

0154614 1915 |Homible Hyde Howell Hansel usa

0011130 (1920 |Dr. Jekyll and Mr. Hyde John 5. Roberson Denmark 435

0011131 1920 (Dr. Jekyll and Mr. Hyde J.Charles Haydon USA 40

0011348 |1920 |Der Januskopf F.W.Mumau Gemany 107

00225835 |1931 |Dr. Jekyll and Mr. Hyde Rouben Mamoulian Usa 98

0211340 [1932 (Dr. Jekyll and Mr. Hyde William Vance 10

0033553 |1941 |Dr. Jekyll and Mr. Hyde Wictor Fleming usa 113

0151561 |1944 [Mighty Mouse Meets Jekyll and Hyde Cat Mannie Davis Usa 6

0039338 (1947 |Dr. Jekyll and Mr. Mouse Joseph Barbera, William Hanna Usa 8

0228328 [1950 (Gentleman Jekyll and Driver Hyde Dravid Bairstow 8

1336612 |1950 |The Strange Case of Dr. Jekyll and Mr. Hyde 69

0043515 (1951 |El extrafic caso del hombre y la bestia Mario Soffici usa 80

0713926 |1931 |Dr. Jekyll and Mr. Hyde 30

0045468 (1953 |Abboft and Costello Meet Dr. Jekyll and Mr. Hyde Charles Lamont Usa 76

Confinued from previous page:

IMDB Year (Title Director(s) Country Duration

0394415 |1955 |Dr. Jekyll and Mr. Hyde Allen Reisner 60

1613620 |1956 |Dr. Jekyll and Mr. Hyde Philip Saville 60

0053348 (1959 |Le testament du Docteur Cordelier Jean Renoir 95 W

Figure 5.14: repeating headers

In this case, we had to use nested tables, because we have two types of headers. We have a header
that needs to be skipped on the first page. We also have a header that needs to appear on every page.

The JekyllHydeTableV2** example shows how it’s done.

#http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-542039-c05¢09_jekyllhydetablev2.java

http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-5#2039-c05e09_jekyllhydetablev2.java
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-5#2039-c05e09_jekyllhydetablev2.java

O N O O & W N~

S =Y
<N O O WD r OO O

Chapter 5: Adding AbstractElement objects (part 2)

Table table = new Table(new float[]{3, 2, 14, 9, 4, 3});
table.setWidthPercent(100);
List<List<String>> resultSet = CsvTo2DList.convert(SRC, "[");
List<String> header = resultSet.remove(Q);
for (String field : header) {

table.addHeaderCell(field);
}
for (List<String> record : resultSet) {

for (String field : record) {

table.addCell(field);

}
Table outerTable = new Table(1)

.addHeaderCell("Continued from previous page:")

.setSkipFirstHeader(true)

.addCell(new Cell().add(table).setPadding(Q));
document .add(outerTable);

140

Lines 1-12 should have no secrets to us. In lines 13-16, we use what we’ve learned when we discussed
nested tables to create an outer table with a second header. We use the setSkipFirstHeader()

method to make sure that header doesn’t appear on the first page, only on subsequent pages.

Images in tables

Figure 5.15 demonstrates that we can also add images to a table. We can even make them scale so

that they fit the width of the cell.

KN

Chapter 5: Adding AbstractElement objects (part 2) 141
FH jekyll_hyde_table3.pdf - Adobe Acrobat Pro - O X
File Edit View Window Help ®
Ciopen | Reeater | @ O FHE | @m BB - customize ~ | [
®) @ [a]r0| O | = @ [wn]-]]| S Tools | Fill &Sign | Comment

N
IMDB Year |(Title Diractor(s) Country Duration
5494380 |1965 |Dr. Rock and Mr. Roll
1968 [The Strange Case of Dr. Jekyll and Mr. Hyde Chares Jarrott 120
1971 |Dr Jekyll & Sister Hyde Roy Ward Baker usa 94
0125275 |1971 | The Jekyll and Hyde Portfolic Eric Jeffrey Haims usa 7
4956042 |1971 |El extrafio caso del Doctor Jekyll y Mister Hyde Marcelo Dominguez
1971 (I, Monster Stephen Weeks usa 75
%1972 |The Man with Two Heads Andy Milligan usa &0
1972 |0 Médico E o Monstro Zhigniew Ziembinski
]

That’s done in the JekyllHydeTableV3®** example.

}
Cell cell;

© © 00 I O O b W N =~

Figure 5.15: images in tables

header) {

for (List<String> record : resultSet) {
cell = new Cell();

Table table = new Table(new float[]{3, 2, 14, 9, 4, 3});

table.setWidthPercent(100);

List<List<String>> resultSet = CsvTo2DList.convert(SRC, "[");

List<String> header = resultSet.remove(0);

for (String field
table.addHeaderCell(field);

®http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-542040-c05e10_jekyllhydetablev3.java

http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-5#2040-c05e10_jekyllhydetablev3.java
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-5#2040-c05e10_jekyllhydetablev3.java

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

Chapter 5: Adding AbstractElement objects (part 2) 142

File file = new File(String. format(
"src/main/resources/img/%s. jpg", record.get(Q)));

if (file.exists()) {
Image img = new Image(ImageDataFactory.create(file.getPath()));
img.setAutoScaleWidth(true);
cell.add(img);

1

else {
cell.add(record.get(0));

}

table.addCell(cell);

table.addCell(record.get(1));
table.addCell(record.get(2));
table.addCell(record.get(3));
table.addCell(record.get(4));
table.addCell(record.get(5));

}
document .add(table);

We can add the image to a Cell using the add() method —the same way we’ve added content to a
Cell before. We use the setAutoScaleWidth() method to tell the image that it should try to scale
itself to fit the width of its container, in this case the Cel1l to which it is added.

0 There’s also asetAutoScaleHeight () method if you want the images to scale automatically
depending on the available height, and a setAutoScale() method to scale the image based
on the width and the height.

Not scaling images can result in ugly tables; when the images are too large for the cell, they will
take up space from the adjacent cells.

Splitting cells versus keeping content together

We’re not using any images in figure 5.16. The second column just contains information that consists
of different Paragraph objects added to a Cell.

Chapter 5: Adding AbstractElement objects (part 2)

143

FH jekyll_hyde_tabled.pdf - Adobe Acrobat Pro - O >

File Edit View Window Help x

E‘ Open | f} Create ~ ‘ E] @ @ @ | {C}} > O % @J e Customize - ‘ Iz‘
\ /13 ‘ 4 | — ‘ = Tools | Fill&Sign | Comment

A

imdb Information about the movie

0126875 (1908

Dr. Jekyll and Mr. Hyde
Otis Tumer

UsA

16

0200593 (1910

The Duality of Man
UK

5

0126876 (1910

Den skebnesvangre opfindelse
August Blom

UsA

17

0002143 [1912

Dr. Jekyll and Mr. Hyde
Lucius Henderson
usa

12

0002813 |1913

Dr. Jekyll and Mr. Hyde
Herbert Brenon

USA

26

2357384 [1913
Dr. Jekyll and Mr. Hyde

imdb Information about the movie

Frank E. Woods
Usa

0256936 (1913
A Modern Jekyll and Hyde
Usa

Figure 5.16: splitting cell that don’t fit the page

When the content doesn’t fit the page, the cell is split. The production year and title are on one
page, the director and the country the movie was produced in on the other page. This is the default
behavior when you write your code as done in the JekyllHydeTabV4®** example.

*http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-542041-c05e11_jekyllhydetablev4.java

http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-5#2041-c05e11_jekyllhydetablev4.java
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-5#2041-c05e11_jekyllhydetablev4.java

O N O O & W N~

[= UGN
g & W N =~ O O

16
17
18

Chapter 5: Adding AbstractElement objects (part 2)

Table table = new Table(new float[]{3, 32});
table.setWidthPercent(100);
List<List<String>> resultSet = CsvTo2DList.convert(SRC, "[");
resultSet.remove(0);
table.addHeaderCell("imdb")
.addHeaderCell("Information about the movie");
Cell cell;
for (List<String> record : resultSet) {
table.addCell(record.get(9));
cell = new Cell()
.add(new Paragraph(record.get(1)))
.add(new Paragraph(record.get(2)))
.add(new Paragraph(record.get(3)))
.add(new Paragraph(record.get(4)))
.add(new Paragraph(record.get(5)));
table.addCell(cell);

}
document .add(table);

144

You may want iText to do an effort to keep the content of a cell together on one page (if possible).

Chapter 5: Adding AbstractElement objects (part 2) 145
T jekyll_hyde_table5.pdf - Adobe Acrobat Pro — O X
File Edit View Window Help ®
B‘ Open ‘ fj Create ~ | E/ @ @ @ ‘ @} e g % E‘J = Customize ~ | E
@) [1]rn]| O | (=) @ | i Tools | Fill&Sign = Comment

~

imdb Information about the movie

0126875 1908

Dr. Jekyll and Mr. Hyde
Otis Tumer

usa

16

0200593 |1910

The Duality of Man
UK

5

0126876 |1910

Den skebnesvangre opfindelse
August Blom

usa

17

0002143 |1912

Dr. Jekyll and Mr. Hyde
Lucius Henderson

USA

12

0002813 1913

Dr. Jekyll and Mr. Hyde
Herbert Brenon

UsA

26

imdb Information about the movie
2357384 1913
Dr. Jekyll and Mr. Hyde
Frank E. Woods
UsA
0256936 |1913

Figure 5.17: keeping cell content together

The PDF in the screen shot of figure 5.17 was created using the JekyllHydeTableV5*° example. There’s
only one difference with the previous example. We’ve added the following line of code after line 15:

cell.setKeepTogether (true);

The setKeepTogether() method is defined at the BlockElement level. We've used that method
before in the previous chapter. Note that the setkeepWithNext() can’t be used in this context,

because we’re not adding the Cell object directly to the Document.

% http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-5#2042-c05¢12_jekyllhydetablevs.java

http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-5#2042-c05e12_jekyllhydetablev5.java
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-5#2042-c05e12_jekyllhydetablev5.java

Chapter 5: Adding AbstractElement objects (part 2) 146

Table and cell renderers

Let’s make some more renderer methods. We’ve already created a custom CellRenderer to add
rounded corners. In figure 5.18, we're introducing a TableRenderer to display alternate backgrounds
for the rows.

T jekyll_hyde_tableb.pdf - Adobe Acrobat Pro - O ¥
File Edit VYiew Window Help S

E}‘Open|ﬁjtreatev‘|_|@@@|{§}@@%E\E= Customize ~ "
[]ra| [N | = @) [sa%]-]] Tools Fill &Sign | Comment

I! A
. IMDB Year (Title Director(s) Country Dwration

! 0126875 [1908 |Dr. Jekyll and Mr. Hyde Ctis Tumer usa 16
0200593 [1910 |The Duality of Man UK 5
0126876 [1910 [Den skebnesvangre opfindelse August Blom usa 17
0002143 1912 |Dr. Jekyll and Mr. Hyde Lucius Henderson usa 12

L&A 0002813 (1913 |Dr. Jekyll and Mr. Hyde Herbert Brenon usa 26
2357384 1913 |Dr. Jekyll and Mr. Hyde Frank E. Woods USA

‘ 0236936 [1913 (A Modem Jekyll and Hyde usa
0154614 [1915 |Homible Hyde Howell Hansel USA
0011130 [1920 |Dr. Jekyll and Mr. Hyde John 5. Roberson Denmark 49
0011121 [1920 |Dr. Jekyll and Mr. Hyde J.Charles Haydon USA 40
0011348 [1920 (Der Januskopf F.W.Mumau Germany 107
0022835 |1931 |Dr Jekyll and Mr. Hyde Rouben Mamaoulian usa 98
0211340 [1932 |Dr. Jekyll and Mr. Hyde William Vance 10
0033553 [1941 |Dr. Jekyll and Mr. Hyde Wictor Fleming USA 113
0131361 |1944 |Mighty Mouse Meets Jekyll and Hyde Cat Mannie Davis usa i}
0039338 |1947 |Dr. Jekyll and Mr. Mouse Joseph Barbera, William Hanna usa g
0228329 [1950 |Gentleman Jekyll and Driver Hyde David Bairstow 8
1336612 (1950 |[The Strange Case of Dr. Jekyll and Mr. Hyde 69
0043515 |1951 |El extrafio caso del hombre y la bestia Marnio Soffici usa a0
0713926 [1951 |Dr. Jekyll and Mr. Hyde 30
0045469 [1953 |Abbott and Costello Meet Dr. Jekyll and Mr. Hyde Charles Lamant usa 76
IMDB Year |(Title Diirector(s) Country Dwration
0394419 [1925 |Dr. Jekyll and Mr. Hyde Allen Reisner 60
1613620 (1956 |Dr Jekyll and Mr. Hyds Philip Saville 60
0053348 [1959 |Le testament du Docteur Cordelier Jean Renoir 95
0054416 [1960 |The Tweo Faces of Dr. Jekyll Terence Fisher UsA 88 o

Figure 5.18: creating alternate backgrounds using a TableRenderer

Let’s take a look at the JekyllHydeTableV6®® example to see what this custom TableRenderer looks

#http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter- 542043-c05¢13_jekyllhydetablevé.java

http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-5#2043-c05e13_jekyllhydetablev6.java
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-5#2043-c05e13_jekyllhydetablev6.java

1
2
3
4
5
6
7
8

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

Chapter 5: Adding AbstractElement objects (part 2)

like.

class AlternatingBackgroundTableRenderer extends TableRenderer {
private boolean is0Odd = true;
public AlternatingBackgroundTableRenderer (
Table modelElement, Table.RowRange rowRange) ({
super(modelElement, rowRange);
}
public AlternatingBackgroundTableRenderer(Table modelElement) {
super(modelElement);
}
@0verride
public AlternatingBackgroundTableRenderer getNextRenderer() {
return new AlternatingBackgroundTableRenderer (
(Table) modelElement);
}
@0Override
public void draw(DrawContext drawContext) {
for (int i = 0;
i < rows.size() && null != rows.get(i) & null != rows.get(i)[Q];
i++) {
CellRenderer|] renderers = rows.get(i);
Rectangle leftCell =
renderers|[0] .getOccupiedAreaBBox();
Rectangle rightCell =
renderers|renderers.length - 1].getOccupiedAreaBBox();
Rectangle rect = new Rectangle(
leftCell.getleft(), leftCell.getBottom(),
rightCell.getRight() - leftCell.getlLeft(),
leftCell.getHeight());
PdfCanvas canvas = drawContext.getCanvas();
canvas.saveState();
if (is0dd) {
canvas.setFillColor(Color.LIGHT _GRAY);
isOdd = false;
} else {
canvas.setFillColor(Color.YELLOW);
is0dd = true;
}
canvas.rectangle(rect);
canvas.fill();
canvas.restoreState();

147

42
43
44

D W N~

Chapter 5: Adding AbstractElement objects (part 2) 148

super.draw(drawContext);

We create constructors that are similar to the TableRenderer constructors (line 3-9), and we override
the getNextRenderer () method so that it returns an AlternatingBackgroundTableRenderer (line
10-14). We introduce a boolean variable named is0dd to keep track of the rows (line 2).

The draw() method is where we do our magic (line 15-43). We loop over the rows (line 17-19), and
we get the CellRenderer instances of all the cells in each row (line 20). We get the renderer of the
left cell and the right cell in each row (line 21-24), and we use those renderers to determine the
coordinates of the row (line 25-28). We draw the Rectangle based on those coordinates in a color
that depends on the alternating value of the is0dd parameter (line 29-40).

In the next code snippet, we’ll create a table, and we’ll declare the AlternatingBackgroundTableRen-
derer as the new renderer for that table.

Table table = new Table(new float[]|{3, 2, 14, 9, 4, 3});

int nRows = resultSet.size();

table.setNextRenderer(new AlternatingBackgroundTableRenderer (
table, new Table.RowRange(@, nRows - 1)));

Note that we have to define the RowRange. We take the number of elements in our resultSet after
having removed the header row. That gives us the number of actual rows that we are going to add
to the table, and to which we want to apply an alternating background.

Figure 5.19 shows another type of background. The width of the “Title” column represents four
hours; the colored bar in the “Title” cells represents the run length of the video. For instance: if the
colored bar takes half of the width of the cell, the run length of the movie is half of four hours; that
is: two hours.

Chapter 5: Adding AbstractElement objects (part 2)

149

File

Edit View Window

EL'I jekyll_hyde_table?.pdf - Adobe Acrobat Pro

Help

- O

s

x

E}Open‘@(:reate' |D@@@‘@@@&@J

L1l

Customize ~ ‘ @

® @ [3]re| [N G | = @ B=E Tools | Fill&Sign . Comment
-
IMDB Year |Title Directoris) Couniry Duration
0081853 (1980 |Dr. Jekyll and Mr. Hyde Alastair Reid 115
0082272 |1981 |Docteur Jekyll et les femmes ‘Walerian Borowczyk France g2
0084171 1982 gether Again Jerry Belson Denmark a7
0821767 |1986 usa 50
0090086 |1986 |Strannaya istoriya doktora Dzhekila | mistera Khayda Aleksandr Orlov Soviet-Union |92
1003605 |1986 dmore Meets Dr. Jekyll and Mr. Hyde Rick Reinert 60
0097263 (1989 Gérard Kikaine Usa 85
0098393 |1989 ase of Dr. Jekyll and Mr. Hyde Michael Lindsay-Hogg 60
0099875 |1990 |Jekyll & Hyde David Wickes usa 96
0112895 (1995 |Dr. Jekyll and Ms. Hyde David Price Usa 90
0326471 [isas |G < <y Swan 795
0117002 (1996 |Mary Reilly Stephan Frears Usa 108
0117034 (1996 |Mi nombre es sombra Gonzalo Suarez Spain 90
0230158 |2000 |Dr.Jekyll and Mr. Hyde Colin Budds usa 105
0346893 |2002 |Dr.Jekyll and Mr. Hyde Mark Redfield usa 109
0385664 |2003 |The Dr. Jekyll & Mr. Hyde Rock 'n Roll Musical Andre Champagne usa 91
0365137 (2003 Hyde Tony Marsiglia Usa 88
0340083 |2003 |Dr.Jekyll and Mr. Hyde Maurice Phillips 98
0443656 (2004 nge Game of Hyde and Sesk MNathan Hill Austalia 30
2090535 |2004 Alvaro Femnandez, Alberto Hermida |Spain 14
0472186 |2006 Dr. Jekyll and Mr. Hyde John Carl Buechler usa g9
IMDB Year Directoris) Couniry Duration
0425150 (2008 Nick Stillwell UsA 89
0393394 (2007 Scoft Zakarin Usa
3281326 (2008 James lan Mair USA 78
1159984 2008 Paolo Barzman Usa 89
W
azen0n |anaa Coceatt WAool s e

Figure 5.19: introducing visual information using a CellRenderer

These are the color codes we used:

No background— we don’t know the run length of the movie,
Green background— the movie is shorter than 90 minutes,
Orange background— the movie is longer than 90 minutes, but shorter than 4 hours,

Red background- the move is longer than 4 hours (e.g. it’s a series with many episodes). In
this case, we clip the length to 240 minutes.

0 = O O b W N =~

W W W W N DNDNDNDDNNDNNMNNDNNDDND-S AP 2SS
W N PO O 00 NO0O O i WOWNPHO O 00 NO0 O ik WOWN PO O

Chapter 5: Adding AbstractElement objects (part 2) 150

The code for the custom CellRenderer to achieve this can be found in the JekyllHydeTable7*
example.

private class RunlengthRenderer extends CellRenderer {
private int runlength;
public RunlengthRenderer(Cell modelElement, String duration) {
super(modelElement);
if (duration.trim().isEmpty()) runlength = 0;
else runlength = Integer.parselnt(duration);
}
@0verride
public CellRenderer getNextRenderer() ({
return new RunlengthRenderer (
getModelElement(), String.valueOf(runlength));
}
@0verride
public void drawBackground(DrawContext drawContext) ({
if (runlength == 0) return;
PdfCanvas canvas = drawContext.getCanvas();
canvas.saveState();
if (runlength < 90) {
canvas.setFillColor(Color.GREEN);
} else if (runlength > 240) {
runlength = 240;
canvas.setFillColor(Color.RED);
} else {
canvas.setFillColor(Color.ORANGE);
}
Rectangle rect = getOccupiedAreaBBox();
canvas.rectangle(rect.getlLeft(), rect.getBottom(),
rect.getWidth() * runlength / 240, rect.getHeight());
canvas. fill();
canvas.restoreState();
super .drawBackground(drawContext);

Once more, we create a constructor (line 3-7) and we override the getNextRenderer() method
(line 8-12). We store the run length of the video in a runlength variable (line 2). We override
the drawBackground() method and we draw the background using the appropriate size and color
depending on the value of the runlength variable (line 13-32).

http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter- 5#2044-c05e14_jekyllhydetablev7.java

http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-5#2044-c05e14_jekyllhydetablev7.java
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-5#2044-c05e14_jekyllhydetablev7.java

Chapter 5: Adding AbstractElement objects (part 2) 151

We'll conclude this example with a trick to keep the memory use low when creating and adding
tables to a document.

Tables and memory use

Figure 5.20 shows a table that spans 33 pages. It has three columns and a thousand rows.

T large_table.pdf - Adobe Acrabat Pro - O x
File Edit View Window Help *
o — E T E
B Open | f} Create ~ | D @ @ @ | {é} © kg r_é E@ Eb ‘@' Customize - | lz‘
-ly-f33| N | () (o | Tools @ Fill & Sign | Comment
~

Table header 1 | Table header 2 Table header 2 Table header 1 | Table header 2 Table header 2

Row 1: column 1 Row 1: column 2 Row 1 eolumn 3 Row 32: column 1 Row 32: column 2 Row 32: column 3

Row 2; column 1 Row 2; column 2 Row 2; column 3 Row 33; column 1 Row 33; column 2 Row 33; column 3

Row 3; column 1 Row 3; column 2 Row 3; column 2 Row 34; column 1 Row 34; column 2 Row 34; column 3

Row 4: column 1 Row 4. column 2 Row 4 column 3 Fow 35 column 1 Row 35; column 2 Row 35: column 3

Row 5; column 1 Row 5; column 2 Row 5; column 3 Row 38; column 1 Row 38; column 2 Row 38, column 3

Row 8; column 1 Row &; column 2 Row 8; column 2 Row 37; column 1 Row 37; column 2 Row 37; column 3

Row T, column 1 Row 7, column 2 Row 7, column 3 Row 38; column 1 Row 38; column 2 Row 38 column 3

Row 8; column 1 Row 2; column 2 Row 2; column 2 Row 39; column 1 Row 20; column 2 Row 38; column 3

Row 8: column 1 Row 9; column 2 Row 9; eolumn 3 Row 40; column 1 Row 40: column 2 Row 40: column 3

Row 10; column 1 Fow 10; column 2 Row 10; column 3 Row 41; column 1 Row 41; column 2 Row 41; column 3

Row 11; column 1 Row 11; column 2 Row 11; column 3 Row 42; column 1 Row 42; column 2 Row 42; column 3

Row 12 column 1 Row 12: column 2 Row 12: column 3 Fow 43 column 1 Row 43; column 2 Row 43: column 3

Row 13; column 1 Row 13; column 2 Row 13; column 3 Row 44; column 1 Row 44; column 2 Row 44 column 3

Row 14; column 1 Row 14; column 2 Row 14; column 3 Row 45; column 1 Row 45; column 2 Row 45; column 3

Fow 15 column 1 Fow 15: column 2 Row 15: column 3 Fow 48 column 1 Fow 46: column 2 Row 48: column 3

Row 18; column 1 Row 18; column 2 Row 18; column 3 Row 47; column 1 Row 47; column 2 Row 47; column 3

Row 17: column 1 Row 17: column 2 Row 17: column 3 Row 48; column 1 Row 48; column 2 Row 48: column 3

Row 18; column 1 Fow 18; column 2 Row 18; column 3 Row 48; column 1 Fow 48; column 2 Row 48; column 3

Row 19; column 1 Row 18; column 2 Row 18; column 3 Row 50; column 1 Row 50; column 2 Row 50; column 3

Row 20: column 1 Row 20: column 2 Row 20: column 3 Row 51 column 1 Row 51: column 2 Row 512 column 3

Row 21; column 1 Row 21; column 2 Row 21; column 3 Row 52; column 1 Row 52; column 2 Row 52; column 3

Row 22; column 1 Row 22; column 2 Row 22; column 3 Row §3; column 1 Row 53; column 2 Row 53; column 3

Fow 23 column 1 Row 23: column 2 Row Z3: column 3 Fow 54 column 1 Row 24 column 2 Row 24: column 3

Row 24; column 1 Row 24; column 2 Row 24; column 3 Row 55; column 1 Row 55; column 2 Row 55 column 3

Row 25; column 1 Row 25; column 2 Row 25: column 3 Row 58; column 1 Row 56 column 2 Row 58: column 3

Row 26; column 1 Row 26; column 2 Row 26, column 3 Row 57; column 1 Row 57; column 2 Row 57 column 3

Row 27; column 1 Row 27; column 2 Row 27; column 3 Row 58; column 1 Row 58; column 2 Row 58; column 3

Row 28; column 1 Row 28; column 2 Row 28: column 3 Row 52; column 1 Row 59; column 2 Row 58: column 3

Row 28; column 1 Row 28; column 2 Row 28; column 3 Row 80; column 1 Row 80; column 2 Row 80; column 3

Row 30; column 1 Row 20; column 2 Row 30; column 3 Row 81; column 1 Row &1; column 2 Row 81; column 3

Fow 31; column 1 Fow 31. column 2 Row 312 column 3 Fow B2. column 1 Row 62; column 2 Row B2: column 3

| Table footer 1 | Table footer 2 Table footer 3 Table footer 1 | Table footer 2 Table footer 3

v

Figure 5.20: working with large tables

Suppose that we would create a Table object consisting of 3 header cells, 3 footer cells, and
3,000 normal cells, before adding this Table to a document. That would mean that at some point,
we’d have 3,006 Cell objects in memory. That can easily lead to an OutOfMemoryException or an
OutOfMemoryError. We can avoid this by adding the the table to the document while we are still
adding content to the table. See the LargeTable® example.

8http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-5#2825-c05e15_largetable.java

http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-5#2825-c05e15_largetable.java
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-5#2825-c05e15_largetable.java

© 00 9 O O b W N =

S =Y
N O O b WO N~ O

Chapter 5: Adding AbstractElement objects (part 2) 152

Table table = new Table(3, true);
table.addHeaderCell("Table header
table.addHeaderCell("Table header
table.addHeaderCell("Table header
table.addFooterCell("Table footer
table.addFooterCell("Table footer
table.addFooterCell("Table footer
document .add(table);
for (int i = 0; i < 1000; i++) {
table.addCell(String. format("Row %s; column 1", i + 1));
table.addCell(String. format("Row %s; column 2", i + 1));
table.addCell(String. format("Row %s; column 3", i + 1));
if (1 %50 == 0) {
table. flush();

}
table.complete();

The Table class implements the ILargeElement interface. This interface defines methods such as
setDocument (), isComplete() and flushContent() that are used internally by iText. When we use
the ILargeElement interface in our code, we only need to use the flush() and complete() method.

We start by creating a Table for which we set the value of the largeTable parameter to true (line
1). We add the Table object to the document before we’ve completed adding content (line 8). As we
marked the table as a large table, iText will use the setDocument() method internally so that the
table and the document know of each other’s existence. We add our 3,000 cells in a loop (line 9), but
we flush() the content every 50 rows (line 13-15). When we flush the content, we already render
part of the table. The Cell objects that were rendered are made available to the garbage collector
so that the memory used by those objects can be released. Once we’ve added all the cells, we use
the complete() method to write the remainder of the table that wasn’t rendered yet, including the
footer row.

This concludes the chapter about tables and cells.

Ssummary

In this chapter, we’ve experimented with tables and cells. We talked about the dimensions and the
alignment of tables, cells, and cell content. We learned about the difference between the margin and
the spacing of a cell. We changed the borders of tables and cells using predefined Border objects
and using a custom Cel1Renderer implementation. We nested tables, repeated headers and footers,
changed the way tables are split when they don'’t fit a page. We extended the TableRenderer and
the Cel1Renderer class to implement special features that aren’t offered out-of-the-box. Finally, we
learned how to reduce the memory use when creating and adding a Table.

Chapter 5: Adding AbstractElement objects (part 2) 153

We could stop here, because we've now covered every building block, but we’ll add two more
chapters to discuss some extra functionality that is useful when creating PDF documents using
iText.

Chapter 6: Creating actions,
destinations, and bookmarks

When we discussed the Link building block in chapter 3, we created a URI action that opened a
web page on IMDB when we clicked the text rendered by the Link object. We briefly mentioned
that clickable areas are defined using Link annotations, and we referred to chapter 6 —this chapter—
when we explained that createURI() created only one of many types of actions. In the examples
that follow, we’ll discover some more types, and we’ll also learn about different types of destinations
that can be used in a link. Finally, we’ll also use those actions and destinations to create outlines,
better known as bookmarks.

URI actions

If you look at the AbstractAction class, you notice that it has a method named secAction(). When
you use this method on a building block, you can define actions that will be triggered when clicking
on its content. This is an alternative to using the Link object.

The setAction() method doesn’t make sense for every building block. For instance: you
can’t click an AreaBreak. Please consult the appendix to find out for which objects the
setAction() method can be used.

In figure 6.1, we see a PDF that is almost identical to the one we created in chapter 4 when we
rendered the entries in our CSV file to a PDF with a numbered list.

W N O O & W N =

B) S s s
<N O O WO N =~ O ©

Chapter 6: Creating actions, destinations, and bookmarks

155

ﬁ ekyll_hyde_action_uri.pdf - Adobe Acrobat Pro - O b'4

File Edit View Window Help *

=) open ‘ f} Create = | B & % = ‘ B © 2 (& @ & % Customize ~ ‘ |Z|
®) /13 ‘ 1Y @ | (=) () | (5 | Tools | Fill & Sign Comment

1. Dr. Jekyll and Mr. Hyde

Directed by Otis Turner (USA, 1908)

2. The Duality of Man

Directed by (UK htte//wwwimdb.com/itie/t10200593]

3. Den skaebnesvangre opfindelse
Directed by August Blom (USA, 1910)
4. Dr. Jekyll and Mr. Hyde

Directed by Lucius Henderson (USA, 1912)

Figure 6.1: using setAction() on a ListItem

In the original example, we used a Link object so that you could jump to the corresponding IMDB
page when clicking the title. In the URIAction®” example, we make the complete ListItem clickable.

List<List<String>> resultSet = CsvTo2DList.convert(SRC, "[");
resultSet.remove(0);
com.itextpdf.layout.element.List list =
new com.itextpdf.layout.element.lList(ListNumberingType.DECIMAL);
for (List<String> record : resultSet) {
ListItem 1i = new ListItem();
li.setKeepTogether(true);
li.add(new Paragraph().setFontSize(14).add(record.get(2)))
.add(new Paragraph(String. format(
"Directed by ¥%s (%s, %s)",
record.get(3), record.get(4), record.get(1))));
File file = new File(String. format(
"src/main/resources/img/%s. jpg", record.get(0)));
if (file.exists()) {
Image img = new Image(ImageDataFactory.create(file.getPath()));
img.scaleToFit (10000, 120);
li.add(img);

8http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-6#2567-c06e01_uriaction.java

http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-6#2567-c06e01_uriaction.java
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-6#2567-c06e01_uriaction.java

18
19
20
21
22
23
24

Chapter 6: Creating actions, destinations, and bookmarks

}

String url = String. format(

"http://www.imdb.com/title/tt%s", record.get(Q));

li.setAction(PdfAction.createURI(url));
list.add(1i);

document.add(list);

156

In line 21, we create a URI action using a link to IMDB and we set the action for the complete list
item using the setAction() method.

Named actions

Figure 6.2 shows links that are added to the first and the last page of a similar document. The link
on the first page is marked “Go to last page”; the link on the last page is marked “Go to first page”,
and that’s exactly what the links do when you click them.

File Edit View Window Help £
[open ‘ @ Create ~ | D [N @ @ ‘ 2okl @ Customize ~ ‘ lz‘

&

Tools Fill & Sign Comment

@hpe| G @@][] HB |

~

Go to last page
1. Dr. Jekyll and Mr. Hyde
Directed by Otis Turner (USA, 1908)
2. The Duality of Man
Directed by (UK, 1910)

3. Den skeebnesvangre opfindelse

Directed by August Blom (USA, 1910)

72. The Strange Case of Jekyll and Hyde
Directed by Jesse MaGill (, 2016)

Go to first page

Figure 6.2: Named actions

We used named actions to achieve this; see the NamedAction” example.

http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter- 6#2568-c06e02_namedaction.java

http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-6#2568-c06e02_namedaction.java
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-6#2568-c06e02_namedaction.java

0 = O O b W N =

Chapter 6: Creating actions, destinations, and bookmarks 157

Paragraph p = new Paragraph()
.add("Go to last page")
.setAction(PdfAction.createNamed(PdfName.lLastPage));
document.add(p);
p = new Paragraph()
.add("Go to first page")
.setAction(PdfAction.createNamed(PdfName.FirstPage));
document .add(p);

The createNamed() method accepts a PdfName as a parameter. You can use one of the following
values:

+ PdfName.FirstPage— the action allows you to jump to the first page of the document.

+ PdfName.PrevPage— the action allows you to jump to the previous page in the document.
+ PdfName.NextPage— the action allows you to jump to the next page in the document.

+ PdfName.LastPage— the action allows you to jump to the last page of the document.

You could create these names yourself, for instance new PdfName("PrevPage"), butit’s always better
to use the names that are predefined in the PdfName class.

O iText won’t check if you pass a parameter that corresponds to one of these four values,
because a PDF viewer may support additional, non-standard named actions. However, any
document using such a non-standard action isn’t portable.

These named actions allow us to navigate through a document, but they are rather limited, aren’t
they? If we want to create a table of contents that allows us to jump to a specific page, we need a
GoTo action.

GoTo actions

Figure 6.3 shows the table of contents of the Jekyll and Hyde story. If we’d click on a line, we’d jump
to the corresponding page.

W N O O & W N =

[Y
O b W N =~ O ©

Chapter 6: Creating actions, destinations, and bookmarks 158
L jekyll_hyde_toc1.pdf - Adobe Acrobat Pro -] x
File Edit View Window Help *

open |Bloete- | B @ B B B | @ © 3 b B & % customize ~ | o
® /35 ‘ ILY @ | (=) () ‘ = | Tools : Fill & Sign = Comment
Table of Contents
STORY OF THEDOOR e e e 1
SEARCH :FOR I\'IR HYDE ... 3
DROJEKYLL WAS QUITE AT EASE ... 7
THE CAREW MURDER CASE e 9
INCIDENT OF THE LETTER 11
INC]I)ENT OF DR L‘ANYON ...]3
INCIDENT AT THE WINDOW 15
THE LAST NIGHT ..]6
DR L‘A‘N-YON'S NAARRATI\:E ... 2 2
HENRY JEKYLL'S FULL STATEMENT OF THE CASE 25

Figure 6.3: A clickable table of contents

To achieve this, we keep track of the titles and the page numbers on which these titles appear. The

TOC_GoToPage’* example shows how.

BufferedReader br = new BufferedReader(new FileReader(SRC));
String name, line;
Paragraph p;
boolean title = true;
int counter = 0Q;
List<SimpleEntry<String, Integer>> toc = new ArraylList<>();
while ((line = br.readLine()) != null) {
p = new Paragraph(line);
p.setKeepTogether (true);
if (title) {
name = String.format("title%02d", counter++);
p.setFont(bold).setFontSize(12)
.setKeepWithNext(true)
.setDestination(name);
title = false;

°Thttp://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter- 6#2569-c06e03_toc_gotopage.java

http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-6#2569-c06e03_toc_gotopage.java
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-6#2569-c06e03_toc_gotopage.java

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

Chapter 6: Creating actions, destinations, and bookmarks 159

document .add(p);
toc.add(new SimpleEntry(line, pdf.getNumberOfPages()));

}
else {
p.setFirstLineIndent(36);
if (line.isEmpty()) {
p.setMarginBottom(12);
title = true;
}
else {
p.setMarginBottom(Q);
}
document . add(p);
}

}
document .add(new AreaBreak(AreaBreakType.NEXT _PAGE));

p = new Paragraph().setFont(bold).add("Table of Contents");
document .add(p);
toc.remove(0Q);
List<TabStop> tabstops = new ArraylList();
tabstops.add(new TabStop(580, TabAlignment.RIGHT, new DottedLine()));
for (SimpleEntry<String, Integer> entry : toc) {
p = new Paragraph()
.addTabStops(tabstops)
.add(entry.getKey())
.add(new Tab())
.add(String.valueOf(entry.getValue()))
.setAction(PdfAction.createGoTo(
PdfExplicitDestination.createFit(entry.getValue())));
document.add(p);

Most of the code repeats what we’ve done before to render the TXT file to a PDF, but these are the
new lines that interest us the most:

« Line 6: we create an Arrayl ist named toc that will contain a series of SimpleEntry key-value
pair entries. The key is a String we’ll use for the title. They value is an Integer we’ll use for
the page number.

« Line 17: each time we add a title to the document (line 10-19), we add a new SimpleEntry to
the toc list. We get the current page number using the getNumberOfPage() method.

« Line 31-33: once the full text is added, we go to a new page. We add a Paragraph saying "Table
of Contents".

Chapter 6: Creating actions, destinations, and bookmarks 160

« Line 34: we remove the first entry of the list, because that’s the title of the book, not the title
of a chapter.

« Line 35-36: we create a list of TabStop elements. We use a DottedLine as the tab leader.

« Line 37-46: we loop over all the entries in our toc. We use the key of each entry as well as the
corresponding value to construct a Paragraph with the title and the page number as content.
We also use the page number to create a GoTo action that jumps to that specific page.

In line 43, we use the createGoTo() method with a PdfExplicitDestination object as a parameter.
The PdfExplicitDestination class extends the PdfDestination class. We’ll take a closer look at
these classes later on in this chapter. What’s more important right now, is that there are two problems
with this example, one problem is worse than the other.

1. The link jumps to another page in the document and shows this page in full. A more
elegant solution would be to jump to the start of the actual title. We could use a different
PdfExplicitDestination to achieve this (for instance createFitH() instead of createFit()).

2. The link doesn’t always jump to the correct page. We store the page number of the last page
in the document at the moment we add the title. That’s the page number of the current page.
However, we're also using the setKeepWithNext () method. This method forwards the title to
a new page if the first paragraph of the chapter doesn’t fit the current page. In that case, our
TOC points at the wrong page, more specifically at the page just before the one we need.

We'll fix these two problems in the next example. Instead of an explicit destination, we’ll use named
destinations for a change.

Named destinations

Figure 6.4 looks almost identical to figure 6.3. The fact that the page numbers are now correct is the
only visible difference.

0 N O O &~ W N -

Y
W N~ O

Chapter 6: Creating actions, destinatio

ns, and bookmarks 161

T jekyll_hyde_toc2.pdf - Adobe Acrobat Pro - o x
File Edit View Window Help *
= open ‘ ﬂ Create ~ | B & (% = | 82 @ p B B & % Customize ~ ‘ IZ‘
f /35 | Ik @I | - '|' | (= | Tools Fill & Sign Comment

Table of Contents

STORY OF THE DO R 1
SEARCH FOR MR HY D 4
DR JERYLL WAS QUITE AT EASE | it e e 8
THE CAREW MURD ER CASE 9
INCIDENT OF THE LT TR 11
INC D ENT OF DR, LAN Y ON 13
INC D ENT AT THE WIND O W 15
THE LA T NIGH T 16
DR LANY ON'S NARRA T IV E 22
HENRY JEKYLL'S FULL STATEMENT OF THE CASE 26

Figure 6.4: A clickable table of contents

The other difference is that we now used named destinations. We create those destinations by using

the setDestination() method.

This method is defined in the ElementPropertyContainer and can

be used on many building blocks (see appendix). In the TOC_GoToNamed®* example, we use it on

a Paragraph.

BufferedReader br = new BufferedReader (new FileReader(SRC));

String name, line;
Paragraph p;

boolean title = true;
int counter = 0;

List<SimpleEntry<String,SimpleEntry<String, Integer>>> toc = new ArraylList<>();
while ((line = br.readlLine()) != null) {
p = new Paragraph(line);

p.setKeepTogether (true);

if (title) {

name = String.format("title%02d", counter++);

SimpleEntry<String,

Integer> titlePage

= new SimpleEntry(line, pdf.getNumberOfPages());

*http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-6#2570-c06e04_toc_gotonamed.java

http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-6#2570-c06e04_toc_gotonamed.java
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-6#2570-c06e04_toc_gotonamed.java

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

Chapter 6: Creating actions, destinations, and bookmarks

p.setFont(bold).setFontSize(12)
.setKeepWithNext(true)
.setDestination(name)
.setNextRenderer (new UpdatePageRenderer(p, titlePage));
title = false;
document .add(p);
toc.add(new SimpleEntry(name, titlePage));

}
else {
p.setFirstLineIndent(36);
if (line.isEmpty()) {
p.setMarginBottom(12);
title = true;
}
else {
p.setMarginBottom(Q);
}
document . add(p);
}

}
document .add(new AreaBreak(AreaBreakType.NEXT_PAGE));

p = new Paragraph().setFont(bold)
.add("Table of Contents").setDestination("toc");
document .add(p);
toc.remove(0Q);
List<TabStop> tabstops = new ArraylList();
tabstops.add(new TabStop(580, TabAlignment.RIGHT, new DottedLine()));
for (SimpleEntry<String, SimpleEntry<String, Integer>> entry : toc) {
SimpleEntry<String, Integer> text = entry.getValue();
p = new Paragraph()
.addTabStops(tabstops)
.add(text.getKey())
.add(new Tab())
.add(String.valueOf(text.getValue()))
.setAction(PdfAction.createGoTo(entry.getKey()));
document . add(p);

Let’s examine what is so different about this example when compared to the previous one.

162

« Line 6: we create an Arrayl ist named toc that will contain a series of SimpleEntry key-value
pair entries. The key is a String that we’ll use for a unique name. The value is no longer a

Chapter 6: Creating actions, destinations, and bookmarks 163

page number, but another SimpleEntry. The key of this second key-value pair will be the title
of the chapter; the value will be the corresponding page number.

« Line 11: we create a unique name for every title: tit1e@o, title@1, tit1e03, and so on.

« Line 12-13: we create a SimpleEntry named titlePage using the title as a key and the current
page number as the value. We know that this page number will be wrong in some cases. We
will use a custom ParagraphRenderer to update the page number.

+ Line 16: we use the unique name as a destination for the Paragraph using the setDestina-
tion() method.

o Line 17: we create an UpdatePageRenderer that will serve as the renderer for the title
paragraph. We pass the titlePage entry as a parameter so that the renderer can update the
page number.

« Line 20: we add a new SimpleEntry instance to the toc object. This entry contains the unique
name and another entry with the title and the page number.

« Line 34-37: once the full text is added, we go to a new page. We add a Paragraph saying "Table
of Contents". Note that we define a destination named "toc" for that paragraph (line 36).

« Line 38: we remove the first entry of the list, because that’s the title of the book, not the title
of a chapter.

« Line 39-40: we create a list of TabStop elements. We use a DottedLine as the tab leader.

+ Line 41-50: we loop over all the entries in our toc. We get the value of each entry (line 42)
to construct the content of each line in the table of contents: the title (line 45) and the page
number (line 47). We make the line clickable by adding a GoTo action that jumps to a location
in the document based on a name.

Summarized: we mark a building block using a unique name. Internally, iText will map that name
with a specific position —aka an explicit destination— in the document. Because of this, you can use
the createGoTo() method passing that name as a parameter to create a link to that specific building
block. We will even be able to use that name outside of the PDF document, but let’s take a look at
the UpdatePageRenderer before we do so.

protected class UpdatePageRenderer extends ParagraphRenderer {
protected SimpleEntry<String, Integer> entry;
public UpdatePageRenderer (
Paragraph modelElement, SimpleEntry<String, Integer> entry) {

super(modelElement);
this.entry = entry;
1
@0verride

© 00 < O U b W N =

(RN
N~ O

public LayoutResult layout(LayoutContext layoutContext) {
LayoutResult result = super.layout(layoutContext);
entry.setValue(layoutContext.getArea().getPageNumber());
return result;

13
14

(AN

, O O 00 9 O O b W N =~

Chapter 6: Creating actions, destinations, and bookmarks 164

The entry object contains a title and a page number. That page number could be wrong if the title
is moved to the next page. We can only know if that happens when the title paragraph is rendered.
Only at that moment, a layout decision will be made. The easiest way to update the page number
in the entry object, is to override the 1ayout() method as is done in line 11.

Remote GoTo actions

Figure 6.5 is a PDF with two links marked in blue. When we click on the first link, the PDF we
created in the previous example is opened on the first page in a new viewer window. When we
click on the second link, the same document is opened on the table of contents page in the current
window, replacing the document with the two links.

F jekyll_hyde_remote.pdf - Adobe Acrobat Pro - m} X
File Edit View Window Help *
[open | ﬁ“\g Create ~ | B @ @ = ‘ & e g (& @ & & Customize ~ ‘ lz‘

/1 | Ik ‘ - 'l' | | Tools Fill & Sign Comment

Read the amazing horror story Strange Case of Dr. Jekyll and Mr. Hyde or, if you're too afraid to
start reading the story, read the table of contents.

Figure 6.5: Links to named destinations in another PDF document

We use two Link objects to achieve this in the RemoteGoto®* example.

Link 1link1 = new Link("Strange Case of Dr. Jekyll and Mr. Hyde",
PdfAction.createGoToR(
new File(TOC_GoToNamed.DEST).getName(), 1, true));
Link 1ink2 = new Link("table of contents",
PdfAction.createGoToR(
new File(TOC_GoToNamed.DEST).getName(), "toc", false));
Paragraph p = new Paragraph()
.add("Read the amazing horror story ")
.add(1link1.setFontColor(Color.BLUE))
.add(" or, if you're too afraid to start reading the story, read the ")
.add(1ink2.setFontColor(Color.BLUE))

“http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-6#2571-c06e05_remotegoto.java

http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-6#2571-c06e05_remotegoto.java
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-6#2571-c06e05_remotegoto.java

Chapter 6: Creating actions, destinations, and bookmarks 165

12 .add(”.”);
13 document.add(p);

In line 2 and 3, we use the createGoToR() method to create a link to a remote PDF document.

« The first parameter is the name of the file we created in the previous example. We expect it
to be in the same directory as the file we refer from.

+ The second parameter is the page number; we want the link to jump to the first page.

 The third parameter indicates that we want to open the document in a new PDF viewer
window.

In line 5 and 6, we use another createGoToR() method to create a link to a named destination in
another document.

« The first parameter is the name of the file we created in the previous example.

« The second parameter is the name we used when we added the paragraph "Table of
Contents™.

+ The third parameter indicates that we want to open the document in the current PDF viewer
window.

There are many other variations of the createGoToR() method, but they are all similar to one of the
two methods that were just explained.

9 How can | create a link that opens a PDF in a new
browser window or tab?

There’s a short answer to this question: you can’t open a PDF in a new browser window
using PDF syntax.

It is a common misconception that the boolean parameter indicating whether or not the
PDF should be opened in the current window or in a new window, can also be used in
the context of a browser. This isn’t the case. There is a clear separation between the PDF
viewer and the browser. The PDF viewer is usually a closed container that doesn’t have
access to the browser functionality. You shouldn’t expect the PDF syntax to have the same
capabilities as HTML. Those are two separate technologies.

Talking about HTML: you can use JavaScript in a PDF file that is very similar to the JavaScript you’d
use in HTML. Many methods, such as methods that communicate with a server, are restricted, but
you also have some extra methods that are specific to PDF. For instance: the JavaScript inside a PDF
file has access to an app object that offers some functionality to communicate with the PDF viewer.

N O O B~ W N

Chapter 6: Creating actions, destinations, and bookmarks 166

JavaScript actions

We won’t go into detail regarding the JavaScript functionality in PDF, but we’ll create a simple PDF
that shows an alert when you click a link; see figure 6.6.

™
File Edit View Window Help *
E}Open | E\ﬂ Create ~ | =l @ C% @ | ‘@} ® B g E,}‘z @) @“ Customize ~ .‘

.f1| LY | =) (e | | Tools Fill & Sign = Comment

Click here if you want to be scared.

Warning: JavaScript Window -

£¥3 Boo!
[)
-

Figure 6.6: A PDF with a JavaScript action

We create the Link that allows us to trigger this alert in the JavaScript® example.

Link link = new Link("here",

PdfAction.createdavaScript("app.alert('Boo!"');"));
Paragraph p = new Paragraph()

.add("Click ")

.add(link.setFontColor(Color.BLUE))

.add(" if you want to be scared.");
document.add(p);

In the next example, we’ll use the same action, and we’ll make it follow by another action.

Chained actions

We've already used several create() convenience methods in the PdfAction class; we've ex-
perimented with createURI(), createGoTo(), createGoToR() and so on. If you consult the API
documentation for the PdfAction® class, you’ll find many more, such as createGoToE () to go to an
embedded PDF file, createLaunch() to launch an application. All of these other methods are out of
scope in the context of this tutorial, but we’ll look at one more action example, the ChainedActions®®
example. It explains how to chain actions.

*http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-6#2572-c06e06_javascript.java
http://itextsupport.com/apidocs/itext7/latest/com/itextpdf/kernel/pdf/action/PdfAction.html
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter- 6#2573-c06e07_chainedactions.java

http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-6#2572-c06e06_javascript.java
http://itextsupport.com/apidocs/itext7/latest/com/itextpdf/kernel/pdf/action/PdfAction.html
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-6#2573-c06e07_chainedactions.java
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-6#2572-c06e06_javascript.java
http://itextsupport.com/apidocs/itext7/latest/com/itextpdf/kernel/pdf/action/PdfAction.html
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-6#2573-c06e07_chainedactions.java

© 00 N O U b W N =

Chapter 6: Creating actions, destinations, and bookmarks 167

PdfAction action = PdfAction.createJavaScript("app.alert('Boo');");
action.next(PdfAction.createGoToR(
new File(CO6EQ4_TOC_GoToNamed.DEST).getName(), 1, true));

Link link = new Link("here", action);
Paragraph p = new Paragraph()

.add("Click ")

.add(link.setFontColor(Color.BLUE))

.add(" if you want to be scared.");
document .add(p);

In line 1, we create the same JavaScript action as in the previous example. We chain a remote GoTo
action to this JavaScript action using the next() method in line 2. Now when we click the word
"here", a Boo alert will be triggered first; then another PDF will open in a new window.

’,J The createSubmitForm() method is one of the many PdfAction methods we didn’t discuss.
We mention it here because of a common use case for the next () method. It is not unusual
to validate fields that were filled in manually before submitting a form. This validation
could be done using JavaScript. The submit action could be the last action in a validation

chain.

While we were talking about actions, we mentioned the concept of destinations a couple of times.
We also explained that links are actually annotations. In the next couple of examples, we’ll spend
some more time on these concepts.

Destinations

The PdfDestination class is the abstract superclass of the PdfExplicitDestination, the Pdf-
StringDestination, and the PdfNamedDestination class. The PdfExplicitDestination class can
be used to create a destination to a specific page, using specific coordinates if needed. PdfStringDes-
tination and PdfNamedDestination can be used to create a named destination.

0 I O O b WO N =~

B | s s sy s
© 00 9 O O » WO NN~ O ©

Chapter 6: Creating actions, destinations, and bookmarks 168

9 What's the difference between PdfStringDestination
and PdfNamedDestination?

That’s a great question, but the answer might require being read more than once.
Both PdfStringDestination and PdfNamedDestination can be used to create a named
destination, but:

« When we use the PdfNamedDestination class, the name will be stored inside the PDF
document as a PDF name object. This is how named destinations were originally
stored in PDF 1.1.

« When we use the PdfStringDestination class, the name will be stored as a PDF
string object. This was introduced in PDF 1.2, because a PDF string object offers
more possibilities than a name object.

Today, the name of a named destination should be stored as a PDF string, not as a PDF
name. The PdfNamedDestination class is offered should you need it, but it is recommended
that you use the PdfStringDestination class.

Using a PDF string as name is also the default way used by iText when you use the setDestination()
method. We'll discover another way to create named destinations once we discuss bookmarks, but
tirst, we’ll create a couple of explicit destinations in the ExplicitDestinations®” example.

PdfDestination jekyll =
PdfExplicitDestination.createFitH(1, 416);
PdfDestination hyde =
PdfExplicitDestination.createXY7Z(1, 150, 516, 2);
PdfDestination jekyll2 =
PdfExplicitDestination.createFitR(2, 50, 380, 130, 440);
document .add(new Paragraph()
.add(new Link("Link to Dr. Jekyll", jekyll)));
document . add(new Paragraph()
.add(new Link("Link to Mr. Hyde", hyde)));
document .add(new Paragraph()
.add(new Link("Link to Dr. Jekyll on page 2", jekyll2)));
document .add(new Paragraph()
.setFixedPosition(50, 400, 80)
.add("Dr. Jekyll"));
document .add(new Paragraph()
.setFixedPosition(150, 500, 80)
.add("Mr. Hyde"));
document .add(new AreaBreak(AreaBreakType.NEXT_PAGE));

*"http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-6#2574-c06e08_explicitdestinations.java

http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-6#2574-c06e08_explicitdestinations.java
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-6#2574-c06e08_explicitdestinations.java

Chapter 6: Creating actions, destinations, and bookmarks 169

20 document.add(new Paragraph()
21 .setFixedPosition(50, 400, 80)
22 .add("Dr. Jekyll on page 2"));

We create three different types of explicit destinations:

+ Line 1-2: an explicit destination that will go to page 1, and fit that page horizontally at
coordinatey = 416.

« Line 3-4: an explicit destination that will go to page 1, so that the top-left corner has the
coordinate x = 150; y = 516 and the zoom factor is set to 200%.

« Line 5-6: an explicit destination that will go to page 2, so that at least a rectangle is visible
with x = 50; y = 380 as the coordinate of the lower-left corner and x = 130; y = 440 as
the coordinate of the upper-right corner.

These links are added in lines 7-8, 9-10, and 11-12 respectively. We also add some text that marks
the destinations:

+ Line 13-15: some text at coordinate x = 50; y = 400 which is right below the first explicit
destination.

+ Line 16-18: some text at coordinate x = 150; y = 500, which puts it in the top-left corner of
the visible area when we go to the second explicit destination.

« Line 20-22: some text on the second page at coordinate x = 50; y = 400, which makes it fit
inside the rectangle defined in the third explicit destination.

We've used three different methods to create an explicit destination. The following table lists all
the methods that are available to create an explicit destination. The first parameter is always an int
referring to a page number, or a PdfPage instance. The other parameters, if any, are all of type float.

Method Parameters Description

createFit() - The page is displayed with its
contents magnified just enough to
fit the document window, both
horizontally and vertically.

createFitB() - The page is displayed magnified
just enough to fit the bounding
box of the contents (the smallest
rectangle enclosing all of its
contents).

Chapter 6: Creating actions, destinations, and bookmarks 170

Method Parameters Description

createFitH() top The page is displayed so that the
page fits within the document
window horizontally (the entire
width of the page is visible). The
extra parameter specifies the
vertical coordinate of the top edge
of the page.

createFitBH() top This option is almost identical to
createFitH(), but the with of the
bounding box of the page is
visible. This isn’t necessarily the
entire width of the page.

createfFitVv() left The page is displayed so that the
page fits within the document
window vertically (the entire
height of the page is visible). The
extra parameter specifies the
horizontal coordinate of the left
edge of the page.

createFitBV() left This option is almost identical to
createFitV(), but the height of
the bounding box of the page is
visible. This isn’t necessarily the
entire height of the page.

createXYZ() left, top, zoom The 1eft parameter defines an x
coordinate; top defines ay
coordinate; and zoom defines a
zoom factor. If you want to keep
the current x coordinate, the
current y coordinate, or zoom
factor, you can pass negative
values or 0 for the corresponding
parameter.

createFitR() left, bottom, right, top The parameters define a rectangle.
The page is displayed with its
contents magnified just enough to
fit this rectangle. If the required
zoom factors for the horizontal
and the vertical magnification are
different, the smaller of the two is
used.

Chapter 6: Creating actions, destinations, and bookmarks 171

So far, we've created Link objects either by passing a PdfAction object as a parameter, or a
PdfDestination. Both these methods create a PdfLinkAnnotation. We could have created that
PdfLinkAnnotation ourselves and we could have passed that annotation as a parameter. This allows
us to add some extra flavor to the link.

Link annotations

There are two links in the document shown in figure 6.7. One is underlined; the other is marked by
a rectangle.

ﬁ jekyll_hyde_annotation.pdf - Adobe Acrobat Pro - m] *

File Edit View Window Help *

=) open ‘ a Create ~ | B8 @& C% & | B2 o 2z [B & & Customize ~ A
L /2 ‘ LY | =) (g | | Tools Fill & Sign Comment

Click here if you want to be scared.

Go to the if you're too scared.

Figure 6.7: Link annotations

This line and rectangle shown in this screen shot are not part of the actual content of the PDF
document. They weren’t drawn using a sequence of moveTo(), lineTo(), and stroke() methods.
They are part of the link annotation, and they are drawn by the PDF viewer that renders annotations
on top of the existing content.

Also, when you would click the annotation, you would see a specific behavior. When clicking the
first link, the colors would be inverted. When clicking the second link, you’d have a push-down
effect. See the Annotation’® example.

http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-6#2575-c06e09_annotation.java

http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-6#2575-c06e09_annotation.java
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-6#2575-c06e09_annotation.java

O N O O & W N~

U U S G
0 90 O b WON -~ O

Chapter 6: Creating actions, destinations, and bookmarks

PdfAction js = PdfAction.createdavaScript("app.alert('Boo!"');");

PdfAnnotation lal = new PdflLinkAnnotation(new Rectangle(0, ©, 0, 0))
.setHighlightMode(PdfAnnotation.HIGHLIGHT _INVERT)
.setAction(js).setBorderStyle(PdfAnnotation.STYLE UNDERLINE);

Link link1l = new Link("here", (PdfLinkAnnotation)lal);

document .add(new Paragraph()

.add("Click ")
.add(link1)
.add(" if you want to be scared."));

PdfAnnotation 1a2 = new PdfLinkAnnotation(new Rectangle(0, 0, @, 0))
.setDestination(PdfExplicitDestination.createFit(2))
.setHighlightMode(PdfAnnotation.HIGHLIGHT_PUSH)
.setBorderStyle(PdfAnnotation.STYLE INSET);

Link 1ink2 = new Link("next page", (PdfLinkAnnotation)la2);

document .add(new Paragraph()

.add("Go to the ")
_add(1ink2)
.add(" if you're too scared."));

We recognize the two links:

172

« We create a JavaScript action in line 1. We use this object as an action for the PdfLinkAnnota-
tion we create in line 2. In line 2, we set the highlight mode to HIGHLIGHT_INVERT. This will
invert the colors when we click the link. In line 4, we set the border style to STYLE_UNDERLINE.
We use the PdfLinkAnnotation to create a Link object in line 5. We add a Paragraph with

this link in lines 6 to 9.

« We create another PdfLinkAnnotation in line 10. This time we set a destination; see line 11.
In line 12, we set the highlight mode to HIGHLIGHT_PUSH to get a push-down effect when we
click the link. In line 13, we set the border style to STYLE_INSET. We create a Link with this

PdfLinkAnnotation in line 14. We add another Paragraph in lines 15 to 18.

We could write a complete tutorial about annotations —and we will-, but whatever will be written
in that tutorial is out of scope in this tutorial. We’ll finish this chapter with a couple of bookmarks

examples.

Outlines aka bookmarks

We’ve already created a couple of documents that contained a table of contents. This table of contents
was added as an extra page, listing the different chapters and the corresponding page numbers. When
we clicked a line in this table of contents, we jumped to the corresponding chapter. In figure 6.8, we
see a table of contents of a different nature. It’s a table of contents that isn’t printed when we print

0 N O O & W N~

_ R
W N~ OO O

Chapter 6: Creating actions, destinations, and bookmarks 173

the document. We only see it when we open the bookmarks panel in our PDF viewer, and we can
use it to easily navigate the document by collapsing items in a tree structure.

ﬁ jekyll_hyde_outlinel.pdf - Adobe Acrobat Pro - m} X
File Edit View Window Help *
[=) open | Il Create - | B @ & ‘ & e g B b & Customize ~ | lz‘

(€)) f34| Ik ‘ (=) (o | ‘ Tools Fill & Sign Comment
@ Bookmarks [« [*] JSTORY OF THE DOOR

KP B B B Mr. Utterson the lawyer was a man of a rugged countenance that was never lighted by a smmle; cold, scanty
=P THE STRANGE CASE and embarrassed m discourse; backward m sentiment; lean, long, dusty, dreary and yet somehow lovable. At friendly
I_j‘ OF DR, JEKYLL AND | fmeetings, and when the wine was to his taste, something eminently human beaconed from his eye; something indeed
B MR H‘;’DE fwhich never found its way mto hus talk, but which spoke not only m these silent symbols of the after-dinner face, but
L;é i mnnnd fMore often and loudly in the acts of his life. He was austere with himself: drank gin when he was alone, to mortify a
7 TORY OF THE Jtaste for vintages; and though he enjoyed the theatre, had not crossed the doors of one for twenty years. But he had an
2 DOOR o approved tolerance for others; sometimes wondering, almost with envy, at the high pressure of spirits involved in their
. misdeeds; and 1n any extremity inclined to help rather than to reprove. "I incline to Cain's heresy." he used to say
§> ¥ SEARCH FOR MR isdeeds; and in any ity inclined to help rather th pr inclin in's heresy," h d y
HYDE quaintly: "I let my brother go to the devil in lus own way_" In this character, it was frequently his fortune to be the last
E P DR. JEKYLL WAS reputable acquaintance and the last good influence in the lives of downgoing men. And to such as these, so long as

QUITE AT EASE Jthey came about his chambers, he never marked a shade of change in his demeanour.
P THE CAREW No doubt the feat was easy to Mr. Utterson; for he was undemonstrative at the best, and even hus friendship
MURDER CASE seemed to be founded mn a sinular catholicity of good-nature. It 15 the mark of a modest man to accept Ius friendly

circle ready-made from the hands of opportumty; and that was the lawyer's way. His friends were those of his own

r
LICIDIE STOIF =12 lood or those whom he had known the longest; lus affections, like 1vy, were the growth of tume, they imphed no apt-

AETIER ess 1 the object. Hence, no doubt the bond that umited lum to Mr. Richard Enfield, lus distant kinsman, the well-
& INCIDENT OF DR. own man about town. It was a nut to crack for many, what these two could see in each other, or what subject they
LANYON could find in commeon. It was reported by those who encountered them m thewr Sunday walks, that they said nothing,
[inicinenT AT Tae ooked singularly dull and would hail with obvious relief the appearance of a friend. For all that, the two men put the

Figure 6.8: Bookmarks using named destinations

This tree structure is called an outline tree. Each branch and leaf of this tree is an outline object.
In iText, we create these objects using the PdfOutline class. In the TOC_OutlinesNames® example,
we use named destinations to jump to each chapter.

BufferedReader br = new BufferedReader(new FileReader(SRC));
String name, line;
Paragraph p;
boolean title = true;
int counter = 0;
PdfOutline outline = null;
while ((line = br.readLine()) != null) {
p = new Paragraph(line);
p.setKeepTogether(true);
if (title) {
name = String.format("title%02d", counter++);
outline = createOutline(outline, pdf, line, name);
p.setFont(bold).setFontSize(12)

**http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-6#2576-c06e10_toc_outlinesnames.java

http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-6#2576-c06e10_toc_outlinesnames.java
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-6#2576-c06e10_toc_outlinesnames.java

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

0 N O O & W N =~

_ s o
W N~ OO O

Chapter 6: Creating actions, destinations, and bookmarks 174

.setKeepWithNext(true)
.setDestination(name);
title = false;
document .add(p);

}
else {
p.setFirstLineIndent(36);
if (line.isEmpty()) {
p.setMarginBottom(12);
title = true;
}
else {
p.setMarginBottom(Q);
1
document . add(p);
}

We initialize a PdfOutline object in line 6. We create a unique name for each chapter title in line 11.
We use this name in line 15 as a destination, and pass it to the createOutline() method to create a
Pdfoutline that will link to the corresponding destination.

public PdfOutline createOutline(

PdfOutline outline, PdfDocument pdf, String title, String name) {
if (outline == null) {

outline = pdf.getOutlines(false);

outline = outline.addOutline(title);

outline.addDestination(

PdfDestination.makeDestination(new PdfString(name)));

return outline;
}
PdfOutline kid = outline.addOutline(title);
kid.addDestination(PdfDestination.makeDestination(new PdfString(name)));
return outline;

If the outline object passed to the createOutline() method is null, we’re at the very beginning
of our story. We get the root outline from the PdfDocument and we add an outline to this root
object with the first title we encounter. This is the title of our novel “THE STRANGE CASE OF
DR. JEKYLL AND MR. HYDE”. We want this PdfOutline to be the parent of all the other titles.
We use the makeDestination() method using a PdfString object. This is equivalent to creating a
PdfStringDestination using a String instance. We do more or less the same for the other titles.

(AN

, O © 00 9 O O b W N+~

Chapter 6: Creating actions, destinations, and bookmarks 175

When we create a destination using the setDestination() method, iText creates an XYZ destination
using the top-left coordinate of the corresponding building block and a zoom factor of 100%. This
creates the awkward effect that we no longer see the margin when we click on one of the bookmarks.
We can fix this by creating explicit destinations. See figure 6.9.

N © =D

® J N

5 I THE STRANGE CASE

OF DR. JEKYLL AND

MR. HYDE

¥ STORY OF THE
DOOR

IF SEARCH FOR MR.
HYDE

I DR.JEKYLL WAS
QUITE AT EASE

F THE cAREW
MURDER CASE

I INCIDENT OF THE
LETTER

T jekyll_hyde_outline2.pdf - Adobe Acrobat Pro - O X
File Edit View Window Help *
[~ open ‘ fj Create ~ | B & % B4 | 82 e [@ & & Customize ~ | lz‘
& / 34‘ I @H (=) | | Tools Fill & Sign Comment
Bookmarks [« [¥] STORY OF THE DOOR
P B M. Utterson the lawyer was a man of a rugged countenance that was never lighted by a smile; cold, scanty

and embarrassed in discourse; backward m sentiment; lean_ long, dusty. dreary and yet somehow lovable. At friendly
meetmgs. and when the wine was to lus taste, something eminently human beaconed from hus eye; something indeed
which never found its way into his talk, but which spoke not only in these silent symbols of the after-dinner face, but
more often and loudly in the acts of his life. He was austere with himself. drank gin when he was alone, to mortify a
taste for vintages: and though he enjoyed the theatre. had not crossed the doors of one for twenty years. But he had an
approved tolerance for others; sometimes wondering. almost with envy. at the lngh pressure of spints nvolved i thewr
misdeeds; and in any extremity inclined to help rather than to reprove. "I incline to Cain's heresy."” he used to say
quaintly: "T let my brother go to the devil in his own way." In this character, it was frequently his fortune to be the last
reputable acquaintance and the last good influence in the lives of downgoing men. And to such as these, so long as
they came about lus chambers, he never marked a shade of change m his demeancur.

No doubt the feat was easy to Mr. Utterson; for he was undemonstrative at the best. and even his friendship
seemed to be founded 1n a sumlar catholicity of good-nature. It 1s the mark of a modest man to accept his friendly
circle ready-made from the hands of opportumty; and that was the lawyer's way. His friends were those of lus own
blood or those whom he had known the longest; his affections, like 1vy, were the growth of time. they implied no apt-
ness in the object. Hence, no doubt the bond that united him to Mr. Richard Enfield, his distant kinsman, the well-
known man about town. It was a nut to crack for many, what these two could see in each other, or what subject they
could find in common. It was reported by those who encountered them in their Sunday walks. that they said nothing,

looked singularly dull and would hail with obvious relief the appearance of a friend. For all that, the two men put the
greatest store by these excursions, counted them the chief jewel of each week. and not only set aside occasions of

I INCIDENT OF DR.
LANYON

pleasure, but even resisted the calls of business, that they might enjoy them umnterrupted.
[P INMCINEMT AT TUE

Figure 6.9: Bookmarks using explicit destinations

We remember from the previous table of contents example for which we used explicit destinations
that it’s easy to point to the wrong page. Once again, we’ll use a renderer to make sure we link to
the correct page. See the TOC_OutlinesDestinations'* example.

BufferedReader br = new BufferedReader(new FileReader(SRC));
String line;
Paragraph p;
boolean title = true;
PdfOutline outline = null;
while ((line = br.readLine()) != null) {
p = new Paragraph(line);
p.setKeepTogether (true);
if (title) {
outline = createOutline(outline, pdf, line, p);
p.setFont(bold).setFontSize(12)

1%%http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-6#2577-c06e11_toc_outlinesdestinations.java

http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-6#2577-c06e11_toc_outlinesdestinations.java
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-6#2577-c06e11_toc_outlinesdestinations.java

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

_ O O 0 N O O b W N =~

RN

Chapter 6: Creating actions, destinations, and bookmarks 176

.setKeepWithNext(true);
title = false;
document . add(p);

}
else {
p.setFirstLineIndent(36);
if (line.isEmpty()) {
p.setMarginBottom(12);
title = true;
}
else {
p.setMarginBottom(Q);

}
document .add(p);

This code snippet is shorter than the previous one because we don’t have to create a name and we
don’t have to set that name as a destination. The main difference is in the createOutline() method.
It now looks like this:

public PdfOutline createOutline(
PdfOutline outline, PdfDocument pdf, String title, Paragraph p) {
if (outline == null) {
outline = pdf.getOutlines(false);
outline = outline.addOutline(title);
return outline;

}

OutlineRenderer renderer = new OutlineRenderer(p, title, outline);
p.setNextRenderer (renderer);
return outline;

We use the first title we encounter (when outline == null) as the top-level outline in the outline
tree. We create an OutlineRenderer to add the links to the kids of this top-level outline.

Chapter 6: Creating actions, destinations, and bookmarks 177

protected class OutlineRenderer extends ParagraphRenderer {
protected PdfOutline parent;
protected String title;
public OutlineRenderer(
Paragraph modelElement, String title, PdfOutline parent) {
super (modelElement) ;
this.title = title;
this.parent = parent;
}
@0verride
public void draw(DrawContext drawContext) {
super.draw(drawContext);
Rectangle rect = getOccupiedAreaBBox();
PdfDestination dest =
PdfExplicitDestination.createFitH(
drawContext.getDocument().getlLastPage(),
rect.getTop());
PdfOutline outline = parent.addOutline(title);
outline.addDestination(dest);

In this case, we override the draw() method. We create a PdfOutline object with the top-level outline
as parent (line 18), and we use the top y coordinate of the area occupied by the Paragraph as the top
parameter for an explicit destination that fits the page horizontally (line 14-17) as the destination
for that newly created outline (line 19).

If you study both examples carefully, you'll discover that the top-level outline of the example using
named destination can be clicked to jump to the title of the novel. This isn’t the case in the example in
which we create explicit destinations: we only created destinations for the titles of the chapters, not
for the title of the novel. The PdfOut1ine objects in an outline tree don’t need to be real bookmarks.
They don’t have to point to a destination on a specific page in the document. They can point to
nowhere; they can also be used to trigger an action. We’ll make one more bookmark example to
demonstrate this. Additionally, we’ll change the color and style of the elements in the bookmarks
panel.

Color and style of the outline elements.

In figure 6.10, we have a PDF document with a single blank page.

Chapter 6: Creating actions, destinations, and bookmarks 178

@ jekyll_hyde_outlines.pdf - Adcbe Acrobat Pro - m} X
File Edit View Window Help *

[open ‘@Create' | B @ @ = | @ 2 B2 (B B & T Customize ~ ‘ lz‘
J1| Iy | (=) () | | Tools Fill & Sign = Comment
Bookmarks M [
(B B @
=¥ pr. lekyll and Mr.
Hyde
I Link to IMDB
I More info:

S O|=|DT

&4
= E W The Duality of Man
© ¥ Link to IMDB
B More info:
=
T Directed by

' produced in UK
IF Released in 1910
& ¥ Den skabnesvangre
opfindelse
¥ Link to IMDB

¥ More info:
= -0F

Figure 6.10: Example of an outline tree without actual bookmarks

When we open the bookmark panel, we see an outline tree of which all first-level elements are titles
of a movie, cartoon or video. These outlines are the parent of two kids:

1. One shows “Link to IMDB” in bold and blue. When we click that outline, an URI action is
triggered that brings us to the corresponding web page.

2. The other reads as “More info:” in italic. It is closed by default, but when we open it, we see
information in different colors about the director, the country where the movie is produced,
and its release data.

None of these PdfOutline objects point to a location in the document. The Outlines'** example
shows how this outline tree was built.

19http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-6#2578-c06e12_outlines.java

http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-6#2578-c06e12_outlines.java
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-6#2578-c06e12_outlines.java

Chapter 6: Creating actions, destinations, and bookmarks 179

public void createPdf(String dest) throws IOException {

O N O O & W N~

1
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

PdfDocument pdf = new PdfDocument(new PdfWriter(dest));
pdf.addNewPage();
pdf.getCatalog().setPageMode(PdfName.UseOutlines);
PdfOutline root = pdf.getOutlines(false);
List<List<String>> resultSet = CsvTo2DList.convert(SRC, "|");
resultSet.remove(0);
for (List<String> record : resultSet) {
PdfOutline movie = root.addOutline(record.get(2));
PdfOutline imdb = movie.addOutline("Link to IMDB");
imdb.setColor(Color.BLUE);
imdb.setStyle(PdfOutline.FLAG_BOLD);
String url = String. format(
"http://www.imdb.com/title/tt%s", record.get(0));
imdb.addAction(PdfAction.createURI(url));
PdfOutline info = movie.addOutline("More info:");
info.setOpen(false);
info.setStyle(PdfOutline.FLAG_ITALIC);
PdfOutline director = info.addOutline("Directed by " + record.get(3));
director.setColor(Color.RED);
PdfOutline place = info.addOutline("Produced in " + record.get(4));
place.setColor(Color.MAGENTA);
PdfOutline year = info.addOutline("Released in " + record.get(1));
year .setColor (Color.DARK_GRAY);

}
pdf.close();

Let’s go through this code step by step:

« We create a PdfDocument (line 2) to which we add a single page (line 3). We change the page

mode so that the bookmarks panel is opened by default (line 4). We’ll learn more about page
mode, layout mode and other viewer preferences in the next chapter.

« We get the root object of the outline tree (line 5). The boolean parameter indicates if iText

needs to update the outlines. If true, the method will read the whole document and create
the outline tree. This isn’t necessary here, we can just get the cached outline tree. As we have
just created the PdfDocument there aren’t any outlines in that tree yet anyway.

« We create a list with all the records in our Jekyll and Hyde movie database (line 6) and we

remove the record with the field names (line 7). We loop over the different records (line 8 -
25).

« Each movie gets its own outline containing its title (line 9).

Chapter 6: Creating actions, destinations, and bookmarks 180

« We add a first child outline with as title “Link to IMDB” (line 10). We change the color of this
title to blue (line 11) and bold (line 12). We add a URI action that jumps to the movie page for
that specific movie on IMDB (line 13-15).

« We add a second child outline with as title “More info:” (line 16). By default all the outlines
we create are open; in this case, we want the outline to be closed (line 17). We change the
style to italic (line 18). Finally we add three children to this outline: the director (line 19) as
red text (line 20), the country (line 21) as magenta text (line 22), and the year (line 23) as dark
gray text (line 24).

« Finally, we close the PdfDocument (line 26).

This example shows how you can easily create an outline tree with different branches, branches of
branches, and leaves. It also shows how you can change the color and style of an element in the
outline tree, and how you can change the open or closed status of each outline element.

Summary

This chapter was all about interactive elements that help us navigate through and between
documents. We started by experimenting with a series of actions:

« URI actions to navigate to external web pages,
« Named actions to navigate to the first page, previous page, next page, and last page,
+ GoTo actions to go to a named destination or an explicit destination inside the document,

Remote GoTo action to navigate to another PDF document in the same or in a new window,

JavaScript actions to trigger the execution of PDF-specific JavaScript.

We took a close look at destinations, and how to create them using one of the subclasses of the
abstract PdfDestination class.

After we learned that links are stored inside a PDF as annotations, we looked at some bookmark
examples. We learned how to create an outline tree, and we used the setDestination() method to
jump to a destination inside the document, the setAction() method to trigger an action, and none
of these to create an inert hierarchical entry in the outline tree.

We already saw a glimpse of the next chapter, when we changed the page mode to make sure the
bookmarks panel was opened when opening the document. Viewer preferences will be one of the
topics we’ll discuss next, but first we’ll learn more about the concept of event handling.

Chapter 7: Handling events; setting
viewer preferences and writer
properties

This book is meant for developers who want to create PDF documents from scratch in a program-
matic way, using source code as opposed to using a template. We started with a chapter about fonts.
In the chapters that followed, we discussed the default behavior of every element: Paragraph, Text,
Image, and so on. We discovered that these elements can be used in a very intuitive way, but also
that we can change their default behavior by creating custom renderer implementations —which
isn’t always trivial, depending on what you want to achieve. In the previous chapter, we discussed
interactivity. We introduced actions and added links and bookmarks that help us navigate through
a document.

We'll use this final chapter to introduce a couple of concepts that weren’t discussed before. iText
creates a new page automatically when elements don’t fit the current page, but what if we want to
add a watermark, background, header or footer to every page? How do we know when a new page
is created? We’ll need to look at the IEventHandler interface to find out. In the previous chapter, we
changed a viewer preference so that the bookmarks panel is open by default. We’ll look at some other
viewer preferences that can be set. Finally, we’ll learn how to change the settings of the Pdfwriter,
for instance to create a PDF of a version that is different from the default PDF version used by iText.

Implementing the IEventHandler interface

In previous examples, we used the rotate() method to switch a page from portrait to landscape.
For instance, when we created PDF with tables in chapter 5, we created our Document object like
this new Document(pdf, PageSize.A4.rotate()).In figure 7.1, we also see pages that are rotated,
but they are rotated with a different purpose. In chapter 5, we wanted to take advantage of the fact
that the width of the page is greater than the height when using landscape orientation. When using
the rotate() method, it was our purpose to rotate the page, but not its content as is done in figure
7.1.

Chapter 7: Handling events; setting viewer preferences and writer properties 182

L jekyll_hyde_page_orientation.pdf - Adobe Acrobat Pro - O >
File Edit VYiew Window Help *

0P®“‘E§3Crﬁte"@@@‘@@@%¢ Customize"|z|
@ []ra| [N & | = @ | 58] Tools = Fill &Sign Comment

Dr. Jekyll

[IAer ~ia

Figure 7.1: Pages with different orientations

In the EventHandlers'’? example, we create four A6 pages to which we add content as if the page
is in portrait. We change the rotation of the page at the page level in an IEventHandler. As defined
in the ISO standard for PDF, the rotation of a page needs to be a multiple of 90. This leaves us four
possible orientations when we divide the rotation by 360: portrait (rotation 0), landscape (rotation
90), inverted portrait (rotation 180) and seascape (rotation 270).

192http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-7#2579-c07e01_eventhandlers.java

http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-7#2579-c07e01_eventhandlers.java
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-7#2579-c07e01_eventhandlers.java

D W N -

, O O 00 9 O O b W N =~

(AN

O N O O & W N -

Y
W N~ O

Chapter 7: Handling events; setting viewer preferences and writer properties 183

public static final PdfNumber PORTRAIT = new PdfNumber(0);

public static final PdfNumber LANDSCAPE = new PdfNumber(90);

public static final PdfNumber INVERTEDPORTRAIT = new PdfNumber(180);
public static final PdfNumber SEASCAPE = new PdfNumber(270);

We create a PageRotationEventHandler that allows us to change the rotation of a page, while we
are creating a document.

protected class PageRotationEventHandler implements IEventHandler {

protected PdfNumber rotation = PORTRAIT;

public void setRotation(PdfNumber orientation) {
this.rotation = orientation;

}

@0Override

public void handleEvent(Event event) {
PdfDocumentEvent docEvent = (PdfDocumentEvent) event;
docEvent.getPage().put(PdfName.Rotate, rotation);

The default orientation will be portrait (line 2), but we can change this default using the setRo-
tation() method (line 4-6). We override the handleEvent() method that is triggered when an
event occurs. We can get the PdfPage instance of the page on which the event is triggered from the
PdfDocumentEvent. This PdfPage object represents the page dictionary. One of the possible entries
of a page dictionary, is its rotation. We change this entry to the current value of rotation (line 9)
every time the event is triggered.

The following snippet shows how we can introduce this event handler in the PDF creation process.

public void createPdf(String dest) throws IOException {
PdfDocument pdf = new PdfDocument(new PdfWriter(dest));
pdf.getCatalog().setPagelayout(PdfName.TwoColumnLeft);
PageRotationEventHandler eventHandler =

new PageRotationEventHandler();
pdf.addEventHandler(

PdfDocumentEvent . START _PAGE, eventHandler);
Document document = new Document(pdf, PageSize.A8);
document .add(new Paragraph("Dr. Jekyll"));
eventHandler .setRotation(INVERTEDPORTRAIT) ;
document .add(new AreaBreak());
document .add(new Paragraph("Mr. Hyde"));
eventHandler .setRotation(LANDSCAPE);

14
15
16
17
18
19
20

Chapter 7: Handling events; setting viewer preferences and writer properties 184

document .add(new AreaBreak());

document .add(new Paragraph("Dr. Jekyll"));
eventHandler .setRotation(SEASCAPE) ;
document .add(new AreaBreak());

document .add(new Paragraph("Mr. Hyde"));
document .close();

We create an instance of the PageRotationEventHandler (line 4-5). We declare this eventHandler as
an event that needs to be triggered every time a new page is started (Pd fDocumentEvent . START _PAGE)
in the PdfDocument (line 6-7). We create a PDF with tiny pages (line 8). We add a first paragraph
(line 9) on a page that will use the default orientation. The START_PAGE event has already happened,
when we change this default to inverted portrait (line 10). Only when a new page is created, after
introducing a page break (line 11), the new orientation will become active. In this example, we repeat
this a couple of times to demonstrate every possible page orientation.

There are four types of events that can be triggered:

START_PAGE - triggered when a new page is started,

END_PAGE - triggered right before a new page is started,
+ INSERT_PAGE - triggered when a page is inserted, and
+ REMOVE_PAGE - triggered when a page is removed.

We'll try all of these types in the next handful of examples.

Adding a background and text to every page

We have created many documents in which we rendered a novel by Robert Louis Stevenson to
PDF. We reused the code of one of these examples to create the PDF shown in figure 7.2, and we
introduced an event handler to create a lime-colored background for the odd pages and a blue-
colored background for the even pages. Starting on page 2, we also added a running header with the
title of the novel and a footer with the page number.

Chapter 7: Handling events; setting viewer preferences and writer properties 185

T jekoyll_hydeV1.pdf - Adobe Acrobat Pro - O X
File Edit View Window Help x

Boeen | Baae- |D @O RPH @ozbb B & customize = |]
@[s | NG| =@ =]

Tools | Fill &Sign | Comment

THE STRANGE CASE OF DR. JEKYLL AND MR. HYDE
by Robert Louis Stevenson.

STORY OF THE DOOR

M. Utterson the lawyer was a man of a rugzed countenance that was never lighted by a smile; cold. scanty
and embarmassed in discourse; backward in sentiment, Jean, lonz, dusty, dreary and yet somehow lovable At Tisndly
‘meetings, and when the wins was o his faste, something eminently human beaconed fom his eye; somsthing indesd
which never found ifs way into his talk, but which spoke not enly in these silent symbols of the after-dizner fice. bui
‘more often and loudly in the acts of his life. He was austere with himself. drank gzin when be was alone, to mortify a
Tasta for vintages; and though he enjoyed the theatre, had not crossed the doors of cne for tweary years. But he had an
approved olerance for ofhers. sometimes wondering. almost with envy. at ihe high pressure of spirits iwalved in their
misdesds; and in any extremity inclined to help rather than to reprove. *[incline to Cain's heresy.” he used to say
quaintly- "T let puy brother £ to the devil in his own way.” In this character, it was fiequently his fortune to be the last
reputable acquaintance and the last good influsnce in the lives of downgoing men And to such as these, 5o long a5
‘they came about his chambers, he never marked a shade of change in his demeanour.

Na doubt the feat was easy to Mr. Utterson; for he was undemonstrative at the best, and even his fiendship
ssemed 1o be founded in a similar catholicity of good-nature. It i5 the mark of 3 modest man to accept hiz Fiendly
circle rady-made from the hands of opportunity and that was the lawyer's way. His frisnds were those of his own
‘lood ar those whom he had known the lonzest. his affections, ke fvy, were the prowth of ime, they implisd no apt-
‘mess in the object. Hence, no doubt the bond that united him to Mr. Richard Enfield, his distant kinsman. the well-
known man about town. It was a mut to crack for mamy, what these two could se2 in each other. or what subjact they
could find in comman. It was reported by those who encountered them in their Sunday walks, that they s2id nothing,
lpoked singularty dull and would hail with obvious relisf the appearance of a friend. For all that, the fwo men put the
Ereatest store by these excursions, counted them the chisf jewel of each week, and net only et aside eccasions of
pleasure, but even resisted the calls of business, that they might enjoy them uninterrupted.

Tt chanced on one of these rambles that their way led them down by-street i a busy quarter of London. The
‘sormet was small and what s called quist, bt it dzove a thriving wads on the weskdays. The inhabitants wers all doing
well, it seemed and all emulously hoping to do better still, and laying out the surplus of their prains in coquetry; so
‘that the shop fronts steed thae with an air of invitation, like rows of smiling saleswomen. Evan on
‘Sunday, when it veiled ifs more florid charms and lay comparatvely empty of passage, the sireet shone out in contmast
1o itz dingy neighbowhood, 1iks a fire in a forest; and with its Freshly painted shucters, well-polished brasses, and gan-
eral cleanliness and gaisty of pote, instanily caught and pleased the eye of the passengsr.

Two doars from one corner, on fhe left hand going east the line was broken by the eniry of 2 court; and just at
that point a certain sinistar block of building thrust farward its zable on the strest Trwas two stareys high: showad o
windew, Bothing bt a door on the lower siorey and a blind forehead of discolowred wall o the upper: and bere in
every feature, the marks of prolonged and sordid neglizence. The door, which was equipped with neither bell nor
‘shop upon the steps: the schoolbey had tried his knifs on the meuldings; and for close on a generation. no ona had
appeared to drive away these random visitors or to T=pair their ravages.

Mr. Enfisld and the lawyer ware on the other side of the by-straee; but when they came abreast of the eniry,
the former lifred up his cane and pointed

"Did you ever remark that door”™ he asked: and when his conpenion had replied in the affimmative. "It is con-
Tected m my mind " added he, “wih a very odd stary.”

“Indeed”" said Mr. Utterson, with a slight change of voice. "and what was that™

"Well, it was this way,” rerumed Mr. Enfisld: *T was coming home from some place at the and of the world,
about thres o'clock of a black winter morning. and my way lay thronzh a part of town whrs thers was literally noth-
ing to be seen but lamps. Street after sirest and all the folks asleep—street after street, all lighted up as if for a proces-
siom and all as empty 25 3 church—til] at Last T zot into that state of mind when a man listens and listens and begins to

Figure 7.2: Colored background and running header

For this TextWatermark'®® example, we added an END_PAGE event for a change.

1 pdf.addEventHandler(
2 PdfDocumentEvent . END_PAGE,
3 new TextWatermark());

This choice for the END_PAGE event has an impact on the TextWatermark class.

193http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-74#2580-c07e02_textwatermark. java

http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-7#2580-c07e02_textwatermark.java
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-7#2580-c07e02_textwatermark.java

Chapter 7: Handling events; setting viewer preferences and writer properties 186

protected class TextWatermark implements IEventHandler ({
Color lime, blue;
PdfFont helvetica;
protected TextWatermark() throws IOException {
helvetica = PdfFontFactory.createFont(FontConstants.HELVETICA);
lime = new DeviceCmyk(0.208f, 0, ©0.584f, Q);
blue = new DeviceCmyk(0.445f, ©.0546f, 0, 0.0667f);
}
@0verride
public void handleEvent(Event event) {
PdfDocumentEvent docEvent = (PdfDocumentEvent) event;
PdfDocument pdf = docEvent.getDocument();
PdfPage page = docEvent.getPage();
int pageNumber = pdf.getPageNumber (page);
Rectangle pageSize = page.getPageSize();
PdfCanvas pdfCanvas = new PdfCanvas(
page.newContentStreamBefore(), page.getResources(), pdf);
pdfCanvas.saveState()
.setFillColor(pageNumber % 2 == 1 ? lime : blue)
.rectangle(pageSize.getleft(), pageSize.getBottom(),
pageSize.getWidth(), pageSize.getHeight())
.fill().restoreState();
if (pageNumber > 1) {
pdfCanvas.beginText()
.setFontAndSize(helvetica, 10)
.moveText(pageSize.getWidth() / 2 - 120, pageSize.getTop() - 20)
.showText("The Strange Case of Dr. Jekyll and Mr. Hyde")
.moveText (120, -pageSize.getTop() + 40)
.showText (String.valueOf(pageNumber))
.endText();
}

pdfCanvas.release();

We create color objects (line 2) and a font (line 3) in the constructor (line 4-8), so that we can reuse
these objects every time the event is triggered.

The PdfDocumentEvent (line 11) gives us access to the PdfDocument (line 12) and the PdfPage (line 13)
on which the event was triggered. We get the current page number (line 14) and the page size (line
15) from the PdfPage. In this example, we will add all the content using low-level PDF functionality.
We need a PdfCanvas object to do this (line 16-17). We draw the background using a rectangle()
and £i11() method (line 18-22). For pages with page number greater than 1 (line 23), We create

Chapter 7: Handling events; setting viewer preferences and writer properties 187

a text object marked by beginText() and endText() with two snippets of text that are positioned
using the moveText () method and added with showText () method (line 24-30).

0 As we add this content after the current page has been completed and right before a
new page is created, we have to be careful not to overwrite already existing content. For
instance: to create a colored background, we draw an opaque rectangle. If we do this
after we have added content to the page, this content won’t be visible anymore: it will
be covered by the opaque rectangle. We can solve this by creating the PdfCanvas using
the page . newContentStreamBe fore() method. This will allow us to write PDF syntax to a

content stream that will be parsed before the rest of the content of the page is parsed.

A In iText 5, we used page events to add content when a specific event occurred. It was
forbidden to add content in an onStartPage() event. One could only add content to a page
using the onEndPage () method. This often led to confusion among developers who assumed
that headers needed to be added in the onStartPage() method, whereas footers needed to
be added in the onEndPage() method. Although this was a misconception, we fixed this
problem anyway. Actually, in the case of this example, it would probably be a better idea to
add the back ground in the START_PAGE event. We can use page . getLastContentStream()

to create the content stream needed for the PdfCanvas object.

In the next example, we’ll add a header using a START_PAGE event and a footer using an END_PAGE
event. The footer will show the page number as well as the total number of pages.

Solving the “Page X of Y” problem

In figure 7.3, we see a running header that starts on page 2. We also see a footer formatted as “page
X of Y” where X is the current page and Y the total number of pages.

O W N =~

Chapter 7: Handling events; setting viewer preferences and writer properties 188

X jekyll_hydeV2pdf - Adobe Acrobat Pro - O X
File Edit View Window Help ®

0Pe"‘ﬁ’j°““'|@@@@ |@@@|}@|@)@ Customize - |IZ|

Comment

f?_9|

o | 5 Tools Fill & Sign

THE STRANGE CASE OF DR. JEKYLL AND MR. HYDE
by Robert Louis Stevenscn

STORY OF THE DOOR

Mr. Utterson the lawyer was a man of a rugzed countenance that was never lizhted by 2 smile; cold. scanty
and embarrassed in discourse; backward in senriment. lean, Jong, Gusty, dreary and yer somehow lovable. At friendly
‘meerings, and when the wine was to his taste, somedhing eminenrly human beacaned fom his eva; something indeed
‘which never found ifs way into s talk, but which spoke not ouly in these sileat symbols of the after-inner face. ut
‘more ofien and loudly in the acts of his lifs. He was austare with himself drank rin when ke was aloe. to mortify a
‘st for vintage:; and though ke enjoyed the theare, had not crozsad the doors of on for tweary years. But he had an
approved tolerance for ofhers; sometimes wondering, aimost with mvy, at the high pressure of spirits volved in their
‘misdesds: and in any extr=mity inclined 1o help rather than te reprove. °T incline o Cain's heresy." he used to say
qanindly: "T Iet my brocher =0 o the dewil in his own way." In this character. it was Sequently his Sartune to be the st
reputable acquaintance and the last Zood infiuence in the lives of downgoing men An to such as these, 50 lonz as
they came about his chambers, he never marked a shads of changs in his demaanaur.

Mo doubi the feat was easy to Mr. Uttersom; for he was undemonstrative at the best, and even his Fiendship
seemed to be foundsd in a similar catholicity of pood-nature. I is the mark of a modsst man to accept his friendly
cirele ready-made from the hands of epparranity. and that was the lawyer's way. His Siends were those of his own
‘bioad ar hose whom he had known tha Jongest: his affactions, Ik ivy, were the FTowth of fme, they implisd 5o apt-
ness in the object Hence, no doubt the bond that united him fo Mr. Richard Enfield. his distant kinsman. the well-
lnown man abeut town. It was 2 mut to crack for many, what these two could sse in each other, or what subject they
could find in common. It was reported by those who encounterad them in their Sunday walks, that they said nothing,
looked smeularly dull and would hail with abvious relief the appearance of a friend. For al that, the two men put the
greatest stare by thess excursions, counted them tha chisf jewel of sach week, and not aely set aside occasions of
‘pleasure. but even resisted the calls of business, that they mizht exjoy them uminsermupted

Tt chanced on ane of thes rambles that their way led fhem down a by-street i a busy quarter of Londen. The
stragt was small and what is called quet. but it drove a thriving trade on the weakdays. The inhabitants wera all doing
well, it ssemed and all emulonsly hoping to do better stll. and laying out the surplus of their gYains in coquetry; so
that the shop frons stoed along that thoroughfare with an air of icvitation, ke rows of smiling saleswamen Ever on
Sunday. when it veiled its more flarid charms and lay companatively empry of passage. the sweet shane out in conmast
0 its dmzy neighbourhood, like a fire in a forest; and with its freshly painted shtters, well-polished brasses, and gen-
aral cleaniins: and gaisty of note, instantly caught and pleased the ays of the passenger

Two doars om ane corner, on the left hand going east the line was braken by the emry of a court and just at
that point a certain sinister block of building thrust forwar its gable an the steat Ttwas two storeys high: showed o
‘window, Bothing but a doeor an the lower storey and a blind forehead of discolowrsd wall ex the upper, and bere in
avary foarure, the marks of prolonged and sordid neglipence. The door, which was equipped with naither bell nar
knocker, was blistered ard distained Tramps slouched inio the recess and strack matches on the panels. children kept
shop upon the steps: the schoolboy had tried his knife on the mouldings: and for close on 2 generation. no one had
appeared to drive away thess random visitors of to Tepair their ravazes.

Mr. Enfisld and the Lwyer wars on the other side of the by-street; but when they came abreast of the entry,
the farmer lifted up bis cane and pointed.

"Did yau ever remark that door”” he asked: and when his companien had replied in the affirmative.
Dected i my mind * added he, "with 2 very odd story.”

“Indeed”™ said Mr. Utterson, with a slight change of voice, "and what was that™

“Well, it was this way." rerurned Mr. Exfield: *T was coming home Som some place at the end of the world,
about thres o'clock ofa black Winter morning, and my way lay through a part of town where thers was Nterally noth-
ing o be seen bur lamps. Street after street and all the folks asleap—street after steet, all lighed up as if for a praces-
sion and all as empty a5 church~till at Last T got into that state of mind when a man listens and listens and begins to

Page 1of 28

The Strange Case of Dr. Jekyll and Mr. Hyde

lon for the sight of a policeman A1l at ance, T saw two Sgures: one a liffle man wha was stumping along eastward at
2 zood walk. and the ather a girl of maybe sight or ten who was numning as bard as she was able down a cross strest.
‘Well, sir, the tw Tan into ene another natarally enuzh at the Corer; and then came the horrible part of the thing; for
the man trampled calmly over the child's body and left her screaming on the pround. It sounds nothing to hear, but it
was hellish to see. Trwasnt Ik a man it was like some damned Juggermaur T zave a faw halioa, took to my hesls,
collared my gentleman, and brouzht him back to where there was already quite 2 group about the screaming child. He
‘was perfctly cool and made no resistance. bt zave me one look, so ugly that it brought out the sweat on me Ike run-
ning The people who had fumed out were the girl's swn fumily; and pretty soor, the doctor, for whom she had been
sent put in bis appearance. Well, the child was not much the worse, mers Fightenad, accordmg to the Sawbonas; and
there you might have supposed would be an end o it But there was one curious rircumstance. T had tken 2 loathing
o my gentleman at first sight. So had the child's family. which was only narural. But the docior's case was what struck
me He was the usual cut and dry apothecary. of no particular azs and colour. with a strong Edinburgh accent and
abaut a5 emotional as bagpipe. Well, s, he was like the rest of us; every time he looked at my prisoner, T saw that
Sawbanes mum sick and whits orith desire to kil him T knew what was in his mind_ fust as he kmeor what was in mire:;
and killing being out of the question, we did the next best. We tol the man we could and would make such a scandal
‘out of this as should make his rame stik from one end of London to the other. If he had any friends or any credit, we
undertoak that he should Lose them And all the time, 25 e Were pitching it it red hot, we were keeping the women
‘off him as bast wa could for they ware as wild as harpiss. I never saw a circle of such hutefil faces: and thers was the
‘man in the middle, with a kind of black sneering coolness—frighransd too, I could see that—bur camrying it off sir,
really like Satan. "Tf you choose to make capital out of this accident” said he. T am paturally helpless Mo geotleman
‘but wishes to aveid a scens.” says he. "Name your figure " Well we screwed him up to a hundred pounds for the child's
family: he would kave clearty Hed to stick our, but ther was something about the lot of us that meant mischief, and
at Last e struck The nevt fhing was fo got the money; and where do you think ha carrisd us but to that place with the
door?--whippad out a key, went in, and presently came back with the mater of ten peunds in gold and a chaque for
the balance on Cautts's, drawn payable to bearsr and signed with a name that I can't mention, thoush if's one of the
‘points of my story. bt it was a name at laast very well known and often printed. The figure was Stff: but the signanure
was good for mare than that if it was only zemuine I took the liberty of pointing out to my gentleman hat the whole
‘business looked apocryphal, and that a man doss not, i real life, walk into a cellar door ar four i the moming and
come out with anather mav's chaque for close upon a hundred pounds. But he was quite easy and snesring. *Sat your
‘mind at rest says he, T will stay with you ill the banks open and cash the cheque myself” So we all set off, the doc-
tar. and the child's fafher. and our Fiend and myself, and passed the rest of the night in my chambers; and nexwt day.
when we had breakfasted, went in body to the bark I zave in the cheque nvyself and said T had every rzason to
‘elieve it was a forgery. Nat a bit of it. The chequa was genuine *

“Tu-tut” said Mr. Uttersan.

"I see you feel as T do." sad Mr. Enfield. "Yes, ifs a bad story. For my man was a fellow that nobody could
Tave 1o dowith, a rally damnable man: and the person that draw the chequa i the very pink of the propriatiss, calsb-
rated oo, and (what makes it worse) aze of your fellows who do what they call goed Black mail T supposs; an honest
‘mam paying throagh the nose for some of the capers of bis youth. Black Mail House is what I call the place with the
door, in consequence. Thouzh even that, you knorw, is far from explaining all” he added. and with the wards &1l into
aveinof musing.

From this he was recalled by Mr. Utterson asking rather sugdenly: " And you dou't know if the drawer of the
chaque lives there™

"A likely place, isnit it?" returned Mr. Enfield. "But I happen to have moticed his address; he ives in some
square or othar "

"And you neves asked about the—placs with the door™ said Mr. Untersen.

"Mo, sir: 1had a delicacy,” was the reply. "I fael vary strongly about punting questions; it panakes 100 much of
tbe style of the day of judsment Vo start a question, and if’s ke starting a stone You sit quistly on the top of a hill
and away the stone goes. starting others: and presenly some bland old bird (the last you would have thought of) is
knocked on the head in his own back parden and the family bave to change their name. No sir, T make it a rule of
‘mine: the more it looks like Queer Strest, the less Task *

Page 2 of 20

Figure 7.3: Page X of Y footer

The event handlers in the PageXof Y'** example are added like thi

PdfDocument pdf = new PdfDocument(new PdfWriter(dest));
pdf.addEventHandler (PdfDocumentEvent . START _PAGE,

new Header("The Strange Case of Dr. Jekyll and Mr. Hyde"));
PageXofY event = new PageXofY(pdf);
pdf.addEventHandler (PdfDocumentEvent .END_PAGE, event);

Instead of using low-level PDF operators to create the text object, we use the showTextAligned()
method that was introduced when we talked about the Canvas object. See for instance the
handleEvent implementation of the Header class.

19%http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-7#2581-c07e03_pagexofy.java

http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-7#2581-c07e03_pagexofy.java
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-7#2581-c07e03_pagexofy.java

Chapter 7: Handling events; setting viewer preferences and writer properties 189

protected class Header implements IEventHandler {
String header;
public Header(String header) ({
this.header = header;
}
@0verride
public void handleEvent(Event event) {
PdfDocumentEvent docEvent = (PdfDocumentEvent) event;
PdfDocument pdf = docEvent.getDocument();
PdfPage page = docEvent.getPage();
if (pdf.getPageNumber(page) == 1) return;
Rectangle pageSize = page.getPageSize();
PdfCanvas pdfCanvas = new PdfCanvas(
page.getlastContentStream(), page.getResources(), pdf);
Canvas canvas = new Canvas(pdfCanvas, pdf, pageSize);
canvas.showTextAligned(header,
pageSize.getWidth() / 2,
pageSize.getTop() - 30, TextAlignment.CENTER);

This time, we use the getLastContentStream() method (line 14). As we use this class to create a
START_PAGE event, the header will be the first thing that is written in the total content stream of the

page.

’J The “Page X of Y” footer confronts us with a problem we’ve already solved once in chapter
2. In the JekyllHydeV8'® example, we wanted to add the total number of pages of the
document on the first page. However, at the moment we wrote that first page, we didn’t

know the total number of pages in advance. We used a placeholder instead of the final
number, and we instructed iText not to flush any content to the OutputStream until all

pages were created. At that moment, we used a TextRenderer to replace the place holder

with the total number of pages, and we recreated the layout using the relayout() method.

There is one major disadvantage with this approach: it requires that we keep a lot of
content in memory before we flush it to the OutputStream. The more pages, the more we’ll
risk an OutOfMemoryException. We can solve this problem by using a PdfFormXObject as
placeholder.

A form XObject is a snippet of PDF syntax stored in a separate stream that is external to the content
stream of a page. It can be referred to from different pages. If we create one form XObject as a
placeholder, and we add it to multiple pages, we have to update it only once, and that change will

1%http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-2#1902-c02e12_jekyllhydevs java

http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-2#1902-c02e12_jekyllhydev8.java
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-2#1902-c02e12_jekyllhydev8.java

0 N O O & W N =

W W W W NDNDNDNDNDDNDNDNDNNNMNNDNAS APPSR
W N PO O 00 O O b WONPHO O 00N O O W N O O

Chapter 7: Handling events; setting viewer preferences and writer properties 190

be reflected on every page. We can update the content of a form XObject as long as it hasn’t been
written to the OutputStream. This is what we’ll do in the PageXofY class.

protected class PageXofY implements IEventHandler ({

protected PdfFormXObject placeholder;

protected float side = 20;
protected float x = 300;
protected float y = 25;

protected float space = 4.5f;

protected float descent = 3;
public PageXofY(PdfDocument pdf) {

placeholder =
new PdfFormXObject(new Rectangle(@, 0, side, side));
}
@0verride

public void handleEvent(Event event) {

}

PdfDocumentEvent docEvent = (PdfDocumentEvent) event;

PdfDocument pdf = docEvent.getDocument();

PdfPage page = docEvent.getPage();

int pageNumber = pdf.getPageNumber (page);

Rectangle pageSize = page.getPageSize();

PdfCanvas pdfCanvas = new PdfCanvas(
page.getlastContentStream(), page.getResources(), pdf);

Canvas canvas = new Canvas(pdfCanvas, pdf, pageSize);

Paragraph p = new Paragraph()

.add("Page ").add(String.valueOf(pageNumber)).add(" of");
canvas.showTextAligned(p, x, y, TextAlignment.RIGHT);
pdfCanvas.addXObject(placeholder, x + space, y - descent);
pdfCanvas.release();

public void writeTotal(PdfDocument pdf) {

Canvas canvas = new Canvas(placeholder, pdf);
canvas.showTextAligned(String.valueOf(pdf.getNumberOfPages()),
0, descent, TextAlignment.LEFT);

We define a member-variable name placeholder in line 2, and we initialize this PdfFormX0Ob ject

in the constructor of our IEventHandler implementation (line 9-10). The other member-variables in
line 3-7 are there for our convenience. They reflect the dimension of the placeholder (side is the side
of the square that defines the placeholder), the position of the footer (x and y), the space between
the “Page X of” and “Y” part (space) of the footer, and the space we will allow under the baseline of
the “Y” value (descent).

Chapter 7: Handling events; setting viewer preferences and writer properties 191

Lines 14 to 21 are identical to what we had in the Header class. We create the “Page X of” part of the
footer in line 21 and 22. We add this Paragraph to the left of the coordinates x and y (line 24). We add
the placeholder at the coordinatesx + space andy - descent. We release the Canvas, but we don’t
release the placeholder yet. Once the complete document is generated, we call the writeTotal()
method, right before we close the document.

document . add(div);
event .writeTotal (pdf);

document.close();

In this writeTotal() method, we add the total number of pages at the coordinate x = 0; y =
descent (line 30-31). This way, the “Page X of Y” text will always be nicely aligned with ‘x’ and
‘y’ as the coordinate that has “Page X of” to the left and “Y” to the right.

Adding a transparent background image

In figure 7.4, we’ve added a transparent image in the background of each page of text. You could use
this technique to add watermarks to a document.

Chapter 7: Handling events; setting viewer preferences and writer properties 192

THE STRANGE CASE OF DR. JEKYLL AND MR. HYDE

by Robert Louis Stevenson

STORY OF THE DOOR

Mr. Utterson the lawyer was a man of a rugged countenance that was never lighted by a
smile; cold, seanty and in di backward in lean, long, dusty, dreary
and yet somehow lovable. At friendly meetings, and when the wine was to his taste, something
eminently human beaconed from his eye: something indeed which never found its way into his
talk, but which spoke not only in thes silent symbols of the after-dinner face, but more ofien and
loudly in the acts of his life. He was austere with himself, drank gin when he was alone, to mortify
a taste for vintages: and though he enjoyed the theatre. had not crossed the doors of ane for
twenty years. But he had an approved tolerance for others; sometimes wondering, almost with
envy, at the high pressure of spirits involved in their misdeeds; and in any extremity inclined to
help rather than to reprove. *| incline to Cain's heresy.” he used to say quaintly: "1 let my brother
go o the devil in his own way.” In this character, it was frequently his fortune o be the last reput-
able acquaintance and the last good influence in the lives of downgaing men. And to such as

these, =o long as they came about his chambers, he never marked a shade of changs in his
demeanour.

Mo doubt the feat was easy to Mr. Utterson; for he was undemonstrative at the best, and
even his friendship seemed lo be founded in a similar catholicity of good-nature. It is the mark of a
modest man to accept his friendly circle ready-made from the hands of apportunity: and that was
the lawyer's way. His friends were those of his own blood ar those whom he had known the
longest, his affections, like ivy, were the growth of time, they implied no aptness in the object
Hence, no doubt the bond that united him to Mr. Richard Enfield, his distant kinsman, the well-
known man about town. 1t was a nut to crack for many. what these two could see in each other. or
what subject they could find in commeon. It was reported by those wha encountered them in their
Sunday walks. that they said nothing. looked singularly dull and would hail with obvious relief the
appearance of a friend. For all that, the two men put the greatest store by these excursions, coun-
ted them the chief jewel of each week, and not only set aside occasions of pleasure, but even res-
isted the calls of business. that they might enjoy them uninterrupted.

It chanced on one of these rambles that their way led them down a by-street in a busy
quarter of London. The street was small and what is called quiet, but it drove a thriving trads on
the weskdays. The inhabitants were all doing well, it seemed and all emulously hoping to do better
still, and laying out the surplus of their grains in coquetry; so that the shop fronts stood along that
thoroughfare with an air of invitation, like rows of smiling saleswomen. Even on Sunday, when it
veiled its more florid charms and lay comparatively empty of passage, the sireet shone out in con-
trast to its dingy neighbourhood, like a fire in a forest; and with its freshly painted shutters, well-
polished brasses, and general cleanliness and gaiety of note. instantly caught and pleased the eye
of the passenger.

T jekyll_hydeV3.pdf - Adobe Acrobat Pro - O >
File Edit View Window Help *
E? Open | @ Create ~ ‘ D @ @ @ | {é} o Ea @ @ @) '@ Customize - | lz‘
/45 | M | | = B Tools Fill&Sign | Comment
A

Two doars from one comer, an the left hand going east the line was broken by the entry of
a court. and just at that point a certain sinister block of building thrust forward its gable on the
street. It was two storeys high: showed na window. nothing but a door en the lower starey and a
biind forehead of discoloured wall on the upper: and bare in every feature. the marks of prolonged
and sordid negligence. The door, which was equipped with neither bell nor knocker, was blistered
and distained. Tramps slouched into the recess and struck matches on the panels: children kept
shop upon the steps: the schoolboy had tried his knife on the mouldings: and for close on a gener-
ation, no one had appeared to drive away these random visitors or o repair their ravages.

Mr. Enfield and the lawyer were on the other side of the by-street; but when they came
abreast of the entry, the former lifted up his cane and pointed.

"Did you ever remark that door?" he asked: and when his companion had replied in the
affirmative. "It is connected in my mind,” added he, "with a very odd story.”

"Indeed?" said Mr. Utterson, with a slight change of voice, "and what was that?"

"Well. it was this way." returned Mr. Enfield: "l was coming home from some place at the
end of the worid, about three o'clock of a black wintar moming, and my way lay through a part of
town where there was literally nothing to be seen but lamps. Street after street and all the folks
asleep—street after street. all lighted up as if for a procession and all as empty as a church—till at
last | got into that state of mind when a man listens and listens and begins to long for the sight of a
paliceman. All at once, | saw two figures: one a litle man who was stumping along eastward at a
good walk. and the other a girl of maybe eight or ten who was running as hard as she was able
down a cross street. Well, sir, the two ran into one another naturally enough at the comer; and
then came the horrible part of the thing; for the man trampled calmly over the child's bady and left
her screaming on the ground. It sounds nothing to hear, but it was hellish to see. It wasn't like a
man; it was like some damned Juggemaut. | gave a few halloa, took to my heels, collared my gen-
tleman. and brought him back to where there was already quite a group about the screaming child.
He was perfectly cool and made no resistance, but gave me one look, so ugly that it brought out
the sweat on me like running. The people who had tumed out were the girf's own family; and pretty
soon, the doclor, for whom she had been sent put in his appearance. Well, the child was not much
the worse, mare fri 1o the ; and there you might have supposed
would be an end to it. But there was one curious circumstance. | had taken a loathing to my gen-
tleman at first sight. 5o had the child’s family, which was only natural. But the doctor's case was
what struck me. He was the usual cut and dry apothecary, of no particular age and colour, with a
strong Edinburgh aceent and about as emotional as a bagpipe. Well, sir, he was like the rest of us;
evary time he locked at my prisoner, | saw that Sawbones tum sick and white with desire to kil
him. | knew what was in his mind, just as he knew what was in mine; and kiling being out of the
question. we did the next best. We told the man we could and would make such a scandal out of
this as should make his name stink from one end of London to the other. If he had any friends or
any credit, we undertook that he should lose them. And all the time, as we were pitching it in red
hot, we were keeping the women off him as best wa could for they ware as wild as harpiss. | never
saw a circle of such hateful faces; and there was the man in the middle, with a kind of black sneer-
ing coolness—frightened too, | could see that—-but carrying it off, sir, really like Satan. 'If you

Figure 7.4: Transparent background image

Let’s take a look at the TransparentImage class in the ImageWatermark'*® example.

protected class TransparentImage implements IEventHandler {
protected PdfExtGState gState;
protected Image img;
public TransparentImage(Image img) {
this.img = img;
gState = new PdfExtGState().setFillOpacity(@.2f);
}
@0verride
public void handleEvent(Event event) {
PdfDocumentEvent docEvent = (PdfDocumentEvent) event;
PdfDocument pdf = docEvent.getDocument();
PdfPage page = docEvent.getPage();

1%http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter- 7#2582-c07e04_imagewatermark java

http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-7#2582-c07e04_imagewatermark.java
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-7#2582-c07e04_imagewatermark.java

13
14
15
16
17
18
19
20
21
22
23

Chapter 7: Handling events; setting viewer preferences and writer properties 193

Rectangle pageSize = page.getPageSize();
PdfCanvas pdfCanvas = new PdfCanvas(
page.getlastContentStream(), page.getResources(), pdf);
pdfCanvas.saveState().setExtGState(gState);
Canvas canvas = new Canvas(pdfCanvas, pdf, page.getPageSize());
canvas.add(img
.scaleAbsolute(pageSize.getWidth(), pageSize.getHeight()));
pdfCanvas.restoreState();
pdfCanvas.release();

Note that we store the Image object as a member-variable; this way, we can use it as many times we
want and the bytes of the image will be added to the PDF document only once.

0 Creating a new Image instance of the same image in the handleEvent would result in a
bloated PDF document. The same image bytes would be added to the document as many
times as there are pages. This was already explained in chapter 3.

We also reuse the PdfExtGState object. This is a graphics state object that is external to the content
stream. We use it to set the fill opacity to 20%.

In this example, we use a mix of PdfCanvas and Canvas. We use PdfCanvas to save, change, and
restore the graphics state. We use Canvas to add the image resized to the dimensions of the page.

In this example, we didn’t want the background image to appear for the table of contents. See figure
7.5.

Chapter 7: Handling events; setting viewer preferences and writer properties 194

@ jekyll_hydeV3.pdf - Adobe Acrobat Pro — m} X
File Edit View Window Help ®

BOP="|E'EC'““'|D@®@|E’}®@|}@@@ Customizev||2|

Comment

Do)WY | 0@l 3D

Fill & Sign

It is useless, and the time awfully fails me. to prolong this description; no one has ever
suffered such torments, let that suffice; and yet even to these, habit brought—no, net alleviation—
but & certain callousness of soul. a certain acquiescence of despair. and my punishment might
have gone on for years, but for the last calamity which has now fallen, and which has finally
severed me from my own face and nature. My provision of the salt, which had never been
renewed since the date of the first experiment, bagan to run low. | sent aut for a fresh supply and
mixed the draught: the ebulition followed. and the first change of calour. not the second: | drank it
and it was without efficiency. You will leam from Poole how | have had London ransacked: it was
in vain; and | am now persuaded that my first supply was impure, and that it was that unknown
impurity which lent efficacy o the draught.

About a week has passed, and | am now finishing this statement under the influence of the
last of the old powders. This, then, is the last time, short of a miracle, that Henry Jekyll can think
his own thoughts or see his own face {now how sadly altered!) in the glass. Nor must | delay too
long to bring my writing to an end; for if my narrative has hitherto escaped destruction, it has been
by a combination of great prudence and great good luck. Should the throes of change take me in

Table of Contents
STORYOF THEDOOR, | .. e e en st e e enenee]

SEARCH FORMR HYDE,

DR JEKYLL WAS QUITEATEASE . ..

THE CAREW MURDER CASE___

INGIDENT GF THELETTER || it i ot e e et

INCIDENT OF DR. LANYON_

INCIDENT AT THE WINDOW .18

THE LAST M‘GHT.. __Zﬂ
DR. LANYON'S NARRATIVE |

HEMRY JEKYLL'S FULL STATEMENT OF THECASE . I |

-

, O © 0 9 O O b W N+~

(AN

the act of writing it, Hyde will tear it in pizces; but if some time shall have elapsed after | have laid
it by. his and ci fion o the mament will probably save it once again
from the action of his ape-like spite_ And indeed the doom that is closing on us both has already
changed and crushed him. Half an hour from now, when | shall again and forever reindue that
hated personality, | know how | shall sit shuddering and weeping in my chair, or continue, with the
most strained and fearstruck ecstasy of listening, to pace up and down this room (my last earthly
refuge) and give ear to every sound of menace. Will Hyde die upon the scaffold? or will he find
courage to release himself at the last moment? God knows: | am careless; this is my true hour of
death, and what is to follow concerns another than myself. Here then, as | lay down the pen and
proceed to seal up my confession, | bring the life of that unhappy Henry Jekyll to an end.

Figure 7.5: Removing a specific handler

We achieve this by removing the event handler, right before we add the table of contents.

PdfDocument pdf = new PdfDocument(new PdfWriter(dest));
Image img = new Image(ImageDataFactory.create(IMG));
IEventHandler handler = new TransparentImage(img);
pdf.addEventHandler (PdfDocumentEvent . START_PAGE, handler);
Document document = new Document(pdf);

// Code that adds the text of the novel
pdf.removeEventHandler (

PdfDocumentEvent . START_PAGE, handler);
document . add(new AreaBreak(AreaBreakType.NEXT_PAGE));

// code that adds the TOC
document .close();

We can remove a specific handler, using the removeEventHandler() method. We can remove all
handlers using the removeAl1Handlers() method. That’s what we’re going to do in the next example.

[N

S © W I O O b W N =

Chapter 7: Handling events; setting viewer preferences and writer properties 195

Insert and remove page events

To obtain the PDF shown in figure 7.6, we took an existing PDF generated by one of the examples
in the previous chapter. We inserted one page to be the new page 1. We removed all pages starting
with the third chapter. As you can see, the bookmarks were updated accordingly.

] jekylL_hydle_updated pdf - Adobe Acrobat Pro - o X
File Edit View Window Help %
BOPEN|@CrHt=v|D@%@‘@@@&@@)@ Customlze'||z|
® []re | [N | (= @ [wsx]-]| Tools | Fill &Sign | Comment
@ ‘Bookmarks
3 = Y e e o . s e e
—| =P THE STRANGE CASE OF DR. JEKYLL
& AND MR. HYDE
_ [F sTORY OF THE DOOR
LF [P SEARCH FOR MR. HYDE
Q X
Output - Run (COTE05_AddRemovePages) %
B e -
W ;;anrum; for projecta. .
@ Building iText 7 Publications: Building blocks 7.0.1-SNAPSHOT
L e e i)
RemovePdfPage
RemovePdfage
RemovePdfPage

RemovePdfPage

BUILD SUCCESS

Total time: 1.817s
Finished at: Tue Aug 16 11:47:23 CEST 2016
Final Memory: SM/15ZM

< >

Figure 7.6: Insert and remove page events

The AddRemovePages'”” example uses the INSERT_PAGE event to add content to the inserted page,
and the REMOVE_PAGE method to write something to the System.out. At some point, we remove all
handlers.

public void manipulatePdf(String src, String dest) throws IOException {

PdfReader reader = new PdfReader(src);
PdfWriter writer = new PdfWriter(dest);
PdfDocument pdf = new PdfDocument(reader, writer);
pdf.addEventHandler(

PdfDocumentEvent . INSERT_PAGE, new AddPageHandler());
pdf.addEventHandler(

PdfDocumentEvent .REMOVE _PAGE, new RemovePageHandler());
pdf.addNewPage(1, PageSize.A4);
int total = pdf.getNumberOfPages();

1%7http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-742583-c07e05_addremovepages.java

http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-7#2583-c07e05_addremovepages.java
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-7#2583-c07e05_addremovepages.java

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

Chapter 7: Handling events; setting viewer preferences and writer properties 196

for (int i = 9; i <= total; i++) {
pdf.removePage(9);
if (i == 12)
pdf.removeAllHandlers();
t
pdf.close();
}
protected class AddPageHandler implements IEventHandler ({
@0verride
public void handleEvent(Event event) {
PdfDocumentEvent docEvent = (PdfDocumentEvent) event;
PdfDocument pdf = docEvent.getDocument();
PdfPage page = docEvent.getPage();
PdfCanvas pdfCanvas = new PdfCanvas(page);
Canvas canvas = new Canvas(pdfCanvas, pdf, page.getPageSize());
canvas.add(new Paragraph().add(docEvent.getType()));

}
protected class RemovePageHandler implements IEventHandler {
@QOverride
public void handleEvent(Event event) {
PdfDocumentEvent docEvent = (PdfDocumentEvent) event;
System.out.println(docEvent.getType());

In this example, we have an AddPageHandler (line 18-28) and a RemovePageHandler (line 29-35). We
declare these handlers to the PdfDocument as INSERT_PAGE and REMOVE_PAGE event respectively (line
5-8). The AddPageHandler will be triggered only once, when we add a new page (line 9). The remove
page will be triggered four times. We remove all pages from page 9 to the total number of pages. We
do this by removing page 9 over and over again (line 12), until no pages are left. As soon as we’ve
removed page 12, we remove all handlers (line 13-14), which means that the event is triggered after
we removed pages 9, 10, 11, and 12.

In the next example, we're going to define page labels.

Page labels

Figure 7.7 shows a document with 38 pages. In the toolbar above the document, Adobe Acrobat
shows that we’re on page “i” or page 1 of 38. We have opened the Page Thumbnails panel to see a
thumbnail for each page. We see that the first three pages are number i, ii, iii. Then we have 34 pages
numbered from 1 to 34. Finally, we have a page with page label TOC.

0 N O O s~ W N -

Y
W N~ O

Chapter 7: Handling events; setting viewer preferences and writer properties 197

L pagelshels.pdf - Adobe Acrabat Pro - O X

File Edit View Window Help x

Do |Reee- |H P E| 80P RBREY customze - | |¢?]
®) []aorss | [N & | (=) @) | Tools | Fill &Sign | Comment
Page Thumbnails A
EF)

¢ ¥ & 2D

Figure 7.7: Page labels

These page labels aren’t part of the actual content. For instance: you won’t see them when you print
the document. They are only visible in the PDF viewer —that is: if the PDF viewer supports page
labels. The PDF in figure 7.7 was created using the PageLabels'*® example.

PdfDocument pdf = new PdfDocument(new PdfWriter(dest));
PdfPage page = pdf.addNewPage();
page.setPagel abel (PagelLabelNumberingStyleConstants
.LOWERCASE _ROMAN_NUMERALS, null);
Document document = new Document(pdf);
document .add(new Paragraph().add("Page left blank intentionally"));
. // add some more pages left blank intentionally
page = pdf.getlastPage();
page.setPagel abel (PageLabelNumberingStyleConstants
.DECIMAL_ARABIC_NUMERALS, null, 1);
. // add content of the novel
document .add(new AreaBreak(AreaBreakType.NEXT_PAGE));
p = new Paragraph().setFont(bold)

198http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-7#2584-c07e06_pagelabels.java

http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-7#2584-c07e06_pagelabels.java
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-7#2584-c07e06_pagelabels.java

14
15
16
17
18
19

Chapter 7: Handling events; setting viewer preferences and writer properties 198

.add("Table of Contents").setDestination("toc");
document .add(p);
page = pdf.getlastPage();
page.setPagelabel (null, "TOC", 1);
. // add table of contents
document .close();

We change the page label style three times in this code snippet:

1. We create the first page in line 2 and we set the page label style for this page to LOWERCASE _-
ROMAN_NUMERALS. We don’t define a prefix. All the pages that follow this first page will be
numbered like this: i, i, iii, iv, v,... until we change the page label style. This happens in line 9.

2. Inline 8, we get the last page that was added so far, and we change the page labels to DECIMAL _-
ARABIC_NUMERALS in line 9. Once more we don’t define a prefix, and we tell the current page
to start the page count with 1. We didn’t really have to do this, because the page count always
restart when you change the page labels. You can use this method if you don’t want that to
happen. For instance: we could pass 4 instead of 1 if we want the first page that follows the
pages with Roman numerals to be page 4.

3. Inline 17, we change the page label style to nul1l. This means that no numbering will be used,
even if we pass a value for the first page after the page label change. In this case, we do pass
a prefix. That’s the page label we see when we reach the table of contents of our document.
The prefix can be combined with a page number, for instance if you have Arabic numerals for
page numbers and the prefix is “X-“, then the pages will be numbered as “X-17, “X-2”, “X-37,
and so on.

In this example, we had to manually open the Page Thumbnails panel to see the thumbnail overview
of all the pages. We could have instructed the document to open that panel by default. In the next
example, we’ll change the page display and the page mode.

Page display and page mode

The file page_mode_page_layout.pdf is almost identical to the file with the page labels we created
in the previous example, but when we open it, we see that the panel with the page thumbnails is
open by default. This is the page mode. We also see that the first page only takes half of the space
that is available horizontally and that it’s pushed to the right. At the bottom, we see that the second
and third page are shown next to each other. This is the page layout.

Chapter 7: Handling events; setting viewer preferences and writer properties 199

) page_mode_page_layout.pdf - Adobe Acrobat Pro - u] X
File Edit View Window Help *
[open | B Create - ‘ B % e & | Boz bbb T Customize ~ | Iz‘
! D (1of 38) ‘ @ | - lIl | ﬁ Eﬁ Tools Fill & Sign Comment
Page Thumbnails B

Page left blank intantonally

B @ s

Cd H & =

Page left blank intentionally Page left blank intentionally

Figure 7.8: Page layout and page mode

109

The PageLayoutPageMode
lines.

example is identical to the previous example, except for the following

pdf.getCatalog().setPagelLayout(PdfName.TwoColumnRight);
pdf.getCatalog().setPageMode(PdfName.UseThumbs);

We get the catalog from the PdfDocument. The catalog is also known as the root dictionary of the
PDF file. It’s the first object that is read when a parser reads a PDF document.

We can set the page layout for the document with the setPagelLayout() method using one of the
following parameters:

+ PdfName.SinglePage— Display one page at a time.
+ PdfName.OneColumn— Display the pages in one column.

+ PdfName.TwoColumnLeft— Display the pages in two columns, with the odd-numbered pages
on the left.

1%http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-7#2585-c07¢07_pagelayoutpagemode.java

http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-7#2585-c07e07_pagelayoutpagemode.java
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-7#2585-c07e07_pagelayoutpagemode.java

Chapter 7: Handling events; setting viewer preferences and writer properties 200

+ PdfName.TwoColumnRight— Display the pages in two columns, with the odd-numbered pages
on the right.

« PdfName.TwoPageLeft— Display the pages two at a time, with the odd-numbered pages on
the left.

« PdfName.TwoPageRight— Display the pages two at a time, with the odd-numbered pages on
the right.

We can set the page mode for the document with the setPageMode() method using one of the
following parameters

e PdfName.
e PdfName.
e PdfName.
e PdfName.
e PdfName.
¢ PdfName.

UseNone— No panel is visible by default.

UseOutlines— The bookmarks panel is visible, showing the outline tree.
UseThumbs— A panel with pages visualized as thumbnails is visible.
FullScreen— The document is shown in full screen mode.

UseOC— The panel with the optional content structure is open.
UseAttachments— The attachments panel is visible.

We haven’t discussed optional content yet, nor attachments. That’s something we’ll save for another

tutorial.

When we use PdfName.FullScreen, the PDF will try to open in full screen mode. Many viewers
won’t do this without showing a warning first.

Full Screen

This document is trying to put Acrobat in full screen mode, which takes over your screen. In this

! . rode, it is possible to present documents that look like other applications, including applications
that request your persenal informaticn. Would you like to allow this document to enter full screen
mode automatically?

[[] Remermber my choice for this document

Yes Mo

Figure 7.9: Warning before switching to full screen mode

The warning shown in figure 7.9 was triggered by the PDF created with the FullScreen''* example.

Ohttp://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-7#2586-c07e08_fullscreen.java

http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-7#2586-c07e08_fullscreen.java
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-7#2586-c07e08_fullscreen.java

O = W N =

Chapter 7: Handling events; setting viewer preferences and writer properties 201

pdf.getCatalog().setPageMode(PdfName.FullScreen);
PdfViewerPreferences preferences = new PdfViewerPreferences();
preferences.setNonFullScreenPageMode(
PdfViewerPreferencesConstants.USE_THUMBS) ;
pdf.getCatalog().setViewerPreferences(preferences);

In this example, we also create a PdfViewerPreferences instance (line 2). We set the viewer
preference that tells the viewer what to do when we exit full screen mode. The possible values
for the setNonFullScreenPageMode() are:

« PdfViewerPreferencesConstants.USE_NONE— No panel is opened when we return from full
screen mode.

« PdfViewerPreferencesConstants.USE_OUTLINES— The bookmarks panel is visible, showing
the outline tree.

+ PdfViewerPreferencesConstants.USE_THUMBS— A panel with pages visualized as thumbnails
is visible.

+ PdfViewerPreferencesConstants.USE_OC— The panel with the optional content structure is
open.

We used PdfViewerPreferencesConstants . USE_THUMBS which means that we see the PDF as shown
in figure 7.10.

Chapter 7: Handling events; setting viewer preferences and writer properties 202

L fullscreen.pdf - Adobe Acrobat Pro - [m] X

File Edit View Window Help *

E} Open ‘ @ Create ~ | D @ @ @ @ Q—;) @ @ Eﬁ] @) @ Customize | Iz‘
;:, /2 | IS | — -I- | Tools Fill 8 Sign | Comment

[L] Page Thumbnails M ~

(P |E &

4 -

l{’,ﬁ"

o

Mr. Jekyl

Figure 7.10: Viewer after exiting full screen mode

Let’s take a look at some other viewer preferences that are available in the PDF specification.

Viewer preferences

When we open the PDF shown in figure 7.11, we don’t see a menu bar, we don’t see a tool bar, we
see the title of the document in the top bar, and so on.

Chapter 7: Handling events; setting viewer preferences and writer properties 203

L A Strange Case - Adobe Acrobat Pro - O X
File Edit View Window Help ®

Mr. Jekyl and Mr. Hyde

Figure 7.11: Different viewer preferences at work in one document

The ViewerPreferences'*

document.

example shows us which viewer preferences have been set for this

1 public void createPdf(String dest) throws IOException {
2 PdfDocument pdf = new PdfDocument(new PdfWriter(dest));
3 PdfViewerPreferences preferences = new PdfViewerPreferences();
4 preferences.setFitWindow(true);
5 preferences.setHideMenubar (true);
6 preferences.setHideToolbar (true);
7 preferences.setHideWindowUI(true);
8 preferences.setCenterWindow(true);
9 preferences.setDisplayDocTitle(true);
10 pdf.getCatalog().setViewerPreferences(preferences);
11 PdfDocumentInfo info = pdf.getDocumentInfo();

http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-7#2587-c07e09_viewerpreferences.java

http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-7#2587-c07e09_viewerpreferences.java
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-7#2587-c07e09_viewerpreferences.java

12
13
14
15
16

Chapter 7: Handling events; setting viewer preferences and writer properties 204

info.setTitle("A Strange Case");

Document document = new Document(pdf, PageSize.A4.rotate());
document .add(new Paragraph("Mr. Jekyl and Mr. Hyde"));
document.close();

All of these preferences expect true or false as a parameter; false being the default value if no
preference is chosen.

« Line 4: with setFitWindow(), we tell the viewer to resize the document’s window to fit the
size of the first displayed page.

« Line 5: with setHideMenubar (), we tell the viewer to hide the menu bar; that is the bar with
menu items such as File, Edit, View,...

« Line 6: with setHideToolbar (), we tell the viewer to hide the tool bar; that is the bar with the
icons that give us direct access to some features also available through the menu items.

« Line 7: with setHideWindowUI(), we tell the viewer to hide all user interface elements such
as scroll bars and other navigational controls.

« Line 8: with setCenterWindow(), we tell the viewer to position the document’s window in the
center of the screen.

« Line 9: with setDisplayDocTitle(), we tell the viewer to show the title of the document in
the title bar.

Setting the title in the title bar requires that we define a title in the metadata. We do this in line
11-12. We'll have a closer look at metadata in a moment.

You can also use the PdfViewerPreferences class to define the predominant reading order of text
using the setDirection() method, the view area using the setViewArea() and setViewClip()
method. We won’t do that in this tutorial, we’ll skip to some printer preferences.

Printer preferences

The mechanism of viewer preferences can also be used to set some printer preferences. For
instance: we can select the area that will be printed by default using the setPrintArea() and
the setPrintClip() method. Specific printer settings can be selected using the setDuplex() and
setPickTrayByPDFSize() method. You can select a default page range that needs to be printed using
the setPrintPageRange() method.

Figure 7.12 shows the default settings in the Print Dialog after using the setPrintScaling() and
setNumCopies() method.

O b W N =

Chapter 7: Handling events; setting viewer preferences and writer properties 205

Y printerpreferences.pdf - Adabe Acrobat Pro - O X
File Edit View Window Help *
=7 open | ﬁ Create ~ | B & % [‘ @ oty e & T Customize ~ | IZI

H ‘ & ‘ () (o) ‘ = Tools Fill & Sign | Comment

Mr. Jekyl and Mr. Hyde Print x
Printer: ~ Properties Advanced Help @
Copies: |5— : Collate [Print in grayscale (black and white)
Pages to Print Comments & Forms
@ All Document and Markups ~

Current page
Summarize Comments

Pages |1

» More Options Document: 11.7x 8.3in

Page Sizing & Handling [©)]
L]
E:I Poster @ Multiple E Booklet 11,69 % 8.27 Inches
OFit JR—
(@ Actual size

() Shrink oversized pages

) Custom Scale: 100 %

Choose paper source by PDF page size

[[] Use custom paper size when needed

Orientation:
(®) Auto portrait/landscape
) Portrait
(@) Landscape
< >
Page 1of 1
Page Setup... Cancel

Figure 7.12: Printer preferences

The values in the screen shot correspond with the code of the PrinterPreferences'!* example.

PdfViewerPreferences preferences = new PdfViewerPreferences();
preferences.setPrintScaling(
PdfViewerPreferencesConstants.NONE);
preferences.setNumCopies(5);
pdf.getCatalog().setViewerPreferences(preferences);

Although PDF viewers nowadays offer many print-scaling options, the PDF specification only
allows you to choose between NONE (no print scaling; the actual size of the document is preserved)
and APP_DEFAULT (the default scaling of the viewer application). We set the number of copies to 5,
which is reflected in the Print Dialog.

"http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-7#2588-c07e10_printerpreferences.java

http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-7#2588-c07e10_printerpreferences.java
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-7#2588-c07e10_printerpreferences.java

Chapter 7: Handling events; setting viewer preferences and writer properties 206

0 As you can see, setting a printer preference doesn’t enforce the preference that is chosen.

For instance, if we set the number of copies to 5, a user can easily change this to any

other number in the dialog. In PDF 2.0, an extra viewer preference, named /Enforce will

be introduced. Its value will be an array. A PDF 2.0 viewer should check the entries and

enforce all the viewer preferences that are present in that array. The Draft specification only

provides a way to enforce the print scaling so far. We haven’t implemented this /Enforce

preference in iText yet, but we’ll do so as soon as the PDF 2.0 standard aka ISO-32000-2 is
released.

Once in a while, we get the question if it’s possible to set a viewer preference to open a document
at a certain page. It’s possible to jump to a specific page when opening a document, but that isn’t
achieved using a viewer preference. We need an open action to do this.

Open action and additional actions

The PDF document shown in figure 7.13 jumps straight to the last page when we open it. But there’s
more: when we leave the last page, we get a message saying “Goodbye last page!”

5 jelyll_hyde document actions.pdf - Adobe Acrobat Pro - o x
File Edit View Window Help *
= open | Ej Create ~ | B & @ & | @ @ z B & & % Customize ~ | @
() / 35 | I3 @ ‘ (= ‘ 5 B | Tools . Fill & Sign .| Comment
| Table of Contents

STORY OF THE DOOR it e e et eet et e e et e e e e eaee s 1

DR.JEKYLL WAS QUITE AT EASE | it e e 7

THE CAREW MURDER CASE_ |||\ .00ttt iiie e ee et e e et e ettt ee e ieeee e 2

INCIDENT OF T "™ing: lavaserpt Window - 1

INCIDENTOFD (9 ™™= 13

INCIDENT ATT 15

THELASTNIGE [ok | v, 16

DR LANYON'S NARR A IV E 22

HENRY JEKYLL'S FULL STATEMENT OF THE CASE 25

Figure 7.13: Document opens on last page and page says goodbye when we leave it

When we go to the first page, the document shows another alert: “This is where it starts!”

Chapter 7: Handling events; setting viewer preferences and writer properties

%X jekyll_hyde_document actions.pdf - Adobe Acrabat Pro O X
File Edit View Window Help *
Open E} Create ~ | E/ @ @ @ | {i} Q;) @ % @ @) @ Customize ~ | IZI
() lII /35 | Ik @I | (=) & ‘ = B | Tools | Fill &Sign | Comment

STORY OF THE DOOR

Mr. Utterson the lawyer was a man of a rugged countenance that was never lighted by a smule; cold, scanty
and embarrassed 1 discourse; backward 1n sentiment; lean, long, dusty, dreary and yet somehow lovable. At friendly
meetings, and when the wine was fo his taste, something eminently human beaconed from his eye; something indeed
which never found its way into his talk, but which spoke not only in these silent symbols of the after-dinner face, but
more often and loudly 1n the acts of hus life. He was austere with himself; drank gin when he was alone, to mortify a

taste for vintwarning: JavaSeript Window - 's. But he had an
approved tol involved in their
misdeeds; a1 \) Thiz is where it starts " he used to say
quaintly: "T1) me to be the last
reputable ac hese, so long as
they came at

No n his friendship

- -
seemed to be founded in a simular catholicity of good-nature. It is the mark of a modest man to accept his friendly
circle ready-made from the hands of opportunity; and that was the lawyer's way. His friends were those of his own
blood or those whom he had known the longest; his affections, like 1vy, were the growth of time, they implied no apt-
ness in the object. Hence, no doubt the bond that united him to Mr. Richard Enfield, his distant kinsman, the well-
known man about town. It was a nut to crack for many, what these two could see in each other, or what subject they
could find n commeon. It was reported by those who encountered them m their Sunday walks, that they said nothing,
looked singularly dull and would hail with obvious relief the appearance of a friend. For all that, the two men put the
greatest store by these excursions, counted them the chief jewel of each week, and not only set aside occasions of
pleasure, but even resisted the calls of business, that they might enjoy them uninterrupted.

It chanced on one of these rambles that their way led them down a by-street in a busy quarter of London. The
street was small and what is called quiet, but it drove a thriving trade on the weekdays. The inhabitants were all doing

Figure 7.14: The first page says "This is where it starts!”

Finally, when we close the document, it says: “Thank you for reading”.

0 N O O & W N~

[S
B WwN - O O

Chapter 7: Handling events; setting viewer preferences and writer properties 208

FE jekyll_hyde_document_actions.pdf - Adobe Acrabat Pro - O x
File Edit View Window Help *
= open | fj Create - | B & @ L | B 2 22 (@ @ & % Customize = | @

® @ /35‘ Ik @H (= @ | = B | Tools . Fill & Sign | Comment

About a week has passed, and I am now fimshing this statement under the mfluence of the last of the old
powders. This, then, is the last time, short of a miracle, that Henry Jekyll can think his own thoughts or see his own
face (now how sadly altered!) in the glass. Nor must I delay too long to bring my writing to an end; for 1f my narrative
has hitherto escaped destruction, 1t has been by a combination of great prudence and great good luck. Should the
throes of change take me in the act of writing it, Hyde will tear 1t in pieces; but if some time shall have elapsed after I
have laid it by, his wonderful selfishness and circumscription to the moment will probably save it once again from the
action of his ape-like spite. And indeed the doom that is closing on us both has already changed and crushed him. Half
an hour from now, when I shall again and forever reindue that hated personality. I know how I shall sit shuddering and
weeping in my chair, or continue, with the most strained and fearstruck ecstasy of listening, to pace up and down this
room (my last earthly refuge) and give ear to every sound of menace. Will Hyde die upon the scaffold? or will he find
courage to release himself at the last moment? God knows; I am careless; this is my true hour of death, and what is to
follow concerns another than myself. Here then, as I lay down the pen and proceed to seal up my confession, I bring
the life of that unhappy Henry Jekyll to an end.

Warning: JavaScript Window -
(’ﬁ‘) Thank you for reading

L

Figure 7.15: The document says “Thank you for reading” upon closing it

The action that jumps to the last page is an open action; all the other actions are additional actions
with respect to events triggered on the document or on a page. The Actions'*®> example shows us
what it’s all about.

public void createPdf(String dest) throws IOException {
PdfDocument pdf = new PdfDocument(new PdfWriter(dest));
pdf.getCatalog().setOpenAction(
PdfDestination.makeDestination(new PdfString("toc")));
pdf.getCatalog().setAdditionalAction(PdfName.WC,
PdfAction.createdavaScript("app.alert('Thank you for reading');"));
pdf.addNewPage().setAdditionalAction(PdfName.O,
PdfAction.createdavaScript("app.alert('This is where it starts!');"));
Document document = new Document(pdf);
PdfPage page = pdf.getlLastPage();
page.setAdditionalAction(PdfName.C,
PdfAction.createdavaScript("app.alert('Goodbye last page!');"));
document.close();

Bhttp://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-7#2589-c07e11_actions.java

http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-7#2589-c07e11_actions.java
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-7#2589-c07e11_actions.java

Chapter 7: Handling events; setting viewer preferences and writer properties 209

Let’s start with the open action (line 3-4). This action is added to the catalog using the setOpenAc-
tion() method. This method accepts an instance of the PdfDestination class —in this case a link to
a named destination— or of the PdfAction class.

The next action is an additional action for the document (line 5-6). This action is also added to the
catalog, using the setAdditionalAction() method. The second parameter has to be a PdfAction
object. The first parameter is one of the following names:

+ PdfName.WC— which stands for Will Close. This action will be performed right before closing
a document.

+ PdfName.WS— which stands for Will Save. This action will be performed right before saving a
document. Note that this will only work for viewers that allow you to save a document; and
that save isn’t the same as save as in this context.

+ PdfName.DS— which stands for Did Save. This action will be performed right after saving a
document. Note that this will only work for viewers that allow you to save a document; and
that save isn’t the same as save as in this context.

+ PdfName.WP— which stands for Will Print. This action will be performed right before printing
a document.

+ PdfName.DP- which stands for Did Print. This action will be performed right after printing a
document.

The next two additional actions are actions that are added to a PdfPage object (line 7-8; line 11-12).
The parameters of this setAdditionalAction() method are again an instance of the PdfAction class
as the second parameter, but the first parameter has to be one of the following names:

« PdfName.O- the action will be performed when the page is opened, for instance when a user
navigates to it from the next or previous page, or by clicking a link. If this page is the first
page that opens when opening a document, and if there’s also an open action, the open action
will be triggered first.

+ PdfName.C- the action will be performed when the page is closed, for instance when a user
navigates away from it by going to the next or previous page, or by clicking a link that moves
away from this page.

There are more types of additional actions, especially in the context of interactive forms. Those
actions are out of the scope of this tutorial and will be discussed in a tutorial about forms. We’ll
finish this chapter by looking at some writer properties.

Writer properties

In one of the previous examples, we added some metadata to aPdfDocumentInfo object. We obtained
this object from the PdfDocument using the getDocumentInfo() method. This PdfDocumentInfo

Chapter 7: Handling events; setting viewer preferences and writer properties 210

object corresponds with the info dictionary of the PDF; that’s a dictionary containing metadata
in the form of key-value pairs. This is how metadata was originally stored inside a PDF, but soon
it turned out that it was a better idea to store metadata as XML inside a PDF file. This is shown in
figure 7.16.

b
File Edit View Window Help *®
=) open ‘ T2 Create ~ ‘ = @ t%) = ‘ B © 2 (& @ & & Customize ~ ®d

/1‘ LY @H = ‘ B ‘ Tools | Fill & Sign | Comment

Description Security Fonts Initial View Custom Advanced

Mr. Jekyl and Mr. Hyde Descripton

File: metadate.pdf

o o hapterdTimetadata.pdf - Notepad - o x

Title: [The Strange Case of Dr. Jekyll and Mr. Hyde

File Edit Search View Encoding language Seftings Macra Run Pluging Window X
o & s BRI == w
Fy= tRrl=] | | ig|® x| BE|=1[E | Author: [Robert Louis Stevenson
N Siressces o 13 |
: A |
22 7 0 obiiE - Subject: [Anovel
<</Length $339/Subtype/NUL/Type/Hetadates>streanl Keywords: [5r-JekylL Vi Fiyde
<?xpacket begin=" " id="WSMOMpCehiHzreSzNTczkc9d" 2>
<x:xmpmeta xmlns:x="adobe:ns:meta/" x:xmptk="Adobe XME Core 5.1.0-3c003">E
<rdf:RDF xmlns:rdf="http://www.wd.ore/1899/02/22-rdf-syntax-nsi">@
<rdf:Description rdf:about=""@8
xmlns:de="nttp://purl.org/de/elemencs/1.1/ "W
Created: 8/17/2016 17:24:08 PM -
xmlns:pdf="ntep://ns. adebe.com/pdf/1.3/"Ma Additional Metadata...
¥mins: ttp://ns.adobe.com/xap/1.0/ "8 Modified: 8/17/2016 17:24:08 PM

dc: format="application/pdf" @8
pdf:Producer="iTextA® 7.0.1-SNAPSHOT -A@2000-2016 iText Group NV (AGE

pdf:Keywords="Dr. Jekyll, Mr. Hyde"@3

Application: A simple tutorial example

Advanced

PDF Producer. iText® 7.0.1-SNAPSHOT ©2000-2016 iText Group NV (AGPL-version)

7:24:08+02: 00" >3

7.
<deicreator> @ PDF Version: 1.6 {Acrobat 7.x)

<rdf:Seq>im Location: C: hapterd7\
<rdf:li>Robert Louis Stevenson</rdf:li>#§
</rdf:Sec>WE
</dc:creator>@ PageSize: 8.26x11.69in Number of Pages: 1
<de: subject>iE

File Size: 4.44 KB (4,551 Bytes)

PR | Tagged PDF: No Fast Web View: No
<rdf:1i>Dr. Jekyll</rdf:li>@@
<rdf:li>Mr. Hyde</rdf:li>il@
48 </rdf:Bag>#@ v
< >
length: 4551 lines: 1t Ln:8 Col:7 Sel:0[0 UNIX ANSI INS Help oK Cancel

Figure 7.16: PDF and metadata

The XML is added as an uncompressed stream, which allows software that doesn’t understand PDF
syntax to extract the XML stream anyway and interpret it. The format of the XML is defined in the
eXtensible Metadata Platform (XMP) standard. This standard allows much more flexibility than a
simple key-value pair dictionary.

XMP metadata

When you create a document, you can create your own XMP metadata using the XMPMeta class and
then add this metadata to the PdfDocument by passing it as a parameter with the setXmpMetadata()
method. But you can also ask iText to create the metadata automatically, based on the entries in the
info dictionary. That’s what we did in the Metadata''* example.

*http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-7#2590-c07e12_metadata.java

http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-7#2590-c07e12_metadata.java
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-7#2590-c07e12_metadata.java

Chapter 7: Handling events; setting viewer preferences and writer properties 211

public void createPdf(String dest) throws IOException {
PdfDocument pdf = new PdfDocument(
new PdfWriter(dest,
new WriterProperties()

.addXmpMetadata()

.setPdfVersion(PdfVersion.PDF_1_6)));
PdfDocumentInfo info = pdf.getDocumentInfo();
info.setTitle("The Strange Case of Dr. Jekyll and Mr. Hyde");
info.setAuthor("Robert Louis Stevenson");
info.setSubject("A novel");
info.setKeywords("Dr. Jekyll, Mr. Hyde");
info.setCreator("A simple tutorial example");
Document document = new Document(pdf);
document .add(new Paragraph("Mr. Jekyl and Mr. Hyde"));
document.close();

We create a WriterProperties object (line 4) that is used as a second parameter of the PdfWriter
class (line 3). We use the addXmpMetadata() method (line 5) to instruct iText to create an XMP stream
based on the metadata added to the PdfDocumentInfo object: the title (line 8), the author (line 9), the
subject (line 10), the keywords (line 11), and the creator application (line 12). The producer, creation
time and modification time are set automatically. You can’t change them.

A iText 5 generated PDF 1.4 files by default. In some cases, this version was changed auto-
matically when you used specific functionality, For instance: when using full compression,
the version was changed to PDF 1.5. Full compression means that the cross-reference table
and possibly some indirect objects will be compressed. That wasn’t possible in PDF 1.4.
iText 7 creates PDF 1.7 files (ISO-32000-1) by default. In the previous example, we changed

the version to PDF 1.6 using the setPdfVersion() method on the WriterProperties.

You can also change the compression in the WriterProperties.

Compression

In one of the event handler examples, we created a document with an image as background. The
size of this PDF was 134 KB. In figure 7.17, you see another version of a document with the exact
same content. The size of that PDF is only 125 KB.

Chapter 7: Handling events; setting viewer preferences and writer properties 212

« itext-arya » samples » publications » highlevel » results » chapterl7 w | 0
Marme Date modified Type Size
E jekyll_hyde_compressed. pdf 8/17/2016 17:28 PM Adobe Acrobat D... 125 KB

(=]

T jekyll_hydeV3.pdf /17/2016 17:28PM Adobe Acrobat D... 134 KB

Figure 7.17: PDF and compression

This difference in size is caused by the way some content is stored inside the PDF. For small
files, without many objects, the effect of full compression won’t be significant. All content streams
with PDF syntax are compressed by default by iText. Starting with PDF 1.5, more objects can be
compressed, but that doesn’t always make sense. A fully compressed file can count more bytes than
an ordinary PDF 1.4 file if the PDF consists of only a dozen objects. The effect is more significant
the more objects are needed in the PDF. If you plan to create large PDF files with many pages and
many objects, you should take a look at the Compressed'** example.

PdfDocument pdf = new PdfDocument(new PdfWriter(dest,
new WriterProperties().setFullCompressionMode(true)));

Once again, we use the WriterProperties object, now in combination with the setFullCom-
pressionMode() method. There’s also a setCompressionLevel() method that allows you to set a
compression level ranging from 0 (best speed) to 9 (best compression), or you can set it to the default
value -1.

We'll conclude this chapter with a small encryption example.

Encryption

There are two ways to encrypt a PDF file. You can encrypt a PDF file using the public key of a
public/private key pair. In that case, the PDF can only be viewed by the person who has access to
the corresponding private key. This is very secure.

Using passwords is another way to encrypt a file. You can define two passwords for a PDF file: an
owner password and a user password.

If a PDF is encrypted with an owner password, the PDF can be opened and viewed without that
password, but some permissions can be in place. In theory, only the person who knows the owner
password can change the permissions.

The concept of protecting a document using only an owner password is flawed. Many tools,
including iText, can remove an owner password if there’s no user password in place.

http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-7#2591-c07e13_compressed.java

http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-7#2591-c07e13_compressed.java
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-7#2591-c07e13_compressed.java

Chapter 7: Handling events; setting viewer preferences and writer properties 213

If a PDF is also encrypted with a user password, the PDF can’t be opened without a password. Figure
7.18 shows what happens when you try to open such a file.

Password >

‘encrypted.pdf’ is protected. Please enter a Document Open Password.

Enter Password: ||

K Cancel

Figure 7.18: A PDF that requires a password

The document only opens when we pass one of the two passwords, the user password in which case
the permissions will be in place, or the owner password in which case we can change the permissions.

@ encrypted.pdf (SECURED) - Adobe Acrobat Pro - m} X
File Edit View Window Help *
=) open | ﬁ Create v | B @ C% Z |) & @ B T Customize ~ | lz‘

/1 | Ik | (=)) | i | Tools Fill & Sign Comment

Mr. Jekyll has a secret: he changes into Mr. Hyde.

Figure 7.19: A secured PDF

As we can see in the Encrypted''® example, the passwords and the permissions were defined using
WriterProperties.

%http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-7#2592-c07e14_encrypted.java

http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-7#2592-c07e14_encrypted.java
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-7#2592-c07e14_encrypted.java

N O O & W N =

Chapter 7: Handling events; setting viewer preferences and writer properties 214

byte[] user = "It's Hyde".getBytes();
byte[] owner = "abcdefg".getBytes();
PdfDocument pdf = new PdfDocument(new PdfWriter(dest,
new WriterProperties().setStandardEncryption(user, owner,
EncryptionConstants.ALLOW_PRINTING
| EncryptionConstants.ALLOW_ASSEMBLY,
EncryptionConstants.ENCRYPTION_AES _256)));

We define a user password and an owner password as a byte array (line 1-2). Those are the first
two parameters of the setStandardEncryption() method. The third parameter can be used to
define permissions. In our example, we allow printing and document assembly —that is: splitting
and merging. Finally, we define the encryption algorithm: AES 256.

The possible values for the permissions are:

+ ALLOW_DEGRADED_PRINTING— Allow printing at a low resolution only,

+ ALLOW_PRINTING- Allow printing at a low as well as at high resolution,

+ ALLOW_SCREENREADERS— Allows the extraction of text for accessibility purposes,

+ ALLOW_COPY- Allow copy/paste of text and images,

+ ALLOW_FILL_IN- Allow filling out interactive form fields,

« ALLOW_MODIFY_ANNOTATIONS— Allow the modification of text annotations and filling out
interactive form fields,

o ALLOW_ASSEMBLY- Allow the insertion, rotation and deletion of pages, as well as the creation
of outline items and thumbnail images,

« ALLOW_MODIFY_CONTENTS— Allow the modification of the document by operations other than
those controlled by ALLOW_FILL_IN, ALLOW_MODIFY_ANNOTATIONS, and ALLOW_ASSEMBLY.

If you want to combine different permissions, always use the “or” (|) operator because some
permissions overlap. For instance ALLOW_PRINTING sets the bit for printing as well as for degraded
printing.

iText supports the following encryption algorithms, to be used for the fourth parameter:

STANDARD_ENCRYPTION_40— encrypt using the 40-bit alleged RC4 (ARC4) algorithm,
STANDARD_ENCRYPTION_128—- encrypt using the 128-bit alleged RC4 (ARC4) algorithm.
+ AES_128- encrypt using the 128-bit AES algorithm,

+ AES_256- encrypt using the 256-bit AES algorithm.

You can also add one of the following extra parameters to the encryption algorithm using an “or”
(1) operation:

Chapter 7: Handling events; setting viewer preferences and writer properties 215

« DO_NOT_ENCRYPT_METADATA- if you want to avoid that the metadata will also be encrypted.
Encrypting the metadata doesn’t make sense if you want the metadata to be accessible for
your document management system, but be aware that this option is ignored when using
40-bit ARC encryption.

« EMBEDDED_FILES_ONLY- if you want to encrypt the embedded files only, and not the actual
PDF document. For instance: if the PDF document itself is a wrapper for other documents,
such as a cover note explaining that it’s not possible to open the document without having
the right credentials at hand immediately. In this case the PDF is an unencrypted wrapper for
encrypted documents.

All of these parameters can also be used for the setPublicKeyEncryption() method, in which case
the first parameter is an array of Certificate objects, the second parameter an array with the
corresponding permissions, and the third parameter the encryption mode —that is: the encryption
algorithm and the option to not encrypt the metadata and to encrypt only the embedded files.

With this last example, we have given away the punch line of The Strange Case of Dr. Jekyll and
Mr. Hyde: “Dr. Jekyll has a secret: he changes into Mr. Hyde.” But you probably already knew that
after all the Jekyll and Hyde examples we’ve made in this book.

Summary

In this final chapter of the “iText 7: Building Blocks”, we have covered the IEventHandler func-
tionality that allows us to take action when specific events —such as starting, ending, inserting, and
removing a page— occur. We looked at viewer preferences that allowed us to tell PDF viewers how
to present the document when we open it. We could also use the mechanism of viewer preferences
to set some printer preferences. Finally, we looked at some writer properties. We discussed these
properties in the context of metadata, compression, and encryption.

We've covered a lot of ground in this tutorial. You should now have a clear understanding of the basic
building blocks that are available when you want to create a document from scratch. You also know
how to establish document interactivity (actions) and navigation (links, destinations, bookmarks).
You know the mechanism to handle events, and you can set viewer preferences and writer properties.
You're all set to create some really cool PDFs.

Obviously, this is not the definitive guide on iText. In future tutorials, we’ll also take a look under
the hood, examining the PDF syntax that is used to create the content stream of a page and the
structure of a PDF document. We'll spend a tutorial on forms, how to create them and how to
use forms as templates. We'll create a tutorial on manipulating existing documents by adding and
removing content. We'll also update the old tutorial on digital signatures. We don’t have an ETA on
those tutorials, but make sure to check our Books'"” page on a regular basis.

THE END

"http://developers.itextpdf.com/books

http://developers.itextpdf.com/books
http://developers.itextpdf.com/books

Appendix

A: AbstractElement methods

Method Text/Link Image Tab AreaBreak
addStyle() Yes Yes No No
setHyphenation() Yes No No No
setSplitCharacters() Yes No No No
setHorizontalAlignment() No Yes No No
setTextAlignment() No No No No
setHeight() No Yes No No
setWidth() No Yes No No
setWidthPercent() No Yes No No
setBorder() Yes Yes* No No
setBorderLeft() Yes Yes* No No
setBorderRight() Yes Yes* No No
setBorderTop() Yes Yes* No No
setBorderBottom() Yes Yes* No No
setBackgroundColor () Yes Yes* No No
setFont() Yes No No No
setFontSize() Yes No No No
setFontColor() Yes No No No
setBold() Yes No No No
setltalic() Yes No No No
setLineThrough() Yes No No No
setUnderline() Yes No No No
setTextRenderingMode() Yes No No No
setStrokeColor() Yes No No No
setStrokeWidth() Yes No No No
setCharacterSpacing() Yes No No No
setWordSpacing() Yes No No No
setFontKerning() Typ No No No
setFontScript() Typ No No No
setBaseDirection() Typ No No No
setRelativePosition() Yes Yes No No
setFixedPosition() No Yes No No
setAction() Yes Yes No No

setDestination() Yes Yes No No

Appendix 217

In the Image column, some methods have an asterisk next to “Yes”. The asterisk means that you may
not notice that the method works because the image isn’t transparent. For instance: it doesn’t make
sense to set a background color for an opaque image: the image covers the background completely.
The same is true for borders.

B: BlockElement methods

Method Paragraph Div List Table Cell LineSeparator
addStyle() Yes Yes Yes Yes Yes Yes
setHyphenation() Yes Yes Yes Yes Yes No
setSplitCharacters() Yes Yes Yes Yes Yes No
setHorizontalAlignment() Yes Yes Yes Yes No* Yes
setVerticalAlignment() No No No No Yes No
setRotationAngle() Yes Yes Yes No Yes No
setTextAlignment() Yes Yes Yes Yes Yes No
setKeepTogether () Yes Yes Yes Yes Yes No
setKeepWithNext() Yes* Yes* Yes* Yes* No* Yes*
setHeight() Yes Yes Yes No Yes No
setWidth() Yes Yes Yes Yes No* Yes
setWidthPercent() Yes Yes Yes Yes No* Yes
setMargin() Yes Yes Yes Yes Yes Yes
setMargins() Yes Yes Yes Yes Yes Yes
setMarginLeft() Yes Yes Yes Yes Yes Yes
setMarginRight() Yes Yes Yes Yes Yes Yes
setMarginTop() Yes Yes Yes Yes Yes Yes
setMarginBottom() Yes Yes Yes Yes Yes Yes
setPadding() Yes Yes Yes No Yes No
setPaddings() Yes Yes Yes No Yes No
setPaddinglLeft() Yes Yes Yes No Yes No
setPaddingRight() Yes Yes Yes No Yes No
setPaddingTop() Yes Yes Yes No Yes No
setPaddingBottom() Yes Yes Yes No Yes No
setBorder() Yes Yes Yes Yes Yes*™ No
setBorderLeft() Yes Yes Yes Yes Yes*™* No
setBorderRight() Yes Yes Yes Yes Yes*™ No
setBorderTop() Yes Yes Yes Yes Yes™ No
setBorderBottom() Yes Yes Yes Yes Yes™ No
setBackgroundColor () Yes Yes Yes Yes Yes Yes
setFont() Yes Yes Yes Yes Yes No
setFontSize() Yes Yes Yes Yes Yes No
setFontColor() Yes Yes Yes Yes Yes No
setBold() Yes Yes Yes Yes Yes No

setItalic() Yes Yes Yes Yes Yes No

Appendix 218

Method Paragraph Div List Table Cell LineSeparator
setLineThrough() Yes Yes Yes Yes Yes No
setUnderline() Yes Yes Yes Yes Yes No
setTextRenderingMode() Yes Yes Yes Yes Yes No
setStrokeColor() Yes Yes Yes Yes Yes No
setStrokeWidth() Yes Yes Yes Yes Yes No
setSpacingRatio() Yes Yes Yes Yes Yes No
setCharacterSpacing() Yes Yes Yes Yes Yes No
setWordSpacing() Yes Yes Yes Yes Yes No
setFontKerning() Typ Typ Typ Typ Typ No
setFontScript() Typ Typ Typ Typ Typ No
setBaseDirection() Typ Typ Typ Typ Typ No
setRelativePosition() Yes Yes Yes Yes Yes No
setFixedPosition() Yes Yes Yes Yes Yes No
setAction() Yes Yes Yes Yes Yes Yes
setDestination() Yes Yes Yes Yes Yes Yes

There’s an asterisk added to the “Yes” value of setkeepWithNext () because this method only works
for objects added directly to the Document. It won’t work for nested objects.

There’s an asterisk added to the “No” value for some methods of the Cel1 method because these
methods can’t be used when the Cell is part of a Table. But you can also use a Cell outside the
context of a Table. In that case, you can define the width and the horizontal alignment. There are
two asterisks next to the Yes for the border methods of the Cel1. Borders are drawn at the level of
the Table. Changing the border of a Cel1 changes a line in the grid of the Table, but you can’t use
the setBorder () methods if you are using a Cell outside a Table.

C: RootElement methods

Method Document Canvas
setHyphenation() Yes Yes
setSplitCharacters() Yes Yes
setHorizontalAlignment() No No
setTextAlignment() Yes Yes
setHeight() No No
setWidth() No No
setWidthPercent() No No
setBorder() No No
setBorderLeft() No No
setBorderRight() No No
setBorderTop() No No
setBorderBottom() No No

setBackgroundColor () No No

Appendix

Method Document Canvas
setFont() Yes Yes
setFontSize() Yes Yes
setFontColor() Yes Yes
setBold() Yes Yes
setltalic() Yes Yes
setLineThrough() Yes Yes
setUnderline() Yes Yes
setTextRender ingMode() Yes Yes
setStrokeColor() Yes Yes
setStrokeWidth() Yes Yes
setCharacterSpacing() Yes Yes
setWordSpacing() Yes Yes
setFontKerning() Typ Typ
setFontScript() Typ Typ
setBaseDirection() Typ Typ
setRelativePosition() No No
setFixedPosition() No No
setDestination() No No
showTextAligned() Yes Yes
showTextAlignedKerned() Typ Typ
add(BlockElement) Yes Yes
add(Image) Yes Yes
add(AreaBreak) Yes No
setMargins() Yes No
setlLeftMargin() Yes No
setRightMargin() Yes No
setTopMargin() Yes No
setBottomMargin() Yes No

219

	Table of Contents
	Before we start: Overview of the classes and interfaces
	Chapter 1: Introducing the PdfFont class
	Creating a PdfFont object
	Embedding a font
	Choosing the appropriate encoding
	Font properties
	Reusing styles
	Summary

	Chapter 2: Working with the RootElement
	Using Canvas to add content inside a Rectangle
	Converting text to PDF with the Document class
	Changing the Document renderer
	Switching between different renderers
	Flushing the Document renderer
	Changing content that was previously added
	Adding a Page X of Y footer
	Adding text with showTextAligned
	Using iText 7 add-ons
	Improving the typography
	Summary

	Chapter 3: Using ILeafElement implementations
	Working with Tab elements
	Limitations of the Tab functionality
	Adding links
	Extra methods available in the Text class
	Introducing images
	Changing the position and width of an image
	Adding an image to an existing PDF
	Resizing and rotating an image
	Image types supported by iText
	Summary

	Chapter 4: Adding AbstractElement objects (part 1)
	Grouping elements with the Div class
	Drawing horizontal lines with the LineSeparator object
	Keeping content together
	Changing the leading of a Paragraph
	Creating a custom renderer
	Lists and list symbols
	Adding ListItem objects to a List
	Nested lists
	Summary

	Chapter 5: Adding AbstractElement objects (part 2)
	My first table
	Table and cell Alignment
	Row and cell height
	Cell margins and padding
	Table and cell borders
	Nesting tables
	Repeating headers and footers
	Images in tables
	Splitting cells versus keeping content together
	Table and cell renderers
	Tables and memory use
	Summary

	Chapter 6: Creating actions, destinations, and bookmarks
	URI actions
	Named actions
	GoTo actions
	Named destinations
	Remote GoTo actions
	JavaScript actions
	Chained actions
	Destinations
	Link annotations
	Outlines aka bookmarks
	Color and style of the outline elements.
	Summary

	Chapter 7: Handling events; setting viewer preferences and writer properties
	Implementing the IEventHandler interface
	Adding a background and text to every page
	Solving the ``Page X of Y'' problem
	Adding a transparent background image
	Insert and remove page events
	Page labels
	Page display and page mode
	Viewer preferences
	Printer preferences
	Open action and additional actions
	Writer properties
	Summary

	Appendix
	A: AbstractElement methods
	B: BlockElement methods
	C: RootElement methods

