

iText 7: Building Blocks

iText Software

This book is for sale at http://leanpub.com/itext7buildingblocks

This version was published on 2016-08-27

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing
process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools and
many iterations to get reader feedback, pivot until you have the right book and build traction once
you do.

© 2016 iText Software

http://leanpub.com/itext7buildingblocks
http://leanpub.com/
http://leanpub.com/manifesto

Contents

Before we start: Overview of the classes and interfaces 2

Chapter 1: Introducing the PdfFont class . 9
Creating a PdfFont object . 9
Embedding a font . 11
Choosing the appropriate encoding . 14
Font properties . 19
Reusing styles . 22
Summary . 23

Chapter 2: Working with the RootElement . 24
Using Canvas to add content inside a Rectangle . 24
Converting text to PDF with the Document class . 31
Changing the Document renderer . 36
Switching between different renderers . 40
Flushing the Document renderer . 42
Changing content that was previously added . 46
Adding a Page X of Y footer . 48
Adding text with showTextAligned . 51
Using iText 7 add-ons . 52
Improving the typography . 55
Summary . 57

Chapter 3: Using ILeafElement implementations . 58
Working with Tab elements . 60
Limitations of the Tab functionality . 66
Adding links . 67
Extra methods available in the Text class . 69
Introducing images . 70
Changing the position and width of an image . 74
Adding an image to an existing PDF . 75
Resizing and rotating an image . 76
Image types supported by iText . 81
Summary . 92

CONTENTS

Chapter 4: Adding AbstractElement objects (part 1) . 93
Grouping elements with the Div class . 93
Drawing horizontal lines with the LineSeparator object 97
Keeping content together . 98
Changing the leading of a Paragraph . 102
Creating a custom renderer . 105
Lists and list symbols . 107
Adding ListItem objects to a List . 112
Nested lists . 114
Summary . 118

Chapter 5: Adding AbstractElement objects (part 2) . 119
My first table . 119
Table and cell Alignment . 121
Row and cell height . 123
Cell margins and padding . 126
Table and cell borders . 127
Nesting tables . 133
Repeating headers and footers . 135
Images in tables . 140
Splitting cells versus keeping content together . 142
Table and cell renderers . 146
Tables and memory use . 151
Summary . 152

Chapter 6: Creating actions, destinations, and bookmarks 154
URI actions . 154
Named actions . 156
GoTo actions . 157
Named destinations . 160
Remote GoTo actions . 164
JavaScript actions . 166
Chained actions . 166
Destinations . 167
Link annotations . 171
Outlines aka bookmarks . 172
Color and style of the outline elements. 177
Summary . 180

Chapter 7: Handling events; setting viewer preferences and writer properties 181
Implementing the IEventHandler interface . 181
Adding a background and text to every page . 184
Solving the “Page X of Y” problem . 187

CONTENTS

Adding a transparent background image . 191
Insert and remove page events . 195
Page labels . 196
Page display and page mode . 198
Viewer preferences . 202
Printer preferences . 204
Open action and additional actions . 206
Writer properties . 209
Summary . 215

Appendix . 216
A: AbstractElement methods . 216
B: BlockElement methods . 217
C: RootElement methods . 218

CONTENTS 1

This is the second tutorial in the iText 7 series. In the first tutorial, iText 7: Jump-Start Tutorial¹, we
discussed a series of examples that explained the core functionality of iText 7. In this book, we’ll focus
on the high-level building blocks that were introduced in the first chapter of that tutorial: Introducing
basic building blocks². In that chapter, we created PDFs using objects such as Paragraph, List, Image
and Table, but we didn’t go into detail. This tutorial is the extended version of that chapter. In this
tutorial, you’ll discover which building blocks are available and how they all relate to each other.

Throughout the book, we’ll use the following symbols:

The information sign indicates interesting extra information, for instance about different
options for a parameter, different flavors of a method, and so on.

The questionmarkwill be usedwhen this information is presented in the form of a question
and an answer.

The bug highlights an Exception that gets thrown if you make a common mistake.

The text balloons are used for a chatty remark or a clarification.

The triangle with the exclamation point warns for functionality that was introduced at a
later stage in the development of iText 7.

The key indicates functionality that is new in iText 7, or at least very different from what
developers were used to in iText 5 or earlier versions.

All the examples of this book along with the resources needed to build them, are available online at
the following address: http://developers.itextpdf.com/content/itext-7-building-blocks/examples³

¹http://developers.itextpdf.com/content/itext-7-jump-start-tutorial
²http://developers.itextpdf.com/content/itext-7-jump-start-tutorial/chapter-1-introducing-basic-building-blocks
³http://developers.itextpdf.com/content/itext-7-building-blocks/examples

http://developers.itextpdf.com/content/itext-7-jump-start-tutorial
http://developers.itextpdf.com/content/itext-7-jump-start-tutorial/chapter-1-introducing-basic-building-blocks
http://developers.itextpdf.com/content/itext-7-jump-start-tutorial/chapter-1-introducing-basic-building-blocks
http://developers.itextpdf.com/content/itext-7-building-blocks/examples
http://developers.itextpdf.com/content/itext-7-jump-start-tutorial
http://developers.itextpdf.com/content/itext-7-jump-start-tutorial/chapter-1-introducing-basic-building-blocks
http://developers.itextpdf.com/content/itext-7-building-blocks/examples

Before we start: Overview of the
classes and interfaces
When we talk about iText 7’s basic building blocks, we refer to all classes that implement the
IElement interface. iText 7 is originally written in Java, then ported to C#. Because of our
experience with both programming languages, we’ve adopted the convenient habit â€“typical for
C# developersâ€“ to start every name of an interface with the letter I.

Figure 0.1 shows an overview of the relationship between IElement and some other interfaces.

Before we start: Overview of the classes and interfaces 3

Figure 0.1: Overview of the interfaces

At the top of the hierarchy, we find the IPropertyContainer interface. This interface defines
methods to set, get, and delete properties. This interfaces has two direct subinterfaces: IElement
and IRenderer. The IElement interface will be implemented by objects such as Text, Paragraph
and Table. These are the objects that we’ll add to a document, either directly or indirectly. The
IRenderer interface will be implemented by objects such as TextRenderer, ParagraphRenderer and
TableRenderer. These renderers are used internally by iText, but we can subclass them if we want
to tweak the way an object is rendered.

The IElement interface has two subinterfaces of its own. The ILeafElement interface will be
implemented by building blocks that can’t contain any other elements. For instance: you can add a
Text or an Image element to a Paragraph object, but you can’t add any object to a Text or an Image

Before we start: Overview of the classes and interfaces 4

element. Text and Image implement the ILeafElement interface to reflect this. Finally, there’s the
LargeElement interface that allows you to render an object before you’ve finished adding all the
content. It’s implemented by the Table class, which means that you add a table to a document
before you’ve completed adding all the Cell objects. By doing so, you can reduce the memory use:
all the table content that can be rendered before the content of the table is completed, can be flushed
from memory.

The IPropertyContainer interface is implemented by the abstract ElementPropertyContainer

class. This class has three subclasses; see figure 0.2.

Figure 0.2: Implementations of the IPropertyContainer interface

The Style class is a container for all kinds of style attributes such as margins, paddings and rotation.
It inherits style values such as widths, heights, colors, borders and alignments from the abstract
ElementPropertyContainer class.

The RootElement class defines methods to add content, using either an add() method or a
showTextAligned()method. The Document object will add this content to a page. The Canvas object
doesn’t know the concept of a page. It acts as a bridge between the high-level layout API and the
low-level kernel API.

Figure 0.3 gives us an overview of the AbstractElement implementations.

Before we start: Overview of the classes and interfaces 5

Figure 0.3: Implementations of the IElement interface

Before we start: Overview of the classes and interfaces 6

All classes derived from the AbstractElement class implement the IElement interface. Text, Image,
Tab and Link also implement the ILeafElement interface. The ILargeElement interface is only
implemented by the Table class. The basic building blocks make it very easy for you to create tagged
PDF. Tagged PDF is a requirement for PDF/A, a standard for long-term preservation of document,
and, PDF/UA, an accessibility standard. A properly tagged PDF includes semantic information about
all the relevant content.

An ordinary PDF can show a human reader content that is organized as a table. This table
is rendered using a bunch of text snippets and lines. To a machine, the table isn’t more than
that: text positioned at arbitrary places, lines drawn at arbitrary places. A seeing person can
detect rows and columns and understand which rows are actually header or footer rows
and which rows are body rows. There is no simple way for a machine to do this. When a
machine detects a text snippet, it doesn’t know if that text snippet is part of a paragraph,
part of a title, part of a cell, or part of something else. When a PDF is tagged, it contains a
structure tree that allows a machine to understand the structure of the content. Some text
will be marked as part of a cell in a header row, other text will be marked as the caption
of the table. All real content will be tagged. Other content, such as lines between rows and
columns, running headers, page numbers, will be marked as an artifact.

In iText, we have introduced the IAccessibleElement interface. It is implemented by all the basic
building blocks that contain real content: Text, Link, Image, Paragraph, Div, List, ListItem, Table,
Cell, LineSeparator. If we define a PdfDocument as a tagged PDF using the setTagged() method,
iText will create a structure tree so that a Table is properly tagged as a table, a List properly tagged
as a list, and so on. There is no real content in a Tab or an AreaBreak, which is why these classes
don’t implement that interface. It’s just white space; a tab and an area break don’t even need to be
marked as an artifact.

In this tutorial, we won’t create tagged PDF; iText will just render the content to the document
using the appropriate IRenderer implementation. Figure 0.4 shows an overview of the IRenderer

implementations.

Before we start: Overview of the classes and interfaces 7

Figure 0.4: Implementations of the IRenderer interface

Before we start: Overview of the classes and interfaces 8

When you compare figure 0.4 with 0.3, you’ll discover that each AbstractElement and each
RootElement has its corresponding renderer. We won’t discuss figure 0.4 in much detail. The concept
of renderers will become clear the moment we start making some examples.

Chapter 1: Introducing the PdfFont
class
When writing a tutorial, I always prefer working with real-world use cases. That’s not always easy
because real-world use cases can get quite complex, whereas a tutorial needs to explain different
concepts as simple as possible. While I was looking for a theme for this tutorial, I stumbled upon the
short story “The Strange Case of Dr. Jekyll and Mr. Hyde” by Robert Louis Stevenson. I made a first
example turning a plain text file into a PDF eBook and I liked the result. When I discovered how
many movies, cartoons and series were made based on this work, I saw an opportunity to create
a database that could be converted into a table. The movie posters could serve as sample material
when discussing images in PDF.

But first things first: let’s start with an example that displays the title and the author in different
fonts. The PdfFont class doesn’t appear in any of the hierarchical charts showing the relationship
between element interfaces and classes, but it’s needed for all the building blocks that involve text.
We could spend a complete tutorial about fonts (and we probably will), but this chapter will explain
the basic font functionality that you need to be aware of.

Creating a PdfFont object

If we look at figure 1.1, we see that three different fonts were used to create a PDF document with
the title and the author of the Jekyll and Hyde story: Helvetica, Times-Bold and Times-Roman.
In reality, three other fonts are used by the viewer: ArialMT, TimesNewRomanPS-BoldMT and
TimesNewRomanPSMT.

Chapter 1: Introducing the PdfFont class 10

Figure 1.1: Standard Type 1 fonts

The MT in the names of the Actual Font refers to the vendor of the fonts: the Monotype Imaging
Holdings, Inc. These are fonts shipped with Microsoft Windows. If you’d open the same file on a
Linux machine, other fonts would be used as actual fonts. This is typically what happens when you
don’t embed fonts. The viewer searches the operating system for the fonts that are needed to present
the document. If a specific font can be found, another font will be used instead.

Traditionally, there are 14 fonts that every PDF viewer should be able to recognize and
render in a reliable way: four Helvetica fonts (normal, bold, oblique, and bold-oblique),
four Times-Roman fonts (normal, bold, italic, and bold-italic), four Courier fonts (normal,
bold, oblique, and bold-oblique), Symbol and Zapfdingbats. These fonts are often referred
to as the Standard Type 1 fonts. Not every viewer will use that exact font, but it will use a
font that looks almost identical.

To create the PDF shown in figure 1.1, we used three of these fonts: we defined two fonts explicitly;
one font was defined implicitly. See the Text_Paragraph⁴ example.

⁴http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-1#1822-c01e01_text_paragraph.java

http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-1#1822-c01e01_text_paragraph.java
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-1#1822-c01e01_text_paragraph.java

Chapter 1: Introducing the PdfFont class 11

1 PdfDocument pdf = new PdfDocument(new PdfWriter(dest));

2 Document document = new Document(pdf);

3 PdfFont font = PdfFontFactory.createFont(FontConstants.TIMES_ROMAN);

4 PdfFont bold = PdfFontFactory.createFont(FontConstants.TIMES_BOLD);

5 Text title =

6 new Text("The Strange Case of Dr. Jekyll and Mr. Hyde").setFont(bold);

7 Text author = new Text("Robert Louis Stevenson").setFont(font);

8 Paragraph p = new Paragraph().add(title).add(" by ").add(author);

9 document.add(p);

10 document.close();

In line 1, we create a PdfDocument using a PdfWriter as parameter. These are low-level objects that
will create PDF output based on your content. We’re creating a Document instance in line 2. This
is a high-level object that will allow you to create a document without having to worry about the
complexity of PDF syntax.

In lines 5 and 6, we create a PdfFont using the PdfFontFactory. In the FontConstants object, you’ll
find a constant for each of the 14 Standard Type 1 fonts. In line 7, we create a Text object with the
title of Stevenson’s short story and we set the font to TIMES_BOLD. In line 8, we create a Text object
with the name of the author and we set the font to TIMES_ROMAN. We can’t add these Text objects
straight to the document, but we add them to a BlockElement, more specifically a Paragraph, in line
9.

Between the title and the author, we add " by " as a String object. Since we didn’t
define a font for this String, the default font of the Paragraph is used. In iText, the default
font is Helvetica. This explains why we see the font Helvetica listed in the font overview
in figure 1.1.

In line 10, we add the paragraph to the document object; we close the document object in line 11.

We have created our first Jekyll and Hyde PDF using fonts that aren’t embedded. As a result, slightly
different fonts can be used when rendering the document.We can avoid this by embedding the fonts.

Embedding a font

iText supports the Standard Type 1 fonts, because the io-jar contains the Adobe Font Metrics (AFM)
files of those 14 fonts. iText can’t embed these 14 fonts because the PostScript Font Binary (PFB)
files are proprietary. They can’t be shipped with iText because iText Group doesn’t have a license to
do so. We are only allowed to ship the metrics files.

In the Text_Paragraph_Cardo⁵ example, we use three fonts of the Cardo font family. These are fonts
that were released under the Summer Institute of Logistics (SIL) Open Font License (OFL). The result
is shown in figure 1.2.

⁵http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-1#1823-c01e02_text_paragraph_cardo.java

http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-1#1823-c01e02_text_paragraph_cardo.java
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-1#1823-c01e02_text_paragraph_cardo.java

Chapter 1: Introducing the PdfFont class 12

Figure 1.2: Embedded fonts

First we need the path to the font programs for the three Cardo fonts: Cardo-Regular.ttf, Cardo-
Bold.ttf and Cardo-Italic.ttf:

1 public static final String REGULAR =

2 "src/main/resources/fonts/Cardo-Regular.ttf";

3 public static final String BOLD =

4 "src/main/resources/fonts/Cardo-Bold.ttf";

5 public static final String ITALIC =

6 "src/main/resources/fonts/Cardo-Italic.ttf";

In line 1 to 3 of the following snippet, we use these paths as the first parameter of the createFont()
method. The second parameter is a Boolean indicating whether or not we want to embed the font.

Chapter 1: Introducing the PdfFont class 13

1 PdfFont font = PdfFontFactory.createFont(REGULAR, true);

2 PdfFont bold = PdfFontFactory.createFont(BOLD, true);

3 PdfFont italic = PdfFontFactory.createFont(ITALIC, true);

4 Text title =

5 new Text("The Strange Case of Dr. Jekyll and Mr. Hyde").setFont(bold);

6 Text author = new Text("Robert Louis Stevenson").setFont(font);

7 Paragraph p = new Paragraph().setFont(italic)

8 .add(title).add(" by ").add(author);

9 document.add(p);

Line 4 to 6 are identical to what we had before, but in line 7, we change the default font of the
Paragraph to italic. This explains why " by " was written in italic in figure 1.2 and why the font
Helvetica no longer appears in the font list. In line 7, we add the Paragraph to the Document instance.

Figure 1.3 shows what would happen if we don’t embed the fonts.

Figure 1.3: Ugly font substitution

In the Text_Paragraph_NoCardo⁶ example, we have defined the fonts like this:

⁶http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-1#1824-c01e03_text_paragraph_nocardo.java

http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-1#1824-c01e03_text_paragraph_nocardo.java
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-1#1824-c01e03_text_paragraph_nocardo.java

Chapter 1: Introducing the PdfFont class 14

1 PdfFont font = PdfFontFactory.createFont(REGULAR);

2 PdfFont bold = PdfFontFactory.createFont(BOLD);

3 PdfFont italic = PdfFontFactory.createFont(ITALIC);

The constants REGULAR, BOLD and ITALIC refer to the correct Cardo .ttf files, but we omitted the
parameter that tells iText to embed the font. Incidentally, the Cardo fonts aren’t present on my PC.
Adobe Reader replaced them with Adobe Sans MM. As you can see, the result doesn’t look nice. If
you don’t use any of the standard Type 1 fonts, you should always embed the font.

The problem is even worse when you try to create PDFs in different languages. In figure 1.4, we try
to add some text in Czech, Russian and Korean. The Czech text looks more or less OK, but we’ll
soon discover that there one character missing. The Russian and Korean text is invisible.

Figure 1.4: Wrong rendering of Czech, Russian and Korean

Not embedding the font isn’t the only problem here.We also need to define the appropriate encoding.

Choosing the appropriate encoding

In figure 1.4, we tried to render the following text:

Podivný případ Dr. Jekylla a pana Hyda by Robert Louis Stevenson

Chapter 1: Introducing the PdfFont class 15

Странная история доктора Джекила и мистера Хайда by Robert Louis Stevenson

���, ��, � by Robert Louis Stevenson

The first line is the Czech translation of “The Strange Case of Dr. Jekyll and Mr. Hyde.” If you look
closely at figure 1.4, you’ll see that the character ř is missing. That’s because the ř character is
missing in the Winansi encoding. Winansi, also known as code page 1252 (CP-1252), Windows 1252,
or Windows Latin 1, is a superset of ISO 8859-1 also known as Latin-1. It’s a character encoding of
the Latin alphabet, used by default in many applications on Western operating systems.

For the Czech text, we need to use another encoding. One option is to use code page 1250, an encoding
to represent text in Central European and Eastern European languages that use Latin script. The
second line reads as Strannaya istoriya doktora Dzhekila i mistera Khayda. For this text, we could
use code page 1251, an encoding designed to cover languages that use the Cyrillic script. Cp1250
and Cp1251 are 8-bit character encodings. The third line is Korean for Hyde, Jekyll, Me, a South-
Korean television series loosely based on the Jekyll and Hyde story. We can’t use an 8-bit encoding
for Korean. To render this text, we need to use Unicode. Unicode is a computing industry standard
for the consistent encoding, representation, and handling of text expressed in most of the world’s
writing systems.

When you create a font using an 8-bit encoding, iText will create a simple font for the PDF.
A simple font consists of at most 256 characters that are mapped to at most 256 glyphs.
When you create a font using Unicode (in PDF terms: Identity-H for horizontal writing
systems or Identity-V for vertical writing systems), iText will create a composite font. A
composite font can contain 65,536 characters. This is less than the total number of available
code points in Unicode (1,114,112). This means that no single font can contain all possible
characters in every possible language.

Instead of Cp1250 and Cp1251, we could also use Unicode for the Czech and Russian text. Actually,
when we store hard-coded text in source code, it is preferred to store Unicode values.

1 public static final String CZECH =

2 "Podivn\u00fd p\u0159\u00edpad Dr. Jekylla a pana Hyda";

3 public static final String RUSSIAN =

4 "\u0421\u0442\u0440\u0430\u043d\u043d\u0430\u044f "

5 + "\u0438\u0441\u0442\u043e\u0440\u0438\u044f "

6 + "\u0434\u043e\u043a\u0442\u043e\u0440\u0430 "

7 + "\u0414\u0436\u0435\u043a\u0438\u043b\u0430 \u0438 "

8 + "\u043c\u0438\u0441\u0442\u0435\u0440\u0430 "

9 + "\u0425\u0430\u0439\u0434\u0430";

10 public static final String KOREAN =

11 "\ud558\uc774\ub4dc, \uc9c0\ud0ac, \ub098";

Chapter 1: Introducing the PdfFont class 16

We’ll use the values CZECH. RUSSIAN and KOREAN in our next couple of examples.

Why should we always use Unicode notations for spe-
cial characters?
When the source code file is stored on disk, committed to a version control system, or
transferred in any way, there’s always a risk that the encoding gets lost. If a Unicode file
is stored as plain text, two-byte characters change into two single-byte characters. For
example, the character � with Unicode value \ud0ac will change into two characters with
ASCII code d0 and ac. When this happens the syllable � (pronounced as “kil”) changes into
Ð¬ and the text becomes illegible. It is good practice to use the Unicode notation as done in
the above snippet; this will help you avoid encoding problems with your source code.

Using the correct encoding isn’t sufficient to solve every font problem you might encounter. In the
Czech_Russian_Korean_Wrong⁷ example, we create the Paragraph objects like this:

1 PdfFont font = PdfFontFactory.createFont(FontConstants.TIMES_ROMAN);

2 document.add(new Paragraph().setFont(font)

3 .add(CZECH).add(" by Robert Louis Stevenson"));

4 document.add(new Paragraph().setFont(font)

5 .add(RUSSIAN).add(" by Robert Louis Stevenson"));

6 document.add(new Paragraph().setFont(font)

7 .add(KOREAN).add(" by Robert Louis Stevenson"));

This won’t work because we didn’t use the correct encoding, but also because we didn’t define a
font that supports Russian and Korean. We fix this problem in the Czech_Russian_Korean⁸ example
by embedding the free font “FreeSans” for the Czech and Russian translation of the title. We’ll use
a Hancom font “HCR Batang” for the Korean text.

1 public static final String FONT = "src/main/resources/fonts/FreeSans.ttf";

2 public static final String HCRBATANG = "src/main/resources/fonts/HANBatang.ttf";

We’ll use these paths as the first parameter for the PdfFont constructor.We pass the desired encoding
as the second parameter. The third parameter indicates that we want to embed the font.

⁷http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-1#1836-c01e04_czech_russian_korean_wrong.java
⁸http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-1#1837-c01e05_czech_russian_korean_right.java

http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-1#1836-c01e04_czech_russian_korean_wrong.java
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-1#1837-c01e05_czech_russian_korean_right.java
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-1#1836-c01e04_czech_russian_korean_wrong.java
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-1#1837-c01e05_czech_russian_korean_right.java

Chapter 1: Introducing the PdfFont class 17

1 PdfFont font1250 = PdfFontFactory.createFont(FONT, PdfEncodings.CP1250, true);

2 document.add(new Paragraph().setFont(font1250)

3 .add(CZECH).add(" by Robert Louis Stevenson"));

4 PdfFont font1251 = PdfFontFactory.createFont(FONT, "Cp1251", true);

5 document.add(new Paragraph().setFont(font1251)

6 .add(RUSSIAN).add(" by Robert Louis Stevenson"));

7 PdfFont fontUnicode =

8 PdfFontFactory.createFont(HCRBATANG, PdfEncodings.IDENTITY_H, true);

9 document.add(new Paragraph().setFont(fontUnicode)

10 .add(KOREAN).add(" by Robert Louis Stevenson"));

Figure 1.5 shows the resulting PDF.

Figure 1.5: Correct rendering of Czech, Russian and Korean

When we look at the Fonts panel in the document properties, we notice that FreeSans is mentioned
twice. That is correct: we’ve added the font once with the encoding Cp1250 and once with the
encoding Cp1251, In the Czech_Russian_Korean_Unicode⁹ example, we’ll create one composite font,
freeUnicode, for both languages, Czech and Russian.

⁹http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-1#1844-c01e06_czech_russian_korean_unicode.java

http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-1#1844-c01e06_czech_russian_korean_unicode.java
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-1#1844-c01e06_czech_russian_korean_unicode.java

Chapter 1: Introducing the PdfFont class 18

1 PdfFont freeUnicode =

2 PdfFontFactory.createFont(FONT, PdfEncodings.IDENTITY_H, true);

3 document.add(new Paragraph().setFont(freeUnicode)

4 .add(CZECH).add(" by Robert Louis Stevenson"));

5 document.add(new Paragraph().setFont(freeUnicode)

6 .add(RUSSIAN).add(" by Robert Louis Stevenson"));

7 PdfFont fontUnicode =

8 PdfFontFactory.createFont(HCRBATANG, PdfEncodings.IDENTITY_H, true);

9 document.add(new Paragraph().setFont(fontUnicode)

10 .add(KOREAN).add(" by Robert Louis Stevenson"));

Figure 1.6 shows the result. The page looks identical to what we saw in figure 1.5, but now the PDF
only contains one FreeSans font with Identity-H as encoding.

Figure 1.6: Correct rendering of Czech, Russian and Korean (Unicode)

Using Unicode is one of the requirements of PDF/UA and of certain flavors of PDF/A for reasons of
accessibility. With custom encodings, it isn’t always possible to know which glyphs are represented
by each character.

In the next series of font examples, we’ll experiment with some font properties such as font size,
font color, and rendering mode.

Chapter 1: Introducing the PdfFont class 19

Font properties

Figure 1.7 shows a screen shot of yet another PDF with the Jekyll and Hyde title. This time, the
default font Helvetica is used, but we’ve defined different font sizes.

Figure 1.7: Different font sizes

The font size is set with the setFontSize() method. This method is defined in the abstract class
ElementPropertyContainer, which means that we can use it on many different objects. In the
FontSize¹⁰ example, we use the method on Text and Paragraph objects:

1 Text title1 = new Text("The Strange Case of ").setFontSize(12);

2 Text title2 = new Text("Dr. Jekyll and Mr. Hyde").setFontSize(16);

3 Text author = new Text("Robert Louis Stevenson");

4 Paragraph p = new Paragraph().setFontSize(8)

5 .add(title1).add(title2).add(" by ").add(author);

6 document.add(p);

We set the font size of the newly created Paragraph to 8 pt. This font size will be inherited by all the
objects that are added to the Paragraph, unless the objects override that default size. This is the case
for title1 for which we defined a font size of 12 pt and for title2 for which we defined a font size
of 16 pt. The content added as a String (" by ") and the content added as a Text object for which
no font size was defined inherit the font size 8 pt from the Paragraph to which they are added.

In iText 5, it was necessary to create a different Font object if you wanted a font with a
different size or color. We changed this in iText 7: you only need a single PdfFont object.
The font size and color is defined at the level of the building blocks.We alsomade it possible
for elements to inherit the font, font size, font color and other properties from the parent
object.

In previous examples, we’ve worked with different fonts from the same family. For instance, we’ve
created a document with three different fonts from the Cardo family: Cardo-Regular, Cardo-Bold,

¹⁰http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-1#1846-c01e07_fontsize.java

http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-1#1846-c01e07_fontsize.java
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-1#1846-c01e07_fontsize.java

Chapter 1: Introducing the PdfFont class 20

and Cardo-Italic. For most of the Western fonts, you’ll find at least a regular font, a bold font, an
italic font, and a bold-italic font. It will be more difficult to find bold, italic and bold-italic fonts for
Eastern and Semitic languages. In that case, you’ll have to mimic those styles as is done in figure
1.8. If you look closely, you see that different styles are used, yet we’ve only defined a single font in
the PDF.

Figure 1.8: Mimicking different font styles

Let’s take a look at the BoldItalic¹¹ example to find out how this was done.

1 Text title1 = new Text("The Strange Case of ").setItalic();

2 Text title2 = new Text("Dr. Jekyll and Mr. Hyde").setBold();

3 Text author = new Text("Robert Louis Stevenson").setItalic().setBold();

4 Paragraph p = new Paragraph()

5 .add(title1).add(title2).add(" by ").add(author);

6 document.add(p);

In lines 1 to 3, we use the methods setItalic() and setBold(). The setItalic() method won’t
switch from a regular to an italic font. Instead, it will skew the glyphs of the italic font in such a
way that it looks as if they are italic. The setBold() font will change the render mode of the text
and increase the stroke width. Let’s introduce some color to show what this means.

Figure 1.9 shows the text using different colors and different rendering modes.

¹¹http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-1#1847-c01e08_bolditalic.java

http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-1#1847-c01e08_bolditalic.java
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-1#1847-c01e08_bolditalic.java

Chapter 1: Introducing the PdfFont class 21

Figure 1.9: different font colors and rendering modes

The ColorRendering¹² example explains what happens.

1 Text title1 = new Text("The Strange Case of ").setFontColor(Color.BLUE);

2 Text title2 = new Text("Dr. Jekyll")

3 .setStrokeColor(Color.GREEN)

4 .setTextRenderingMode(PdfCanvasConstants.TextRenderingMode.FILL_STROKE);

5 Text title3 = new Text(" and ");

6 Text title4 = new Text("Mr. Hyde")

7 .setStrokeColor(Color.RED).setStrokeWidth(0.5f)

8 .setTextRenderingMode(PdfCanvasConstants.TextRenderingMode.STROKE);

9 Paragraph p = new Paragraph().setFontSize(24)

10 .add(title1).add(title2).add(title3).add(title4);

11 document.add(p);

A font program contains the syntax to construct the path of each glyph. By default the path is painted
using a fill operator, not drawn with a stroke operation, but we can change this default.

• In line 1, we change the font color to blue using the setFontColor() method. This changes
the fill color for the paint operation that fills the paths of all the text.

• In line 2-4, we don’t define a font color, which means the text will be painted in black.
Instead we define a stroke color using the setStrokeColor() method, and we change the
text rendering mode to FILL_STROKE with the setTextRenderingMode() method. As a result
the contours of each glyph will be drawn in green. Inside those contours, we’ll see the default
fill color black.

• We don’t change any of the defaults in line 5. This Text object will simply inherit the font size
of the Paragraph, just like all of the other Text objects.

• In line 6-8, we change the stroke color to red and we use the setStrokeWidth() to 0.5 user
units. By default, the stroke width is 1 user unit, which by default corresponds with 1 point.

¹²http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-1#1848-c01e09_colorrendering.java

http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-1#1848-c01e09_colorrendering.java
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-1#1848-c01e09_colorrendering.java

Chapter 1: Introducing the PdfFont class 22

There are 72 user units in one inch by default. We also change the text rendering mode to
STROKEwhich means the text won’t be filled using the default fill color. Instead, we’ll only see
the contours of the text.

Mimicking bold is done by setting the text rendering mode to FILL_STROKE and by increasing the
stroke width; mimicking italic is done by using the setSkew() method that will be discussed in
chapter 3. Although this approach works relatively well, the setBold() and setItalic() method
should only be used as a last resort when it’s really impossible to find the appropriate fonts for the
desired styles. Mimicking styles makes it very hard –if not impossible– for parsers extracting text
from PDF to detect which part of the text is rendered in a different style.

Reusing styles

If you have many different building blocks, it can become quite cumbersome to define the same
style over and over again for each separate object. See for instance figure 1.10 where parts of the
text –the title of a story– are written in 14 pt Times-Roman, but other parts –the names of the main
characters– are written in 12 pt Courier with red text on a light gray background.

Figure 1.10: reusing styles

We could define the font family, font size, font color and background for each separate Text object
that is added to the title Paragraph, but in the ReusingStyles¹³ example, we use the Style object to
define all the different styles at once.

¹³http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-1#1889-c01e10_reusingstyles.java

http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-1#1889-c01e10_reusingstyles.java
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-1#1889-c01e10_reusingstyles.java

Chapter 1: Introducing the PdfFont class 23

1 Style normal = new Style();

2 PdfFont font = PdfFontFactory.createFont(FontConstants.TIMES_ROMAN);

3 normal.setFont(font).setFontSize(14);

4 Style code = new Style();

5 PdfFont monospace = PdfFontFactory.createFont(FontConstants.COURIER);

6 code.setFont(monospace).setFontColor(Color.RED)

7 .setBackgroundColor(Color.LIGHT_GRAY);

8 Paragraph p = new Paragraph();

9 p.add(new Text("The Strange Case of ").addStyle(normal));

10 p.add(new Text("Dr. Jekyll").addStyle(code));

11 p.add(new Text(" and ").addStyle(normal));

12 p.add(new Text("Mr. Hyde").addStyle(code));

13 p.add(new Text(".").addStyle(normal));

14 document.add(p);

In line 1-3, we define a normal style; in line 4-7, we define a code style –Courier is often used when
introducing code snippets in text. In line 8-13, we compose a Paragraph using different Text objects.
We set the style of each of these Text objects to either normal, or code.

The Style object is a subclass of the abstract ElementPropertyContainer class, which is the
superclass of all the building blocks we are going to discuss in the next handful of chapters. It
contains a number of setters and getters for numerous properties such as fonts, colors, borders,
dimensions, and positions. You can use the addStyle()method on every AbstractElement subclass
to set these properties in one go.

Being able to combine different properties in one class, is one of the many new features in
iText 7 that can save you many lines of code when compared to iText 5.

The Style class is about much more than fonts. You can even use it to define padding and margin
values for BlockElement building blocks. But let’s not get ahead of ourselves, the BlockElement class
will be discussed in chapters 4 and 5.

Summary

In this chapter, we’ve introduced the PdfFont class and we talked about font programs, embedding
fonts and using different encodings. This allowed us to show the title of a short story by Robert
Louis Stevenson in different languages: English, Czech, Russian, and Korean. We also looked at font
properties such as font size, font color, and rendering mode. We even discovered how to mimic styles
in case we can’t find the font program to render text in italic or bold.

There’s much more that could be said about fonts, but we’ll leave that for a separate tutorial.
In the next chapter, we’ll create a PDF with the full story while we discuss the RootElement

implementations Document and Canvas.

Chapter 2: Working with the
RootElement
Throughout this tutorial, we’ll be creating PDF documents by adding BlockElement and Image

objects to a RootElement, an abstract class that is subclassed by the Document object and the Canvas
object. In the previous chapter, we’ve already used the Document class; in this chapter, we’ll take a
closer look at both the Canvas and the Document class.

• Document is the default root element when creating a self-sufficient PDF. It manages high-level
operations such as setting page size and rotation, adding elements, and writing text at specific
coordinates. It has no knowledge of the actual PDF concepts and syntax. A Document’s
rendering behavior can be modified by extending the DocumentRenderer class and setting
an instance of this custom renderer with the setRenderer() method.

• Canvas is used for adding BlockElement and Image content inside a specific rectangle defined
using absolute positions on a PdfCanvas. Canvas has no knowledge of the concept of a page
and content that doesn’t fit the rectangle will be lost. This class acts as a bridge between the
high-level layout API and the low-level kernel API.

Lets’s start with some Canvas examples.

Using Canvas to add content inside a Rectangle

In figure 2.1, we see a rectangle drawn using the low-level API. Inside this rectangle, we’ve added
some text. This text was added using the Canvas object.

Chapter 2: Working with the RootElement 25

Figure 2.1: Adding text inside a rectangle

The CanvasExample¹⁴ shows how it’s done.

1 PdfDocument pdf = new PdfDocument(new PdfWriter(dest));

2 PdfPage page = pdf.addNewPage();

3 PdfCanvas pdfCanvas = new PdfCanvas(page);

4 Rectangle rectangle = new Rectangle(36, 650, 100, 100);

5 pdfCanvas.rectangle(rectangle);

6 pdfCanvas.stroke();

7 Canvas canvas = new Canvas(pdfCanvas, pdf, rectangle);

8 PdfFont font = PdfFontFactory.createFont(FontConstants.TIMES_ROMAN);

9 PdfFont bold = PdfFontFactory.createFont(FontConstants.TIMES_BOLD);

10 Text title =

11 new Text("The Strange Case of Dr. Jekyll and Mr. Hyde").setFont(bold);

12 Text author = new Text("Robert Louis Stevenson").setFont(font);

13 Paragraph p = new Paragraph().add(title).add(" by ").add(author);

14 canvas.add(p);

15 pdf.close();

Let’s examine what happens in this code snippet:

• Line 1: we define a PdfDocument,
• Line 2: we don’t use a Document object, so we have to create each PdfPage in our own code,
• Line 3: we use this PdfPage to create a PdfCanvas,
• Line 4: we define a rectangle,

¹⁴http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-2#1891-c02e01_canvasexample.java

http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-2#1891-c02e01_canvasexample.java
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-2#1891-c02e01_canvasexample.java

Chapter 2: Working with the RootElement 26

• Line 5-6: we draw the rectangle using the low-level API,
• Line 7: we create a Canvas object using the PdfPage, the PdfDocument and the rectangle,
• Line 8-13: we create a Paragraph; this code is identical to what we had in the previous chapter,
• Line 14: we add the Paragraph to the Canvas.
• Line 15: we close the PdfDocument.

Looking at this example, it’s not hard to understand the use case. Suppose that you need to add
content on a specific page at a specific rectangular location. You create a Canvas object passing that
page and that rectangle as a parameter, and you can add that content to that object. The content will
be rendered inside the boundaries of that rectangle.

It is important to understand that all the content that doesn’t fit the rectangle will be cut. See figure
2.2.

Figure 2.2: Adding text that doesn’t fit a rectangle

In the CanvasCut¹⁵ example, we add the same content to a smaller rectangle.

1 Rectangle rectangle = new Rectangle(36, 750, 100, 50);

2 Canvas canvas = new Canvas(pdfCanvas, pdf, rectangle);

3 PdfFont font = PdfFontFactory.createFont(FontConstants.TIMES_ROMAN);

4 PdfFont bold = PdfFontFactory.createFont(FontConstants.TIMES_BOLD);

5 Text title =

6 new Text("The Strange Case of Dr. Jekyll and Mr. Hyde").setFont(bold);

7 Text author = new Text("Robert Louis Stevenson").setFont(font);

8 Paragraph p = new Paragraph().add(title).add(" by ").add(author);

9 canvas.add(p);

In this snippet, we add the exact same content as before, but instead of new Rectangle(36, 650,

100, 100), we reduced the height from 100 to 50: new Rectangle(36, 750, 100, 50). As a result,

¹⁵http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-2#1892-c02e02_canvascut.java

http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-2#1892-c02e02_canvascut.java
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-2#1892-c02e02_canvascut.java

Chapter 2: Working with the RootElement 27

the text no longer fits the rectangle. The part that says “Mr. Hyde by Robert Louis Stevenson” got
lost. No exception gets thrown because this is expected behavior.

iText 7.0.0 was rewritten from scratch. We’ve waited with the release of the first iText 7
version until we were 99% sure of the API. We wanted to avoid significant changes to the
API in later versions. Nevertheless, we’re constantly improving the library, hence you will
notice that some functionality described in the tutorials will only work in the current or
SNAPSHOT version of iText 7. Whenever this is the case, You’ll see a “Warning” call out
like this one. The CanvasCut example we’ve just discussed won’t work as described in iText
7.0.0. You’ll need iText 7.0.1 to get the behavior described in this tutorial.

Text getting cut without warning isn’t always what you want. In some cases, you need to know if
the content fit the rectangle or not. For instance, in figure 2.3, we have defined a larger rectangle to
which we’ve added the Paragraph as many times as possible.

Figure 2.3: Filling a rectangle with text

We’ve added the Paragraph three times, because we can fit it inside the rectangle almost two and a
half times. How did we know this? Let’s take a look at the CanvasRepeat¹⁶ example.

¹⁶http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-2#1893-c02e03_canvasrepeat.java

http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-2#1893-c02e03_canvasrepeat.java
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-2#1893-c02e03_canvasrepeat.java

Chapter 2: Working with the RootElement 28

First we extended the CanvasRenderer:

1 class MyCanvasRenderer extends CanvasRenderer {

2 protected boolean full = false;

3

4 private MyCanvasRenderer(Canvas canvas) {

5 super(canvas);

6 }

7

8 @Override

9 public void addChild(IRenderer renderer) {

10 super.addChild(renderer);

11 full = Boolean.TRUE.equals(getPropertyAsBoolean(Property.FULL));

12 }

13

14 public boolean isFull() {

15 return full;

16 }

17 }

We introduce a member-variable full that indicates if the rectangle was completely filled or not.
Each time a child is added to the renderer, we check the status of the FULL property. This status can
be null, false or true. If it’s true, there is no more space left to add content. We also added an
isFull() method for our convenience.

1 Rectangle rectangle = new Rectangle(36, 500, 100, 250);

2 Canvas canvas = new Canvas(pdfCanvas, pdf, rectangle);

3 MyCanvasRenderer renderer = new MyCanvasRenderer(canvas);

4 canvas.setRenderer(renderer);

5 PdfFont font = PdfFontFactory.createFont(FontConstants.TIMES_ROMAN);

6 PdfFont bold = PdfFontFactory.createFont(FontConstants.TIMES_BOLD);

7 Text title =

8 new Text("The Strange Case of Dr. Jekyll and Mr. Hyde").setFont(bold);

9 Text author = new Text("Robert Louis Stevenson").setFont(font);

10 Paragraph p = new Paragraph().add(title).add(" by ").add(author);

11 while (!renderer.isFull())

12 canvas.add(p);

The Rectangle we define in line 1 is larger than what we had before. Line 3 and 4 are new. We
create an instance of our custom renderer and we declare this renderer to the Canvas object. In line
11 and 12, we add the Paragraph as many times as possible as long as the Canvaswe’ve defined isn’t
completely full.

Chapter 2: Working with the RootElement 29

One might wonder why we are adding the border of the rectangle using the
low-level rectangle menu. The abstract RootElement extends the abstract
ElementPropertyContainer class. The ElementPropertyContainer class defines methods
such as setBorder() and setBackgroundColor(), but these methods can’t be used because
setting a border or a background isn’t implemented for Canvas, nor for Document. Not
every method defined in ElementPropertyContainer makes sense for all of its subclasses.
For instance: it doesn’t make sense to implement the setFont() method for an Image

object. You can check which methods are implemented for the Canvas and Document class
in Appendix C¹⁷.

In figure 2.4, we created a document with two pages, but there’s something special about it: we added
content under the existing content of the first page after we added content to the second page.

Figure 2.4: Adding content to the previous page

The first part of the code, is identical to what we had in the first example: we define a first page
and a rectangle, we create a Canvas instance with this page and this rectangle. Then we define a
Paragraph and we add this Paragraph to the canvas. The following code snippet taken from the
CanvasReturn¹⁸ example shows how we create a second page and add some content to that page.

1 PdfPage page2 = pdf.addNewPage();

2 PdfCanvas pdfCanvas2 = new PdfCanvas(page2);

3 Canvas canvas2 = new Canvas(pdfCanvas2, pdf, rectangle);

4 canvas2.add(new Paragraph("Dr. Jekyll and Mr. Hyde"));

We add a new page to the document with the addNewPage() method (line 1). We create a new
PdfCanvas object with that page (line 2) and a new Canvas object using that new PdfCanvas, the

¹⁷http://developers.itextpdf.com/content/itext-7-building-blocks/c-rootelement-methods
¹⁸http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-2#1894-c02e04_canvasreturn.java

http://developers.itextpdf.com/content/itext-7-building-blocks/c-rootelement-methods
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-2#1894-c02e04_canvasreturn.java
http://developers.itextpdf.com/content/itext-7-building-blocks/c-rootelement-methods
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-2#1894-c02e04_canvasreturn.java

Chapter 2: Working with the RootElement 30

PdfDocument and the Rectangle we used for the first page (line 3). We add a Paragraph to that new
Canvas.

This is pretty straightforward, but now look what happens next:

1 PdfPage page1 = pdf.getFirstPage();

2 PdfCanvas pdfCanvas1 = new PdfCanvas(

3 page1.newContentStreamBefore(), page1.getResources(), pdf);

4 rectangle = new Rectangle(100, 700, 100, 100);

5 pdfCanvas1.saveState()

6 .setFillColor(Color.CYAN)

7 .rectangle(rectangle)

8 .fill()

9 .restoreState();

10 Canvas canvas = new Canvas(pdfCanvas1, pdf, rectangle);

11 canvas.add(new Paragraph("Dr. Jekyll and Mr. Hyde"));

In line 1, we create a PdfPage instance for the first page using the getFirstPage() method.

The getFirstPage()method is a custom version of the getPage()method. The getPage()
method allows you to get access to any page that was created before as long as the
PdfDocument hasn’t been closed.

In line 2 and 3, we create a PdfCanvas object using the following parameters:

• a PdfStream instance: a page consists of one or more content streams. In this case, we want to
add content under the existing content, hencewe use the newContentStreamBefore()method.
If you want to add content on top of existing content, you should use the newContentStrea-
mAfter() object. These methods create a new content stream, and add it to the page. You can
also get access to existing content streams. The method getContentStreamCount() will tell
you of how many content streams the page content consists. There’s a getContentStream()

method that allows you to get a specific content stream based on its index. There’s also a
getFirstContentStream() and a getLastContentStream() method.

• a PdfResources instance: the content stream on its own isn’t sufficient to render a page. Each
page refers to resources such as fonts and images. When adding content to that page, we’ll
need to reuse and update these resources.

• the PdfDocument instance: this is the low-level PdfDocument we’re working with.

In line 4, we define a rectangle. We paint that rectangle in Cyan in lines 5 to 9. In line 10 and 11, we
create a Canvas object to which we add a Paragraph.

Chapter 2: Working with the RootElement 31

Being able to go back to a previous page and to add content to that page is one of the
new, powerful features in iText 7. The architecture of iText 5 didn’t allow us to change the
content of “completed” pages. This is one of the many reasons why we decided to rewrite
iText from scratch.

So far, we have been using the Canvas class to add content to a PdfCanvas. In chapter 7, we’ll
discover another use case: you can also create a Canvas to add content to a PdfFormXObject.
A form XObject is an object that is external to any page content stream. It represents a
stream of PDF content that can be referred to more than once from the same page, or from
different pages. It’s a stream of reusable PDF syntax. The Canvas objects allows you to
create that PDF syntax without any hassle.

It’s high time that we create a PDF with the full Jekyll and Hyde story instead of merely adding the
title and the author to a page. We’ll use the Document class to achieve this.

Converting text to PDF with the Document class

Figure 2.5 shows a text file with the full Jekyll and Hyde story: jekyll_hyde.txt¹⁹

Figure 2.5: Text file with the Jekyll and Hyde story

We’ll convert this txt file to a PDF multiple times in the next handful of examples. We’ll start by
creating the PDF shown in figure 2.6.

¹⁹http://gitlab.itextsupport.com/itext7/samples/raw/develop/publications/highlevel/src/main/resources/txt/jekyll_hyde.txt

http://gitlab.itextsupport.com/itext7/samples/raw/develop/publications/highlevel/src/main/resources/txt/jekyll_hyde.txt
http://gitlab.itextsupport.com/itext7/samples/raw/develop/publications/highlevel/src/main/resources/txt/jekyll_hyde.txt

Chapter 2: Working with the RootElement 32

Figure 2.6: First attempt to convert txt to PDF

The JekyllHydeV1²⁰ example is very simple. You don’t need any new functionality that hasn’t been
discussed before:

1 PdfDocument pdf = new PdfDocument(new PdfWriter(dest));

2 Document document = new Document(pdf);

3 BufferedReader br = new BufferedReader(new FileReader(SRC));

4 String line;

5 while ((line = br.readLine()) != null) {

6 document.add(new Paragraph(line));

7 }

8 document.close();

In line 1, we create the low-level PdfDocument object. In line 2, we create the high-level Document
instance. We create a BufferedReader to read the txt file in line 3. We read every line in the text file
in a loop in lines 4 to 7. In line 6, we wrap every line inside a Paragraph object, which we add to the
Document object. In line 8. we close the document. The result is a 42-page PDF with the full story of
“The Strange Case of Dr. Jekyll and Mr. Hyde.”

²⁰http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-2#1895-c02e05_jekyllhydev1.java

http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-2#1895-c02e05_jekyllhydev1.java
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-2#1895-c02e05_jekyllhydev1.java

Chapter 2: Working with the RootElement 33

While this result is already nice, we can do better. The first thing that jumps to the eye in figure
2.7 is the fact that we changed the alignment. Instead of the default left alignment, the text is now
justified on both sides of the page. If you take a closer look, you’ll also notice that we’ve introduced
hyphenation.

Figure 2.7: Second attempt to convert txt to PDF

For the JekyllHydeV2²¹ example, we copied the first example, and we added the following lines:

1 document.setTextAlignment(TextAlignment.JUSTIFIED)

2 .setHyphenation(new HyphenationConfig("en", "uk", 3, 3));

We used the setTextAlignment() to change the default alignment at the Document level. We
used the setHyphenation() method to define the hyphenation rules. In this case, we created a
HyphenationConfig object to treat the text as British English. When splitting a word, we indicated
that we want at least 3 characters before the hyphenation point and at least 3 characters after the
hyphenation point. This means that the word “elephant” can’t be hyphenated as “e-lephant” because
“e” is shorter than 3 characters; we need to split the word like this instead: “ele-phant”. The word
“attitude” can’t be hyphenated as “attitu-de” because “de” is shorter than 3 characters, in this case
we need something like “atti-tude”.

²¹http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-2#1896-c02e06_jekyllhydev2.java

http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-2#1896-c02e06_jekyllhydev2.java
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-2#1896-c02e06_jekyllhydev2.java

Chapter 2: Working with the RootElement 34

Changing defaults at the Document level, such as the default alignment, the default
hyphenation, or even the default font, wasn’t possible in iText 5. You had to define all
of these properties at the level of the separate building blocks. In iText 7, we introduced
the inheritance of properties. The default font is still Helvetica, but we can now define a
different font at the Document level.

Figure 2.8 shows our third attempt to convert the txt file to a PDF. We changed the font from 12 pt
Helvetica to 11 pt Times-Roman. As a result, the page count was reduced from 42 pages to only 34.

Figure 2.8: Third attempt to convert txt to PDF

When we look at the JekyllHydeV3²² example, we see that two different fonts are used:

²²http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-2#1897-c02e07_jekyllhydev3.java

http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-2#1897-c02e07_jekyllhydev3.java
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-2#1897-c02e07_jekyllhydev3.java

Chapter 2: Working with the RootElement 35

1 Document document = new Document(pdf);

2 PdfFont font = PdfFontFactory.createFont(FontConstants.TIMES_ROMAN);

3 PdfFont bold = PdfFontFactory.createFont(FontConstants.HELVETICA_BOLD);

4 document.setTextAlignment(TextAlignment.JUSTIFIED)

5 .setHyphenation(new HyphenationConfig("en", "uk", 3, 3))

6 .setFont(font)

7 .setFontSize(11);

Times-Roman is used as the default font, but we also define Helvetica-Bold for the titles. The txt file
was conceived in such a way that the first line of the text file is the title of the book. Every other title
in the story is preceded by an empty line. Every line that isn’t a title, is a full paragraph. Knowing
this, we can adapt the loop that reads the text file line by line.

1 BufferedReader br = new BufferedReader(new FileReader(SRC));

2 String line;

3 Paragraph p;

4 boolean title = true;

5 while ((line = br.readLine()) != null) {

6 p = new Paragraph(line);

7 p.setKeepTogether(true);

8 if (title) {

9 p.setFont(bold).setFontSize(12);

10 title = false;

11 }

12 else {

13 p.setFirstLineIndent(36);

14 }

15 if (line.isEmpty()) {

16 p.setMarginBottom(12);

17 title = true;

18 }

19 else {

20 p.setMarginBottom(0);

21 }

22 document.add(p);

23 }

This code snippet is a tad more complex than what we had before, but let’s walk through it step by
step:

• We introduce a Boolean title (line 4) which we initalize as true because we know that the
first line in the text file is a title. We create a Paragraph for each line (line 6) and we use

Chapter 2: Working with the RootElement 36

the setKeepTogether() method because we don’t want iText to distribute paragraphs over
different pages (line 7). If a Paragraph doesn’t fit the current page, it will be forwarded to
the next page unless the Paragraph doesn’t fit the next page either. In that case will be split
anyway: part of it will be added to the current page and the rest will be forwarded to the next
page –or pages.

• If value of title is true, we change the default font that was defined at the Document level as
11 pt Times-Roman to 12 pt Helvetica-Bold. We know that the next line in the txt file will be
normal content, so we set the value of title to false (line 9-11). For normal lines, we change
the indentation of the first line so that we can easily distinguish the different paragraphs in
the text (line 12-14).

• If the current line is an empty String, we define a bottom margin of 12 (line 16) and we
change the value of title back to true (line 17), because we know that the next line will be
a title; for all other the lines, we reduce the bottom margin of the Paragraph to 0 (line 20).

• Once all the properties for the Paragraph are set, we add it to the Document (line 22).

As you could tell from figure 2.8, iText has rendered the text to PDF page by page in quite a nice
way. Now suppose that we want to render the text in two columns, organized side by side on one
page. In that case, we need to introduce a DocumentRenderer instance.

Changing the Document renderer

The text in figure 2.8 is rendered using exactly the same Document defaults and exactly the same
Paragraph properties as in the previous example. There’s one major difference: the text is now
rendered in two columns per page.

Chapter 2: Working with the RootElement 37

Figure 2.9: Rendering the text in two columns

To achieve this, we used the ColumnDocumentRenderer class. This is a subclass of the DocumentRen-
derer class that is used by default. The JekyllHydeV4²³ example explains how the ColumnDocumen-
tRenderer is created and applied.

1 float offSet = 36;

2 float gutter = 23;

3 float columnWidth = (PageSize.A4.getWidth() - offSet * 2) / 2 - gutter;

4 float columnHeight = PageSize.A4.getHeight() - offSet * 2;

5 Rectangle[] columns = {

6 new Rectangle(offSet, offSet, columnWidth, columnHeight),

7 new Rectangle(

8 offSet + columnWidth + gutter, offSet, columnWidth, columnHeight)};

9 document.setRenderer(new ColumnDocumentRenderer(document, columns));

We define an array of Recangle objects, and we use that array to create a ColumnDocumentRenderer
object. We use the setRenderer() method to tell the Document to use this renderer instead of the
default DocumentRenderer instance.

²³http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-2#1898-c02e08_jekyllhydev4.java

http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-2#1898-c02e08_jekyllhydev4.java
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-2#1898-c02e08_jekyllhydev4.java

Chapter 2: Working with the RootElement 38

If we wanted to organize content in columns in iText 5, we needed to use the ColumnText
object. In iText 2, there was a MultiColumnText object that reduced the amount of code
that needed to be written to distribute the code over different columns, but this class
was removed in iText 5 because of the lack of robustness of MultiColumnText. With the
ColumnDocumentRenderer, developers now have a reliable way to create columns without
having to write as much code as was needed in iText 5.

While we were at it, we applied a small change to the code that parses the text:

1 BufferedReader br = new BufferedReader(new FileReader(SRC));

2 String line;

3 Paragraph p;

4 boolean title = true;

5 AreaBreak nextArea = new AreaBreak(AreaBreakType.NEXT_AREA);

6 while ((line = br.readLine()) != null) {

7 p = new Paragraph(line);

8 if (title) {

9 p.setFont(bold).setFontSize(12);

10 title = false;

11 }

12 else {

13 p.setFirstLineIndent(36);

14 }

15 if (line.isEmpty()) {

16 document.add(nextArea);

17 title = true;

18 }

19 document.add(p);

20 }

In line 5, we create an AreaBreak object. This is a layout object that terminates the current content
area and creates a new one. In this case, we create an AreaBreak of type NEXT_AREA and we introduce
it before the start of every new chapter. The effect of this area break is shown in figure 2.10.

Chapter 2: Working with the RootElement 39

Figure 2.10: The effect of an AreaBreak of type NEXT_AREA

Without the AreaBreak, the chapter “INCIDENT AT THEWINDOW” would have started in the left
column of page 19, right after the content of the previous chapter. By introducing the AreaBreak,
the new chapter now starts in a new column. If we had used an AreaBreak of type NEXT_PAGE, a new
page would have been started; see figure 2.11.

Chapter 2: Working with the RootElement 40

Figure 2.11: The effect of an AreaBreak of type NEXT_PAGE

In the JekyllHydeV5²⁴ example, we changed a single line:

1 AreaBreak nextPage = new AreaBreak(AreaBreakType.NEXT_PAGE);

Instead of skipping to the next column, iText now skips to the next page.

By default, the newly created page will have the same page size as the current page. If
you want iText to create a page of another size, you can use the constructor that accepts a
PageSize object as a parameter. For instance: new AreaBreak(PageSize.A3).

There’s also an AreaBreak of type LAST_PAGE. This AreaBreakType is to be used when switching
between different renderers.

Switching between different renderers

Figure 2.12 shows a document for which we use the default DocumentRenderer for the first page.
Starting with the second page, we introduce a ColumnDocumentRenderer with two colums.

²⁴http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-2#1899-c02e09_jekyllhydev5.java

http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-2#1899-c02e09_jekyllhydev5.java
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-2#1899-c02e09_jekyllhydev5.java

Chapter 2: Working with the RootElement 41

Figure 2.12: Different renderers in the same document

If we look closely at the JekyllHydeV6²⁵ example, we see that we swith renderers two times.

1 public void createPdf(String dest) throws IOException {

2 PdfDocument pdf = new PdfDocument(new PdfWriter(dest));

3 Document document = new Document(pdf);

4 Paragraph p = new Paragraph()

5 .add("Be prepared to read a story about a London lawyer "

6 + "named Gabriel John Utterson who investigates strange "

7 + "occurrences between his old friend, Dr. Henry Jekyll, "

8 + "and the evil Edward Hyde.");

9 document.add(p);

10 document.add(new AreaBreak(AreaBreakType.NEXT_PAGE));

11 ... // Define column areas

12 document.setRenderer(new ColumnDocumentRenderer(document, columns));

13 document.add(new AreaBreak(AreaBreakType.LAST_PAGE));

14 ... // Add novel in two columns

15 document.add(new AreaBreak(AreaBreakType.NEXT_PAGE));

16 document.setRenderer(new DocumentRenderer(document));

17 document.add(new AreaBreak(AreaBreakType.LAST_PAGE));

18 p = new Paragraph()

19 .add("This was the story about the London lawyer "

20 + "named Gabriel John Utterson who investigates strange "

21 + "occurrences between his old friend, Dr. Henry Jekyll, "

22 + "and the evil Edward Hyde. THE END!");

²⁵http://developers.itextpdf.com/node/3186/draft#1900-c02e10_jekyllhydev6.java

http://developers.itextpdf.com/node/3186/draft#1900-c02e10_jekyllhydev6.java
http://developers.itextpdf.com/node/3186/draft#1900-c02e10_jekyllhydev6.java

Chapter 2: Working with the RootElement 42

23 document.add(p);

24 document.close();

25 }

We add a long Paragraph to the first page (line 4-9). As we didn’t define any renderer, the default
DocumentRenderer is used. We introduce a page break (line 10) and change the renderer to a
ColumnDocumentRenderer with two columns. Right after we set this new renderer, we introduce
an AreaBreak that jumps to the last page. Why is this necessary?

Whenever you create a new DocumentRenderer, iText starts returns to the top of the
document –that is: from the first page. This allows you to use different renderers on the
same document next to each other on the same page. If that is needed, we’ll have to instruct
iText not to flush the content to the OutputStream; otherwise we won’t have access to
previous pages. In this case, we don’t need to change anything on previous pages. We just
want to switch to another renderer on the next page. Introducing a page break that goes to
the last page will avoid that new content overwrites old content.

If we would omit document.add(new AreaBreak(AreaBreakType.LAST_PAGE));, then the new
content, organized in columns, would be added on the first page, overwriting the long paragraph.

We introduce another page break after we’ve finished adding the novel (line 15). We change the
renderer back to the standard DocumentRenderer (line 17), but we add another LAST_PAGE area break
(line 17) before we add another paragraph (line 18-23).

The AreaBreak examples explaining the difference between NEXT_AREA, NEXT_PAGE, and LAST_PAGE

have led us somewhat astray. We overlooked an important question we need to ask when rendering
PDF: when do we flush the content to the OutputStream?

Flushing the Document renderer

If you look at the API documentation for Canvas, Document, CanvasRenderer, DocumentRenderer
and ColumnDocumentRenderer, you’ll notice that all of these objects have at least one constructor
that accepts a Boolean parameter named immediateFlush. So far, we’ve never used one of these
constructors. As a result, iText always used the default value: true. All the content we’ve added was
always flushed immediately.

In the next three examples, we’ll set the value to false. In these three examples, we’ll postpone
flushing the content for three very specific reasons: to change the layout after content was added,
to change the content of objects after they were added, and to add content to previous pages.

In iText 5, content added to a Document was flushed to the OutputStream as soon as a page
was full. Once content was added to a page, there was no way to change (the layout of)
that content. With iText 7, there’s a way to postpone the actual rendering of the content,
allowing us to apply changes after the content was added to the Canvas or Document.

Chapter 2: Working with the RootElement 43

Let’s return to the example in which we converted text to a PDF document with two columns, more
specifically to the example in which we introduced page breaks before every new chapter. These
page breaks result in different pages having only one column. As we can tell from figure 2.11, this
column is on the right side of the page.

Now suppose that we want to move these solitary columns to the middle of the page as shown in
figure 2.13.

Figure 2.13: Moving a column to the middle of the page

We can’t tell in advance when this situation will occur. We parse the text line by line, and we don’t
knowwhat the next line will bring us when we add a Paragraph to the document. It could be another
Paragraph or a LineBreak. This means that we shouldn’t render the content right away. If we did, we
couldn’t move it to the middle if a chapter ends somewhere in the left column. We need to postpone
flushing. We can do so in the renderer as demonstrated in the JekyllHyderV7²⁶ example.

In this example, we took the code of the ColumnDocumentRenderer class and we adapted it to our
specific needs.

²⁶http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-2#1901-c02e11_jekyllhydev7.java

http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-2#1901-c02e11_jekyllhydev7.java
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-2#1901-c02e11_jekyllhydev7.java

Chapter 2: Working with the RootElement 44

1 class MyColumnRenderer extends DocumentRenderer {

2 protected int nextAreaNumber;

3 protected final Rectangle[] columns;

4 protected int currentAreaNumber;

5 protected Set<Integer> moveColumn = new HashSet<>();

6

7 public MyColumnRenderer(Document document, Rectangle[] columns) {

8 super(document, false);

9 this.columns = columns;

10 }

11

12 @Override

13 protected LayoutArea updateCurrentArea(LayoutResult overflowResult) {

14 if (overflowResult != null

15 && overflowResult.getAreaBreak() != null

16 && overflowResult.getAreaBreak().getType()

17 != AreaBreakType.NEXT_AREA) {

18 nextAreaNumber = 0;

19 }

20 if (nextAreaNumber % columns.length == 0) {

21 super.updateCurrentArea(overflowResult);

22 }

23 currentAreaNumber = nextAreaNumber + 1;

24 return (currentArea = new LayoutArea(currentPageNumber,

25 columns[nextAreaNumber++ % columns.length].clone()));

26 }

27

28 @Override

29 protected PageSize addNewPage(PageSize customPageSize) {

30 if (currentAreaNumber != nextAreaNumber

31 && currentAreaNumber % columns.length != 0)

32 moveColumn.add(currentPageNumber - 1);

33 return super.addNewPage(customPageSize);

34 }

35

36 @Override

37 protected void flushSingleRenderer(IRenderer resultRenderer) {

38 int pageNum = resultRenderer.getOccupiedArea().getPageNumber();

39 if (moveColumn.contains(pageNum)) {

40 resultRenderer.move(columns[0].getWidth() / 2, 0);

41 }

42 super.flushSingleRenderer(resultRenderer);

Chapter 2: Working with the RootElement 45

43 }

44 }

Let’s take a closer look at this custom DocumentRenderer:

• Line 2-5: we reuse two member-variables from the ColumnDocumentRenderer: the nextAre-

aNumber integer keeps track of the column count; the columns array stores the position and
dimension of each column. We add an extra integer currentAreaNumber that remembers the
current column count and a moveColumn collection in which we’ll store the page numbers of
the pages with a single column.

• Line 7-9: we construct a MyColumnRenderer instance. We call the constructor of the Documen-
tRenderer superclass and set the immediateFlush parameter to false: content will not be
flushed immediately.

• Line 12-26: the updateCurrentArea() method is identical to the method with the same name
in the ColumnDocumentRenderer class, except for one tiny difference: we set the value of
currentAreaNumber to nextAreaNumber + 1. This method is called each time a new column
is started. Note that the currentAreaNumber is set to 0 each time a page break is introduced.

• Line 28-34: we override the newPage() method. This method is triggered every time a new
page is started. Whether or not the content was rendered to the previous page, depends on the
value of immediateFlush. We use this method to check if the previous page consisted of only
one column. This is the case if currentAreaNumber and nextAreaNumber aren’t equal and if
the value of currentAreaNumber is odd (this assumes that columns is an array with only two
elements). If there’s only one column in the previous page, we add the page number of that
page (currentPageNumber - 1) to the moveColumns collection.

• Line 36-43: we override the flushSingleRenderer()method. This is the method that renders
the content. If immediateFlush is true, this method is called automatically. If immediateFlush
is false, we have to trigger the rendering process ourselves. We override this method because
we want to move the coordinates of the IRenderer to the right with half a column width for
every page we registered as a single-column page in the newPage() method.

Now let’s take a look at how we can use this custom column renderer.

1 Rectangle[] columns = {

2 new Rectangle(offSet, offSet, columnWidth, columnHeight),

3 new Rectangle(

4 offSet + columnWidth + gutter, offSet, columnWidth, columnHeight)};

5 DocumentRenderer renderer = new MyColumnRenderer(document, columns);

6 document.setRenderer(renderer);

We define an array with two Rectangle objects. We use this array to create an instance of our
custom MyColumnRenderer object. We use this instance as the renderer for our Document. The rest

Chapter 2: Working with the RootElement 46

of our code is identical to what we had before: we set the default values for the Document; then we
parse the text file and we add content while doing so.

If we would close the document object after adding all the content, we’d end up with a document
that consists of nothing but empty pages. In our renderer, we jump from area to area, and we create
new page after new page, but we aren’t rendering anything because the flushSingleRenderer()

method is never called. We have to trigger this method ourselves, and we can do so like this:

1 renderer.flush();

2 document.close();

When we flush() the renderer, all the content we’ve been adding without flushing will be rendered.
The flushSingleRenderer() method will be called as many times as there are objects added to the
Document. Every time it’s called on a page marked as a single-column page, the content will be
moved to the right so that the column appears in the middle of the page.

This is one of the more complex examples in this book. Writing your own RootRenderer

implementation isn’t easy, but this functionality gives you a lot of power to create PDF
documents the way you want to, as opposed to the way iText wants to.

Let’s continue with a couple of examples in which we use the immediateFlush parameter when
creating a Document instance.

Changing content that was previously added

Take a close look at figure 2.14. At first sight, it isn’t all that different from examples we’ve seen
before, but there’s something special about the first line of text.

Chapter 2: Working with the RootElement 47

Figure 2.14: Start by showing the total number of pages

The first line of text says “This document has 34 pages.” From previous examples, we know that
we’re building a document as we go, reading a text file line by line. When we parse the first lines
of text, there is no way we can predict how many pages will be needed for the full document. How
did we guess that we’d end up with 34 pages?

Truth be told, we didn’t have to guess; we used a little trick. The JekyllHydeV8²⁷ example reveals the
magic we used. We created a Document instance with the immediateFlush parameter set to false.

1 Document document = new Document(pdf, PageSize.A4, false);

The first object we add to this document is some text saying “This document has {totalpages} pages.”

1 Text totalPages = new Text("This document has {totalpages} pages.");

2 IRenderer renderer = new TextRenderer(totalPages);

3 totalPages.setNextRenderer(renderer);

4 document.add(new Paragraph(totalPages));

As you can see, we used a placeholder {totalpages} for the total number of pages. We created a
TextRenderer instance and added this renderer as the next renderer for the Text object. We wrap

²⁷http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-2#1902-c02e12_jekyllhydev8.java

http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-2#1902-c02e12_jekyllhydev8.java
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-2#1902-c02e12_jekyllhydev8.java

Chapter 2: Working with the RootElement 48

the Text object in a Paragraph and add this paragraph to the document. Then we add all story of Dr.
Jekyll and Mr. Hyde. Because of the fact that immediateFlush is false, no text will be rendered until
at the very last moment. This very last moment could be when we close the document, in which
case the first line would still read “This document has {totalpages} pages.”

Obviously, that’s not what we want. We want to change {totalpage} into the actual number of
pages before the text is rendered. This can be achieved using the TextRenderer object.

1 String total = renderer.toString().replace("{totalpages}",

2 String.valueOf(pdf.getNumberOfPages()));

3 ((TextRenderer)renderer).setText(total);

4 ((Text)renderer.getModelElement()).setNextRenderer(renderer);

5 document.relayout();

6 document.close();

In line 1-2, we change the String “This document has {totalpages} pages.” to “This document has
34 pages.” As you can see, we can retrieve the original content of the Text object from the renderer
and we replace the placeholder with pdf.getNumberOfPages(). In line 3-4, we change the text of
the TextRenderer and we add this altered text renderer to the Text object.

If we would close the document after line 4, the PDF would still show “This document has
{totalpages} pages.” For the change to take effect, we need to re-layout the document. This is done
using the relayout() method in line 5. Only after the layout has been recreated, we can close the
document, as is done in line 6.

In iText 5, we could have achieved more or less the same result by adding a placeholder
with fixed dimensions. Once the complete document was rendered, we could then fill out
the total number of pages on the placeholder. We will use the same approach with iText 7
in chapter 7, but iText 7 now also provides an alternative solution by allowing us to change
the content of a Text object and then recreate the layout.

Changing the content of a Text object is still somewhat complex. There are many cases where we
don’t need to recreate the layout. In those cases, the complexity can be reduced substantially as
demonstrated in the next example.

Adding a Page X of Y footer

In figure 2.15, we see that each page has a footer that indicates the current number and the total
number of pages.

Chapter 2: Working with the RootElement 49

Figure 2.15: Page X of Y footer

To achieve this, we used a much easier approach than what we did in the previous example. Let’s
take a look at the JekyllHydeV9²⁸ example.

Once more, we tell the Document that it shouldn’t flush its content immediately.

1 Document document = new Document(pdf, PageSize.A4, false);

After adding the complete text of the short story by Robert Louis Stevenson, we loop over every
page in the document and we add a Paragraph to each page.

²⁸http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-2#1903-c02e13_jekyllhydev9.java

http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-2#1903-c02e13_jekyllhydev9.java
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-2#1903-c02e13_jekyllhydev9.java

Chapter 2: Working with the RootElement 50

1 int n = pdf.getNumberOfPages();

2 Paragraph footer;

3 for (int page = 1; page <= n; page++) {

4 footer = new Paragraph(String.format("Page %s of %s", page, n));

5 document.showTextAligned(footer, 297.5f, 20, page,

6 TextAlignment.CENTER, VerticalAlignment.MIDDLE, 0);

7 }

8 document.close();

The showTextAligned()method can be used to add text at an absolute position on any page, using a
specific horizontal and vertical alignment with respect to the chosen coordinate, and using a specific
angle.

In this case, we loop over all the pages (from 1 to 34) and we add a line of text centered vertically
and horizontally at position x = 297.5f and y = 20 on every page. We didn’t need to change the
layout of any of the content that was already added, hence we don’t need to use the relayout()

method. All of the content is rendered at the moment we close() the document.

This example only works if you set immediateFlush to false. If you forget setting this
parameter, you’ll encounter the following exception:

Exception in thread “main” java.lang.NullPointerException at
com.itextpdf.kernel.pdf.PdfDictionary.get(PdfDictionary.java)

This exception occurs because you are trying to change the contents of a page dictionary
that has already been flushed to the OutputStream. iText still has a reference to that page
dictionary, but the dictionary as such is no longer there, hence the NullPointerException.

Why didn’t we get a NullPointerException in our low-
level CanvasReturn example?
In the CanvasReturn²⁹ example, we created PdfPage objects. As we are using low-
level functionality, it is our responsibility to manage the resources. We can use the
flush() method on a PdfPage object of a finished page to flush its content to the
OutputStream. Once this is done, we can no longer add anything to that page. We’ll get a
NullPointerException if we try to get (one of) its content stream(s).

Let’s take a look at some more showTextAligned() examples.

²⁹http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-2#1894-c02e04_canvasreturn.java

http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-2#1894-c02e04_canvasreturn.java
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-2#1894-c02e04_canvasreturn.java

Chapter 2: Working with the RootElement 51

Adding text with showTextAligned

Different showTextAligned() methods are available in the RootElement class. These methods can
be used in the Canvas and the Document object to put a single line of text at an absolute position. If
this line of text doesn’t fit the Canvas or if it doesn’t fit the current page of the Document, it won’t
be split into different lines. It might even run off the page, outside the visible area of that page.

Figure 2.16: Text added at absolute positions

The PDF shown in figure 2.16 was created with the ShowTextAligned³⁰ example.

1 Paragraph title = new Paragraph("The Strange Case of Dr. Jekyll and Mr. Hyde");

2 document.showTextAligned(title, 36, 806, TextAlignment.LEFT);

3 Paragraph author = new Paragraph("by Robert Louis Stevenson");

4 document.showTextAligned(author, 36, 806,

5 TextAlignment.LEFT, VerticalAlignment.TOP);

6 document.showTextAligned("Jekyll", 300, 800,

7 TextAlignment.CENTER, 0.5f * (float)Math.PI);

8 document.showTextAligned("Hyde", 300, 800,

9 TextAlignment.CENTER, -0.5f * (float)Math.PI);

10 document.showTextAligned("Jekyll", 350, 800,

11 TextAlignment.CENTER, VerticalAlignment.TOP, 0.5f * (float)Math.PI);

12 document.showTextAligned("Hyde", 350, 800,

13 TextAlignment.CENTER, VerticalAlignment.TOP, -0.5f * (float)Math.PI);

14 document.showTextAligned("Jekyll", 400, 800,

15 TextAlignment.CENTER, VerticalAlignment.MIDDLE, 0.5f * (float)Math.PI);

16 document.showTextAligned("Hyde", 400, 800,

17 TextAlignment.CENTER, VerticalAlignment.MIDDLE, -0.5f * (float)Math.PI);

In line 1 and 3, we create two Paragraph objects. We add these objects to the current page using the
showTextAligned() method.

³⁰http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-2#1904-c02e14_showtextaligned.java

http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-2#1904-c02e14_showtextaligned.java
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-2#1904-c02e14_showtextaligned.java

Chapter 2: Working with the RootElement 52

• In line 2, we add the Paragraph at position x = 36; y = 806 and we align the content to
the left of this coordinate. We didn’t define a vertical alignment. The default VerticalAlign-
ment.BOTTOM will be used, which means that the coordinate will be considered as the bottom
coordinate of the content.

• In line 4-5, we add the content at the exact same coordinate, but we define a different value
for the vertical alignment: VerticalAlignment.TOP. Now the coordinate is considered as the
top coordinate of the content.

In lines 6 to 17, we add text as a String instead of as a Paragraph. We also introduce rotation values
of 90 degrees (0.5f * (float)Math.PI) and -90 degrees

• In lines 6-9, we add two names at the same coordinate, but with a different rotation angle.
We do the same in lines 10-13. Notice the difference between the apparent order in which the
names “Jekyll” and “Hyde” appear depending on the value of the VerticalAlignment (as we
introduce a rotation of 90 degrees, vertical becomes horizontal, and vice-versa).

• In lines 14-17, we add both names at the same coordinate with a different angle, but with
VerticalAlignment.MIDDLE. The names are written on top of each other and have become
almost illegible.

This example demonstrates the different variations of showTextAligned() methods. There’s also a
showTextAlignedKerned() method, but we need to learn more about using iText 7 add-ons before
we can use that method in an example.

Using iText 7 add-ons

The core libraries of iText 7 are available as open source software under the AGPL license. This
means that you can use iText in your applications without having to pay a license fee as long as you
distribute your own software based on iText under the same license. To put it simple: you can use
iText for free if you also make your own source code available for free. The moment you distribute
your code under another license –for instance: you work for a customer who uses your code in a
closed source environment–, you or your customer have to purchase a commercial license.

There’s more to it, but it would lead us too far to discuss the AGPL; this is a technical tutorial, not
a book of law.

Chapter 2: Working with the RootElement 53

Many developers aren’t aware of the implications of using AGPL software. This can be
very annoying for many different reasons. These are some examples of such annoyances:

• Companies at the verge of getting funding or being acquired, fail the due diligence
process because they don’t have a commercial license for their use of iText.

• iText Group successfully sued a company for blatant abuse of our intellectual
property as an example proving that the AGPL can be enforced. The case was won in
about one and a half month. That was fast, but at iText Group, we all agree that there
are better ways to spend our time than by going to court because some company
wrongly assumes that open source software is software that is free of obligations
and free of charge.

• Some companies ignore the implications of the AGPL license deliberately. This
leads to unfair competition between customers who buy a commercial license,
allowing us to invest in further development, and users who benefit from the further
development, refusing to contribute in any way.

To create more awareness and to avoid misunderstandings, we decided to make part of
iText closed source. We’ve defined a series of valuable add-ons that won’t be available as
open source software. We used to work with a dual licensing model and we’ll continue
to do so, but now we’re also using the open core model. If developers want to use the
functionality that is only available in a closed source add-on, a commercial license will
have to be purchased.

The pdfCalligraph³¹ module (aka the typography jar) is one example of such a closed source add-
on. We’ve spent a lot of time and effort into improving the typography. With pdfCalligraph, iText
finally supports Indic writing systems such as Devanagari and Tamil. iText now also supports special
features such as the visualization of vowels in Arabic. All of this functionality is available in a
separate typography jar.

You can use the pdfCalligraph add-on by introducing the following dependency:

1 <dependency>

2 <groupId>com.itextpdf</groupId>

3 <artifactId>typography</artifactId>

4 <version>1.0.0</version>

5 <scope>compile</scope>

6 </dependency>

When importing a closed source add-on, you need a license-key in order to use that add-on. You need
the itext-licensekey jar to import that key into your code. This is the dependency for the license-key
jar:

³¹http://itextpdf.com/itext7/pdfcalligraph

http://itextpdf.com/itext7/pdfcalligraph
http://itextpdf.com/itext7/pdfcalligraph

Chapter 2: Working with the RootElement 54

1 <dependency>

2 <groupId>com.itextpdf</groupId>

3 <artifactId>itext-licensekey</artifactId>

4 <version>2.0.0</version>

5 <scope>compile</scope>

6 </dependency>

Loading the license key into your code is done like this:

1 LicenseKey.loadLicenseFile(new FileInputStream(KEY));

In my case, the KEY value is a constant with the path to my personal license key for using the
typography jar.

If you introduce an add-on, but you forget adding the line using the loadLicenseFile()
method, you’ll run into the following exception:

Exception in thread “main” java.lang.RuntimeException:
java.lang.reflect.InvocationTargetException … Caused by:
com.itextpdf.licensekey.LicenseKeyException: License file not loaded.

If you try to load the license key, but it’s missing, the following exception will be thrown:

Exception in thread “main” java.io.FileNotFoundException:itextkey.xml (The
system cannot find the path specified)

If the key was found at this location, but it was corrupted, you’ll get this
LicenseKeyException:

Exception in thread “main” com.itextpdf.licensekey.LicenseKeyException:
Signature was corrupted.

If you are using a license key that is expired, you’ll get yet another message:

Exception in thread “main” com.itextpdf.licensekey.LicenseKeyException:
License expired.

Chapter 2: Working with the RootElement 55

These are the most common exceptions that can occur. Usually, a verbose message will tell you what
went wrong. In the next example, we’re going to use the typography jar to introduce kerning.

Improving the typography

Figure 2.17 shows the difference between text without kerning and text with kerning.

Figure 2.17: Kerned text

The kerning mechanism isn’t that obvious in the title of Stevenson’s short story. The devil is in the
details: the . after Dr and Mr has been slightly moved in the kerned line. When kerning is active, the
font program is consulted for kerning information. In this case, the font program knows that when
a combination of r and . is encountered, the . should moved closer to the r.

The mechanism is easier to spot in the word "AWAY". In the kerned version, the A characters
move closer to the W on both sides. The distance between the A and the Y has also been reduced.
The ShowTextAlignedKerned³² example demonstrates how we used the showTextAlignedKerned()
method to achieve this.

³²http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-2#1905-c02e15_showtextalignedkerned.java

http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-2#1905-c02e15_showtextalignedkerned.java
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-2#1905-c02e15_showtextalignedkerned.java

Chapter 2: Working with the RootElement 56

1 document.showTextAligned(

2 "The Strange Case of Dr. Jekyll and Mr. Hyde", 36, 806, TextAlignment.LEFT);

3 document.showTextAlignedKerned(

4 "The Strange Case of Dr. Jekyll and Mr. Hyde", 36, 790,

5 TextAlignment.LEFT, VerticalAlignment.BOTTOM, 0);

6 document.showTextAligned("AWAY AGAIN", 36, 774, TextAlignment.LEFT);

7 document.showTextAlignedKerned("AWAY AGAIN", 36, 758,

8 TextAlignment.LEFT, VerticalAlignment.BOTTOM, 0);

The pdfCalligraph add-on is made an optional because improved typography requires more
extensive processing power to examine character combinations and to look up if the font program
contains kerning or ligature information for these combinations.

In iText 5, R2L script was supported, but only in the context of ColumnText and PdfPCell.
You had to change the writing system explicitly. Ligatures were supported, but only in
Arabic text. There was no support for Hindi or other Indic writing systems whatsoever.
With iText 7, it’s sufficient to add the typography jar to the CLASSPATH. As soon as iText
7 detects the pdfCalligraph add-on, The writing systemwill be automatically changed from
left to right (L2R) to right to left (R2L) if Hebrew or Arabic is detected. When Devanagari
or Tamil content is detected, ligatures will be made automatically.

All of this extra work may be overkill for straightforward English text, in which case you don’t
really need the pdfCalligraph add-on.

I have tried using kerning / support for Arabic, Indic
languages / ligatures, but it doesn’t work. Why not?
The showTextAlignedKerned() method won’t have any effect if you don’t have the
typography jar in your CLASSPATH. If the typography jar is missing, there will be no
difference between the normal text and the kerned text. If you want to render Hindi or
Arabic, the text will be rendered incorrectly without the typography jar. Ligatures won’t
be made unless you add the typography jar to your CLASSPATH.

Currently not all writing systems are supported. We started with Arabic, Devanagari and
Tamil. Support for other writing systems will follow depending on what iText customers
request.

We could continue with many more examples involving pdfCalligraph and typography, but we’ll
leave that for another tutorial. This chapter was about the RootElement objects Canvas and Document,
and we’ve covered quite some ground.

Chapter 2: Working with the RootElement 57

Summary

In this chapter, we discussed the Canvas and the Document object, both subclasses of the abstract
RootElement class. We also made some examples with the corresponding RootRenderer classes,
CanvasRenderer and DocumentRenderer. While doing so, we discovered that we can easily render
content in columns using the ColumnDocumentRenderer. The column examples allowed us to learn
more about the AreaBreak object, which is a subclass of the abstract AbstractElement class.

We rendered the text of the short story “The Strange Case of Dr. Jekyll and Mr. Hyde” many times
tweaking different properties of the Document object. We learned that content is flushed to the
OutputStream as soon as possible by default, but that we can ask iText to postpone the rendering of
elements so that we can change their content or layout afterwards.

Finally, we discussed the mechanism of closed source add-ons for iText 7. These add-ons require
a license key that needs to be purchased from iText Software. We’ve experimented with the
pdfCalligraph add-on also known as the typography jar. In the next chapter, we’ll dig into the
ILeafElement implementations. We’ve already used the Text object many times, but in the next
chapter, we’ll also take a look at the Link, Tab and Image object.

Chapter 3: Using ILeafElement
implementations
The ElementPropertyContainer has three direct subclasses: Style, RootElement, and AbstractEle-
ment. We’ve briefly discussed Style at the end of chapter 1. We’ve discussed the RootElement

subclasses Canvas and Document in the previous chapter. We’ll deal with the AbstractElement class
in the next three chapters:

• We’ll start with the ILeafElement implementations Tab, Link, Text, and Image in this chapter.
• We’ll continue with the BlockElement objects Div, LineSeparator, List, ListItem, and
Paragraph in the next chapter.

• We’ll conclude with the BlockElement objects Table and Cell in chapter 5.

Note that we’ve already discussed the AreaBreak object in chapter 2. We’ll have covered all of the
basic building blocks by the end of chapter 5.

In the previous chapter, we’ve used a txt file as a resource to create a PDF document. In this chapter,
and in the chapters that follow, we’ll also use a CSV file, jekyll_hyde.csv³³, as data source. See figure
3.1.

³³http://gitlab.itextsupport.com/itext7/samples/raw/develop/publications/highlevel/src/main/resources/data/jekyll_hyde.csv

http://gitlab.itextsupport.com/itext7/samples/raw/develop/publications/highlevel/src/main/resources/data/jekyll_hyde.csv
http://gitlab.itextsupport.com/itext7/samples/raw/develop/publications/highlevel/src/main/resources/data/jekyll_hyde.csv

Chapter 3: Using ILeafElement implementations 59

Figure 3.1: A simple CSV file that will be used as data source

As you can see, this CSV file could be interpreted as a database table containing records that consist
of 6 fields:

1. An IMDB number– the ID of an entry in the Internet Movie Database (IMDB) that was based
on the Jekyll and Hyde story by Robert Louis Stevenson.

2. A year– the year the corresponding movie, short film, cartoon, or video was produced.
3. A title– the title of the movie, short film, cartoon, or video.
4. Director or directors– the director or directors who made the movie, short film, cartoon, or

video.
5. A country– the country where the movie, short film, cartoon, or video was produced.
6. A run length– the number of minutes of the movie, short film, cartoon, or video.

We will use the CsvTo2DList³⁴ utilities class to read this CSV file, that was stored using UTF-8
encoding, into a two-dimensional List<List<String>> list.

³⁴http://developers.itextpdf.com/content/itext-7-building-blocks/examples/util#1919-csvto2dlist.java

http://developers.itextpdf.com/content/itext-7-building-blocks/examples/util#1919-csvto2dlist.java
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/util#1919-csvto2dlist.java

Chapter 3: Using ILeafElement implementations 60

1 public static final List<List<String>> convert(String src, String separator)

2 throws IOException {

3 List<List<String>> resultSet = new ArrayList<List<String>>();

4 BufferedReader br = new BufferedReader(

5 new InputStreamReader(new FileInputStream(src), "UTF8"));

6 String line;

7 List record;

8 while ((line = br.readLine()) != null) {

9 StringTokenizer tokenizer = new StringTokenizer(line, separator);

10 record = new ArrayList<String>();

11 while (tokenizer.hasMoreTokens()) {

12 record.add(tokenizer.nextToken());

13 }

14 resultSet.add(record);

15 }

16 return resultSet;

17 }

In this chapter, we’ll render this two-dimensional list to a PDF using Tab elements.

Working with Tab elements

Let’s take a look at the JekyllHydeTabsV1³⁵ example:

1 List<List<String>> resultSet = CsvTo2DList.convert(SRC, "|");

2 for (List<String> record : resultSet) {

3 Paragraph p = new Paragraph();

4 p.add(record.get(0).trim()).add(new Tab())

5 .add(record.get(1).trim()).add(new Tab())

6 .add(record.get(2).trim()).add(new Tab())

7 .add(record.get(3).trim()).add(new Tab())

8 .add(record.get(4).trim()).add(new Tab())

9 .add(record.get(5).trim());

10 document.add(p);

11 }

In line 1, we use our CsvTo2DList³⁶ utilities class to create a resultSet of type List<List<String>>.
In line 2, we loop over the rows of this result set, and we create a Paragraph containing all the fields
in the record list. In-between, we add Tab objects.

³⁵http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-3#1906-c03e01_jekyllhydetabsv1.java
³⁶http://developers.itextpdf.com/content/itext-7-building-blocks/examples/util#1919-csvto2dlist.java

http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-3#1906-c03e01_jekyllhydetabsv1.java
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/util#1919-csvto2dlist.java
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-3#1906-c03e01_jekyllhydetabsv1.java
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/util#1919-csvto2dlist.java

Chapter 3: Using ILeafElement implementations 61

Figure 3.2 shows the resulting PDF.

Figure 3.2: default tab positions

As you can see, we’ve added extra lines to show the default tab positions.

1 PdfCanvas pdfCanvas = new PdfCanvas(pdf.addNewPage());

2 for (int i = 1; i <= 10; i++) {

3 pdfCanvas.moveTo(document.getLeftMargin() + i * 50, 0);

4 pdfCanvas.lineTo(document.getLeftMargin() + i * 50, 595);

5 }

6 pdfCanvas.stroke();

By default, each tab position is a multiple of 50 user units (which, by default, equals 50 pt), starting
at the left margin of the page. Those tab positions work quite well for the first three fields (“IMDB”,
“Year”, and “Title”), but the “Director(s)” field starts at different positions, depending on the length
of the “Title” field. Let’s fix this and try to get the result shown in figure 3.3.

Chapter 3: Using ILeafElement implementations 62

Figure 3.3: defining tab positions

In the JekyllHydeTabsV2³⁷ example, we define specific tab positions using the TabStop class.

1 float[] stops = new float[]{80, 120, 430, 640, 720};

2 List<TabStop> tabstops = new ArrayList();

3 PdfCanvas pdfCanvas = new PdfCanvas(pdf.addNewPage());

4 for (int i = 0; i < stops.length; i++) {

5 tabstops.add(new TabStop(stops[i]));

6 pdfCanvas.moveTo(document.getLeftMargin() + stops[i], 0);

7 pdfCanvas.lineTo(document.getLeftMargin() + stops[i], 595);

8 }

9 pdfCanvas.stroke();

We’ve stored 5 tab stops in a float array in line 1, we create a List of TabStop objects in line 2,
we loop over the different float values in line 4 and add the 5 tab stops to the TabStop list in line
5. While we are at it, we also draw lines that will show us the position of each tab stop, so that we
have a visual reference to check if iText positioned our content correctly.

The next code snippet is almost an exact copy of what we had before.

³⁷http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-3#1907-c03e02_jekyllhydetabsv2.java

http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-3#1907-c03e02_jekyllhydetabsv2.java
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-3#1907-c03e02_jekyllhydetabsv2.java

Chapter 3: Using ILeafElement implementations 63

1 List<List<String>> resultSet = CsvTo2DList.convert(SRC, "|");

2 for (List<String> record : resultSet) {

3 Paragraph p = new Paragraph();

4 p.addTabStops(tabstops);

5 p.add(record.get(0).trim()).add(new Tab())

6 .add(record.get(1).trim()).add(new Tab())

7 .add(record.get(2).trim()).add(new Tab())

8 .add(record.get(3).trim()).add(new Tab())

9 .add(record.get(4).trim()).add(new Tab())

10 .add(record.get(5).trim());

11 document.add(p);

12 }

Line 4 is the only difference: we use the addTabStops() method to add the List<TabStop> object
to the Paragraph. The different fields are now aligned in such a way that the content starts at the
position defined by the tab stop; the tab stop is to the left of the content.We can change this alignment
as shown in figure 3.4.

Figure 3.4: different tab stop alignments

The JekyllHydeTabsV3³⁸ example shows how this is done:

³⁸http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-3#1908-c03e03_jekyllhydetabsv3.java

http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-3#1908-c03e03_jekyllhydetabsv3.java
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-3#1908-c03e03_jekyllhydetabsv3.java

Chapter 3: Using ILeafElement implementations 64

1 float[] stops = new float[]{80, 120, 580, 590, 720};

2 List<TabStop> tabstops = new ArrayList();

3 tabstops.add(new TabStop(stops[0], TabAlignment.CENTER));

4 tabstops.add(new TabStop(stops[1], TabAlignment.LEFT));

5 tabstops.add(new TabStop(stops[2], TabAlignment.RIGHT));

6 tabstops.add(new TabStop(stops[3], TabAlignment.LEFT));

7 TabStop anchor = new TabStop(stops[4], TabAlignment.ANCHOR);

8 anchor.setTabAnchor(' ');

9 tabstops.add(anchor);

We have 5 tabstops:

• The first tab stop will center the Year at position 80; for this we use TabAlignment.CENTER.
• The second tab stop will make sure that the title starts at position 120; for this we use
TabAlignment.LEFT.

• The third tab stop will make sure that the name(s) of the director(s) ends at position 580; for
this we use TabAlignment.RIGHT.

• The fourth tab stop will make sure that the country starts at position 590.
• The fifth tab stop will align the content based on the position of the space character; for this
we use TabAlignment.ANCHOR and we define a tab anchor using the setTabAnchor()method.

If you look at the CSV file, you see that we don’t have any space characters in the “Run length” field,
so let’s add adapt our code and add " \'" to that field. See line 10 in the following snippet.

1 List<List<String>> resultSet = CsvTo2DList.convert(SRC, "|");

2 for (List<String> record : resultSet) {

3 Paragraph p = new Paragraph();

4 p.addTabStops(tabstops);

5 p.add(record.get(0).trim()).add(new Tab())

6 .add(record.get(1).trim()).add(new Tab())

7 .add(record.get(2).trim()).add(new Tab())

8 .add(record.get(3).trim()).add(new Tab())

9 .add(record.get(4).trim()).add(new Tab())

10 .add(record.get(5).trim() + " \'");

11 document.add(p);

12 }

Figure 3.5 shows yet another variation on this example.

Chapter 3: Using ILeafElement implementations 65

Figure 3.5: tab stops with tab leaders

In the JekyllHydeTabsV4³⁹ example, we add tab leaders.

1 float[] stops = new float[]{80, 120, 580, 590, 720};

2 List<TabStop> tabstops = new ArrayList();

3 tabstops.add(new TabStop(stops[0], TabAlignment.CENTER, new DottedLine()));

4 tabstops.add(new TabStop(stops[1], TabAlignment.LEFT));

5 tabstops.add(new TabStop(stops[2], TabAlignment.RIGHT, new SolidLine(0.5f)));

6 tabstops.add(new TabStop(stops[3], TabAlignment.LEFT));

7 TabStop anchor = new TabStop(stops[4], TabAlignment.ANCHOR, new DashedLine());

8 anchor.setTabAnchor(' ');

9 tabstops.add(anchor);

A tab leader is defined using a class that implements the ILineDrawer interface. We add a dotted line
between the IMDB id and the year, a solid line between the title and the director(s), and a dashed
line between the country and the run length.

³⁹http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-3#1909-c03e04_jekyllhydetabsv4.java

http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-3#1909-c03e04_jekyllhydetabsv4.java
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-3#1909-c03e04_jekyllhydetabsv4.java

Chapter 3: Using ILeafElement implementations 66

You could implement the ILineDrawer interface to draw any kind of line, but iText ships
with three implementations that are ready to use: SolidLine, DottedLine, and DashedLine.
Each of these classes allows you to change the line width and color. The DottedLine class
also allows you to change the gap between the dots. In the next chapter, we’ll also use these
classes to draw line separators with the LineSeparator class.

At first sight, using the Tab object seems to be a great way to render content in a tabular form, but
there are some serious limitations.

Limitations of the Tab functionality

The previous screen shots looked nice because we chose our tab stops wisely. We rendered our
data on an A4 page with landscape orientation, leaving sufficient space to render all the data. This
won’t always be possible. In figure 3.6, we try to add the same content on an A4 page with portrait
orientation.

Figure 3.6: using portrait orientation

This PDF was made with the JekyllHydeV5⁴⁰ example. As you can see, this still looks quite nice,
apart from the fact that “Country” and “Duration” stick together on the first line.

⁴⁰http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-3#1910-c03e05_jekyllhydetabsv5.java

http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-3#1910-c03e05_jekyllhydetabsv5.java
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-3#1910-c03e05_jekyllhydetabsv5.java

Chapter 3: Using ILeafElement implementations 67

The Tab functionality contained some errors in iText 7.0.0. Due to rounding errors, some
text wasn’t aligned correctly in a seemingly random way. This problem was fixed in iText
7.0.1.

Another bug that was fixed in iText 7.0.1 is related to the SolidLine class. In iText 7.0.0,
the line width of a SolidLine was ignored.

When we scroll down in the document, we see a more serious problem when there’s no sufficient
space to fit the title and the director next to each other. Director “Charles Lamont” pushes the country
to the “Duration” column and the number of minutes gets shown on a second row.

Figure 3.7: trying to fit the data on a page with portrait orientation

We can solve these problems by using the Table and Cell class to organize data in a tabular form.
These objects will be discussed in chapter 5 of this tutorial. For now, we’ll continue with some more
ILeafElement implementations.

Adding links

In the previous examples, we’ve added the ID of the movie, short film, cartoon, or video as actual
content. This ID can help us find the movie on the Internet Movie Database (IMDB)⁴¹. In Figure 3.8,
we don’t show the ID, but when we click on the title of a movie, we can jump to the corresponding
page on IMDB.

⁴¹http://imdb.com

http://imdb.com/
http://imdb.com/

Chapter 3: Using ILeafElement implementations 68

Figure 3.8: introducing links to IMDB

We create these links in the JekyllHydeTabsV6⁴² example.

1 List<List<String>> resultSet = CsvTo2DList.convert(SRC, "|");

2 for (List<String> record : resultSet) {

3 Paragraph p = new Paragraph();

4 p.addTabStops(tabstops);

5 PdfAction uri = PdfAction.createURI(

6 String.format("http://www.imdb.com/title/tt%s", record.get(0)));

7 Link link = new Link(record.get(2).trim(), uri);

8 p.add(record.get(1).trim()).add(new Tab())

9 .add(link).add(new Tab())

10 .add(record.get(3).trim()).add(new Tab())

11 .add(record.get(4).trim()).add(new Tab())

12 .add(record.get(5).trim() + " \'");

13 document.add(p);

14 }

In line 5-6, we create a PdfAction object that links to an URL. This URL is composed of
http://www.imdb.com/title/tt/ and the IMDB ID. In line 7, we create a Link object using a String

⁴²http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-3#1911-c03e06_jekyllhydetabsv6.java

http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-3#1911-c03e06_jekyllhydetabsv6.java
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-3#1911-c03e06_jekyllhydetabsv6.java

Chapter 3: Using ILeafElement implementations 69

containing the title of the movie, and the PdfAction. As a result, you will be able to jump to the
corresponding IMDB page when clicking a title.

Interactivity in PDF is achieved by using annotations. Annotations aren’t part of the real
content. They are objects added on top of the content. In this case, a link annotation is used.
There are many other types of annotations, but that’s outside the scope of this tutorial.
There are also many types of actions. For now, we’ve only used a URI action. We’ll use
some more in chapter 6.

The Link class extends the Text class. Appendix A⁴³ lists a series of methods that are available for
the Link as well as for the Text class to change the font, to change the background color, to add
borders, and so on.

Extra methods available in the Text class

We’ve already worked with Text objects on many occasions in the previous chapters, but let’s take
a closer look at some Text functionality we haven’t discussed yet.

Figure 3.9: extra text methods

The first Text object shown in figure 3.9 is what text normally looks like. For the words “Dr. Jekyll”,
we defined a text rise. We scaled the word “and” horizontally. And we skewed the words “Mr. Hyde.”
The methods used to achieve this can be found in the TextExample⁴⁴ example.

⁴³http://developers.itextpdf.com/content/itext-7-building-blocks/appendix/appendix-abstractelement-methods
⁴⁴http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-3#1920-c03e07_textexample.java

http://developers.itextpdf.com/content/itext-7-building-blocks/appendix/appendix-abstractelement-methods
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-3#1920-c03e07_textexample.java
http://developers.itextpdf.com/content/itext-7-building-blocks/appendix/appendix-abstractelement-methods
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-3#1920-c03e07_textexample.java

Chapter 3: Using ILeafElement implementations 70

1 Text t1 = new Text("The Strange Case of ");

2 Text t2 = new Text("Dr. Jekyll").setTextRise(5);

3 Text t3 = new Text(" and ").setHorizontalScaling(2);

4 Text t4 = new Text("Mr. Hyde").setSkew(10, 45);

5 document.add(new Paragraph(t1).add(t2).add(t3).add(t4));

We distinguish three new methods:

• The parameter passed to the setTextRise() method is the number of user units above the
baseline of the text. You can also use a negative value if you want the text to appear below
the base line.

• The parameter of the setHorizontalScaling() method is the horizontal scaling factor we
want to use. In this case, the word " and " will be rendered double as wide as normal.

• The parameters of the setSkew()method define two angles in degrees. The first parameter is
the angle between the text and its baseline. The second parameter is the angle that will be used
to skew the characters. The setSkew() method is used to mimic an italic font (see chapter 1).

We’ll continue using the Text object explicitly or implicitly in every example that involves text. The
second half of this chapter will be dedicated entirely to the Image class.

Introducing images

In 1996, Stephen Frears made a movie with Julia Roberts in the role of Mary Reilly, a maid in the
household of Dr. Jekyll. Let’s take an image of the poster of this movie and add it to a document as
done in figure 3.10.

Chapter 3: Using ILeafElement implementations 71

Figure 3.10: an image added to a document

The code to achieve this, is very simple. See the MaryReillyV1⁴⁵ example.

1 public static final String MARY = "src/main/resources/img/0117002.jpg";

2 public void createPdf(String dest) throws IOException {

3 PdfDocument pdf = new PdfDocument(

4 new PdfWriter(new FileOutputStream(dest)));

5 Document document = new Document(pdf);

6 Paragraph p = new Paragraph(

7 "Mary Reilly is a maid in the household of Dr. Jekyll: ");

8 document.add(p);

9 Image img = new Image(ImageDataFactory.create(MARY));

10 document.add(img);

11 document.close();

12 }

We have the path to our image in line 1. The ImageDataFactory uses this path in line 9 to get the
image bytes and to convert them into an ImageData object that can be used to create an Image object.

⁴⁵http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-3#1921-c03e08_maryreillyv1.java

http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-3#1921-c03e08_maryreillyv1.java
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-3#1921-c03e08_maryreillyv1.java

Chapter 3: Using ILeafElement implementations 72

In this case, we are passing a JPEG image, and we add that image straight to the document object in
line 10.

JPEG images are stored inside a PDF as-is. It isn’t necessary for iText to convert the image
bytes into another image format. PNG for instance, isn’t supported in PDF, hence iText
will have to convert each PNG image we pass into a compressed bitmap.

Images are stored outside the content stream of the page in an object named an image XObject.
XObject stands for eXternal Object. The bytes of the image are stored in a separate object outside
the content stream. Now suppose that we would add the same image twice as is done in figure 3.11.

Figure 3.11: adding the same figure twice

When we compare the files mary_reilly_V2.pdf⁴⁶ and mary_reilly_V3.pdf⁴⁷, they look exactly the
same to the naked eye. When we look at the file size of the files, we notice something strange:

• The file marked as V2 has the same file size as the file marked as V1. In other words, the file
with two images has more or less the same file size as the file with a single image. This is

⁴⁶http://gitlab.itextsupport.com/itext7/samples/raw/develop/publications/highlevel/cmpfiles/chapter03/cmp_mary_reilly_V2.pdf
⁴⁷http://gitlab.itextsupport.com/itext7/samples/raw/develop/publications/highlevel/cmpfiles/chapter03/cmp_mary_reilly_V3.pdf

http://gitlab.itextsupport.com/itext7/samples/raw/develop/publications/highlevel/cmpfiles/chapter03/cmp_mary_reilly_V2.pdf
http://gitlab.itextsupport.com/itext7/samples/raw/develop/publications/highlevel/cmpfiles/chapter03/cmp_mary_reilly_V3.pdf
http://gitlab.itextsupport.com/itext7/samples/raw/develop/publications/highlevel/cmpfiles/chapter03/cmp_mary_reilly_V2.pdf
http://gitlab.itextsupport.com/itext7/samples/raw/develop/publications/highlevel/cmpfiles/chapter03/cmp_mary_reilly_V3.pdf

Chapter 3: Using ILeafElement implementations 73

consistent with what we said before: the file is stored inside the document only once as an
external object. We refer to this XObject twice.

• The file marked as V3 looks identical to the file marked as V2, but its file size is almost double
the size of the file marked as V2. It’s as if the image bytes of our JPEG are added twice to the
PDF document.

The code we used to create the file marked as V2 can be found in the MaryReillyV2⁴⁸ example:

1 Image img = new Image(ImageDataFactory.create(MARY));

2 document.add(img);

3 document.add(img);

We create one img object; we add this image twice to the same document. As a result, the image is
shown twice, but the image bytes are stored in a single image XObject.

Now let’s take a look at the MaryReillyV3⁴⁹ example.

1 Image img1 = new Image(ImageDataFactory.create(MARY));

2 document.add(img1);

3 Image img2 = new Image(ImageDataFactory.create(MARY));

4 document.add(img2);

In this snippet, we create two Image instances for the same image, and we add both of these
instances to the same document. Once more the image is shown twice, but now it’s also stored
twice (redundantly) inside the document.

There’s a direct relationship between an Image object in iText and an image XObject inside
the PDF. Every new Image object that is created and added to a document, results in a
separate image XObject inside the PDF. If you create two or more Image objects of the same
image, you’ll end up with a bloated PDF file with too many redundant image XObjects.
This is clearly something you want to avoid.

In these first examples, we added Image objects without defining a location. The first image was
added right under our first paragraph. The second image was added right under the first one. We
can also choose to add the Image at specific coordinates.

⁴⁸http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-3#1925-c03e09_maryreillyv2.java
⁴⁹http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-3#1926-c03e10_maryreillyv3.java

http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-3#1925-c03e09_maryreillyv2.java
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-3#1926-c03e10_maryreillyv3.java
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-3#1925-c03e09_maryreillyv2.java
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-3#1926-c03e10_maryreillyv3.java

Chapter 3: Using ILeafElement implementations 74

Changing the position and width of an image

The two PDFs in figure 3.12 look identical, yet there were created in slightly different ways.

Figure 3.12: adding an image at absolute positions

The top PDF was created using the MaryReillyV4⁵⁰ example:

1 Image img = new Image(ImageDataFactory.create(MARY), 320, 750, 50);

2 document.add(img);

In this example, we define the position and the size of the image in the Image constructor. We define
the position as x = 320; y = 750, and we define a width of 50 user units (which is, by default, a
width of 50 pt). The height of the image will be adjusted accordingly, preserving the aspect ratio of
the image.

The second PDF was created using the MaryReillyV5⁵¹ example.

⁵⁰http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-3#1929-c03e11_maryreillyv4.java
⁵¹http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-3#1930-c03e12_maryreillyv5.java

http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-3#1929-c03e11_maryreillyv4.java
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-3#1930-c03e12_maryreillyv5.java
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-3#1929-c03e11_maryreillyv4.java
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-3#1930-c03e12_maryreillyv5.java

Chapter 3: Using ILeafElement implementations 75

1 Image img = new Image(ImageDataFactory.create(MARY));

2 img.setFixedPosition(320, 750, UnitValue.createPointValue(50));

3 document.add(img);

In this case, we use the setFixedPosition() method to define the position and size of the image.
Note that we use the UnitValue to define that 50 is a value expressed in pt. The other option is to
define the width as a percentage.

There are different variations available for the Image constructor and the setFixedPosition()

method. For instance, you can also define a page number as is done in the MaryReillyV6⁵² example.

1 Image img = new Image(ImageDataFactory.create(MARY));

2 img.setFixedPosition(2, 300, 750, UnitValue.createPointValue(50));

3 document.add(img);

In this example, adding the image on page 2, triggers the creation of a new page. See figure 3.13.

Figure 3.13: adding an image on a specific page

If we had been adding the image on page 200, 199 new pages would have been added in order to
make sure that the image is actually on page 200. I’m not sure if there’s an actual use case for the
setFixedPosition()method that accepts a page number as a parameter when creating a document
from scratch, but that method can also be used when adding content to an existing document.

Adding an image to an existing PDF

In the iText 7: Jump-Start tutorial⁵³, we’ve been working with existing documents. We can import an
existing document into iText with a PdfReader instance and create a new PDF based on the original
document.

In iText 5, we would have worked with a PdfStamper object to add content to an existing
PDF. This PdfStamper object no longer exists in iText 7. Content is always added using
either a PdfDocument instance (low-level content), or a Document instance (high-level
content).

⁵²http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-3#1931-c03e13_maryreillyv6.java
⁵³http://developers.itextpdf.com/content/itext-7-jump-start-tutorial

http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-3#1931-c03e13_maryreillyv6.java
http://developers.itextpdf.com/content/itext-7-jump-start-tutorial
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-3#1931-c03e13_maryreillyv6.java
http://developers.itextpdf.com/content/itext-7-jump-start-tutorial

Chapter 3: Using ILeafElement implementations 76

Let’s take a look how it’s done in the MaryReillyV7⁵⁴ example.

1 public void manipulatePdf(String src, String dest) throws IOException {

2 PdfReader reader = new PdfReader(src);

3 PdfWriter writer = new PdfWriter(dest);

4 PdfDocument pdfDoc = new PdfDocument(reader, writer);

5 Document document = new Document(pdfDoc);

6 Image img = new Image(ImageDataFactory.create(MARY));

7 img.setFixedPosition(1, 350, 750, UnitValue.createPointValue(50));

8 document.add(img);

9 document.close();

10 }

We create a PdfDocument instance using a PdfReader and a PdfWriter object. We use the PdfDoc-
ument instance to create a Document. We add an Image to that document using specific coordinates
and a specific width on page 1. The result is shown in figure 3.14.

Figure 3.14: adding an image to an existing PDF

There are different ways to resize an image.

Resizing and rotating an image

We already changed the dimensions by defining a width in points, in the MaryReillyV8⁵⁵ example,
we use a percentage.

⁵⁴http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-3#1932-c03e14_maryreillyv7.java
⁵⁵http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-3#1933-c03e15_maryreillyv8.java

http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-3#1932-c03e14_maryreillyv7.java
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-3#1933-c03e15_maryreillyv8.java
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-3#1932-c03e14_maryreillyv7.java
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-3#1933-c03e15_maryreillyv8.java

Chapter 3: Using ILeafElement implementations 77

1 Image img = new Image(ImageDataFactory.create(MARY));

2 img.setHorizontalAlignment(HorizontalAlignment.CENTER);

3 img.setWidthPercent(80);

4 document.add(img);

As shown in figure 3.15, the image is now centered on the page (using the setHorizontalAlign-

ment() method) and it takes 80% of the available width on the page (using the setWidthPercent()
method).

Figure 3.15: defining the width as a percentage

Note that iText will automatically scale the image to 100% of the available width when you’re trying
to add an image that doesn’t fit.

Chapter 3: Using ILeafElement implementations 78

Resizing an image doesn’t change anything to the original quality of the image. The number
of pixels in the image remains identical; iText doesn’t change a single pixel in your image.
This doesn’t mean the resolution doesn’t change when you resize an image. If an image
is 720 pixels by 720 pixels and you render this image as a 720 pt by 720 pt image, the
resolution will be 72 dots per inch. If you change the dimension to 72 pt by 72 pt, you will
have a resolution of 720 dots per inch.

So far, we’ve been adding Image objects straight to the document. You can also add Image objects to
BlockElement objects. In the MaryReillyV9⁵⁶ example, we add an Image to a Paragraph.

1 Paragraph p = new Paragraph(

2 "Mary Reilly is a maid in the household of Dr. Jekyll: ");

3 Image img = new Image(ImageDataFactory.create(MARY));

4 p.add(img);

5 document.add(p);

The result is shown in figure 5.16.

⁵⁶http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-3#1934-c03e16_maryreillyv9.java

http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-3#1934-c03e16_maryreillyv9.java
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-3#1934-c03e16_maryreillyv9.java

Chapter 3: Using ILeafElement implementations 79

Figure 3.16: adding an image to a Paragraph

We see that the leading has been adjusted automatically, but also that the image is somewhat big. The
Mary Reilly poster is 182 by 268 pixels in size. In this case, iText will use the same size in user units. As
a result, the image shown in figure 3.16 measures 182 by 268 pt. iText may scale images automatically
depending on the context. We already mentioned the situation where the image doesn’t fit the width
of the page; in chapter 5, we’ll see how images behave in the context of tables.

There are also different scale() methods that allow us to scale an image programmatically. In the
MaryReillyV10⁵⁷ example, we scale the image to 50% in X- as well as in Y-direction.

⁵⁷http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-3#1935-c03e17_maryreillyv10.java

http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-3#1935-c03e17_maryreillyv10.java
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-3#1935-c03e17_maryreillyv10.java

Chapter 3: Using ILeafElement implementations 80

1 Paragraph p = new Paragraph(

2 "Mary Reilly is a maid in the household of Dr. Jekyll: ");

3 Image img = new Image(ImageDataFactory.create(MARY));

4 img.scale(0.5f, 0.5f);

5 img.setRotationAngle(-Math.PI / 6);

6 p.add(img);

7 document.add(p);

We also set a rotation angle of -30 degrees, which results in the PDF shown in figure 3.17.

Figure 3.17: scaled and rotated image

These are the most common ways to change the dimensions of an Image object:

• the scale() method: accepts two parameters. The first one is the factor that will be used in
the X-direction; the second one is the factor that will be used in the Y-direction. For instance:
if you pass a value of 1f for the X-direction and 0.5f for the Y-direction, the image will be as
wide as initially, but the height will be reduced to 50% of the original height.

• the scaleAbsolute()method: also accepts two parameters. The first one is the absolute width
in user units; the second one is the absolute height in user units. For instance: if you use a value
of 72f for both the width and the height, the image will, by default, be rendered as an image
of 1 inch by 1 inch.

• the scaleToFit() method: also accepts two parameters. Using the scaleAbsolute() method
can lead to awkward results if you don’t take the aspect ratio of the image into account.

Chapter 3: Using ILeafElement implementations 81

The first parameter of the scaleToFit() method defines the maximum width of the image;
the second one defined the maximum height. The image will be scaled preserving the aspect
ratio. This means that the resulting image may be smaller than expected.

So far, we’ve only been using JPEG images, but iText supports many other image types.

Image types supported by iText

iText supports the following image formats: JPEG, JPEG2000, BMP, PNG, GIF, JBIG2, TIFF, and
WMF. iText also supports raw image data (if you provide the pixels or the CCITT bytes). If you
consider PDF to be an image format –which it isn’t–, you can even import PDF pages as if it were
images.

We’ve already covered JPEG sufficiently, we’ll cover all the other formats in the next couple of
examples, starting with the ImageTypes⁵⁸ example.

Raw image data

When we use the ImageDataFactory, iText will examine the image that is provided. It will check
which image type is encountered, and it will create an ImageData object for that specific image type.
Most of the times, we’ll import an existing image, but we can also create the raw image data on the
fly. In figure 3.18, we see an image of a gradient that evolves from yellow to blue.

Figure 3.18: raw image

The RGB code for yellow is #FFFF00; the RGB code for blue is #0000FF. If we want to create an RGB
images that shows gradient from yellow to blue, we could create an image with 256 pixels that is
256 pixels wide and 1 pixel high. We could then loop from 0 (0x00) to 255 (0xFF) creating pixels that
vary from [Red = 255, Green = 255, Blue = 0] to [Red = 0, Green = 0, Blue = 255]. The total byte
size of that image would be the number of pixels multiplied with the number of values needed to
describe the color of each pixel. The following code snippet shows how this is done:

⁵⁸http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-3#1936-c03e18_imagetypes.java

http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-3#1936-c03e18_imagetypes.java
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-3#1936-c03e18_imagetypes.java

Chapter 3: Using ILeafElement implementations 82

1 byte data[] = new byte[256 * 3];

2 for (int i = 0; i < 256; i++) {

3 data[i * 3] = (byte) (255 - i);

4 data[i * 3 + 1] = (byte) (255 - i);

5 data[i * 3 + 2] = (byte) i;

6 }

7 ImageData raw = ImageDataFactory.create(256, 1, 3, 8, data, null);

8 Image img = new Image(raw);

9 img.scaleAbsolute(256, 10);

10 document.add(img);

In this snippet, we ask the ImageDataFactory to create the ImageData for an image of 256 pixels
by 1 pixel. We are using 3 components for each pixel. Each component is expressed using 8 bits
per component (bpc); that’s 1 byte. The fourth parameter of the create() method is the data[].
The fifth parameter is an array we can use to define transparency. We don’t need this parameter
in our simple example. We use the ImageData to create a new Image and we scale this image in the
Y-direction. If we didn’t scale the image, we’d only see a very thin line that is 1 user unit high.

Which values are valid for the number of components?
You can work with 1, 3, or 4 components.

• 1 component– means that you define the color of each pixel using one value. We
typically call this a gray value, although it’s actually a black / white (or rather color /
no color) value if you only use 1 bit per component. If you have 8 bits per component,
you can define gray values with an intensity varying between 0 (black) and 255
(white).

• 3 components– means that you define RGB colors using three values: Red, Green,
and Blue.

• 4 components– means that you define CMYK colors using four values: Cyan,
Magenta, Yellow, and blacK.

Usually, we don’t have to worry about all of this, we can just pass a reference to an image
or a byte[] containing an existing image, and we let iText do all the low-level work.

Let’s take this first batch of image files and see what happens what we add them to a Document.

Chapter 3: Using ILeafElement implementations 83

1 public static final String TEST1 = "src/main/resources/img/test/map.jp2";

2 public static final String TEST2 = "src/main/resources/img/test/butterfly.bmp";

3 public static final String TEST3 = "src/main/resources/img/test/hitchcock.png";

4 public static final String TEST4 = "src/main/resources/img/test/info.png";

5 public static final String TEST5 = "src/main/resources/img/test/hitchcock.gif";

6 public static final String TEST6 = "src/main/resources/img/test/amb.jb2";

7 public static final String TEST7 = "src/main/resources/img/test/marbles.tif";

We start with the .jp2 file which is an image in JPEG2000 format.

JPEG / JPEG2000

The code to add a JPEG2000 image doesn’t look any different than the code to add a JPEG image.

1 Image img1 = new Image(ImageDataFactory.create(TEST1));

2 document.add(img1);

The result is shown in figure 3.19.

Figure 3.19: JPEG2000

JPEG and JPEG200 are supported natively in PDF, this isn’t the case for PNG.

Chapter 3: Using ILeafElement implementations 84

BMP / PNG / GIF

GIF is supported in PDF (it’s called LZW), but whenever iText encounters a BMP file, a PNG file, or
a GIF file, that file gets converted into a raw image that consists of a bytes that define pixels. These
pixels are then compressed and stored in the PDF.

Figure 20 shows one BMP (the butterfly), two PNG files (the first Hitchcock image and the
information sign) and one GIF file that is added twice (a second Hitchcock image).

Figure 3.20: BMP, PNG, GIF

The code for the page to the left looks like this:

1 // BMP

2 Image img2 = new Image(ImageDataFactory.create(TEST2));

3 img2.setMarginBottom(10);

4 document.add(img2);

5 // PNG

6 Image img3 = new Image(ImageDataFactory.create(TEST3));

7 img3.setMarginBottom(10);

8 document.add(img3);

9 // Transparent PNG

Chapter 3: Using ILeafElement implementations 85

10 Image img4 = new Image(ImageDataFactory.create(TEST4));

11 img4.setBorderLeft(new SolidBorder(6));

12 document.add(img4);

As you can see, we’re using the setMarginBottom() method for img2 and img3 to introduce 10 user
units of white space between the images. There is something special with img4; info.png is partly
transparent. We introduce a left border with a thickness of 6 user units. We see that border, because
the image is transparent. If the image were opaque, that border would have been invisible because
it would have been covered by the image.

Transparent images aren’t supported in PDF, at least not in the way you’d expect. When
you add an image with transparent parts to a PDF, iText will add two images:

• An opaque image: for instance, an imagewhere the transparent part consists of black
pixels,

• An image mask: this is an image with 1 component that defines the transparency.

A PDF viewer will use both images to compose the transparent image.

If the image mask has 1 bpc, we talk about a hard mask. The pixel of the opaque image
underneath the mask is either visible or invisible. If the image mask has more than 1 bpc,
we talk about a soft mask. The pixel underneath the mask can be partly transparent.

The same is true for background colors. We define a gray background for the first Hitchcock image
in the page on the right:

1 Image img5 = new Image(ImageDataFactory.create(TEST5));

2 img5.setBackgroundColor(Color.LIGHT_GRAY);

3 document.add(img5);

We only see this background, because hitchcock.gif is a GIF file with transparency. The second
Hitchcock image is added in a completely different way.

AWT images

If you’re working in a Java environment, you may have to work with the AWT image class
java.awt.Image; iText also support these images.

Chapter 3: Using ILeafElement implementations 86

1 java.awt.Image awtImage =

2 Toolkit.getDefaultToolkit().createImage(TEST5);

3 Image awt =

4 new Image(ImageDataFactory.create(awtImage, java.awt.Color.yellow));

5 awt.setMarginTop(10);

6 document.add(awt);

We read the hitchcock.gif image into a java.awt.Image object in line 1-2. We get an ImageData

object from the ImageDataFactory in line 4. The first parameter is the AWT image, the second
parameter defines the color that needs to be used for the transparent part (if there is any). You can
also add a Boolean as third parameter. If that parameter is true, the image will be converted to a
black and white image.

JBIG2 / TIFF

Figure 3.21 shows a JBIG2 image and a TIFF image.

Figure 3.21: JBIG2, TIFF

The code is pretty straightforward:

Chapter 3: Using ILeafElement implementations 87

1 // JBIG2

2 Image img6 = new Image(ImageDataFactory.create(TEST6));

3 document.add(img6);

4 // TIFF

5 Image img7 = new Image(ImageDataFactory.create(TEST7));

6 document.add(img7);

It isn’t always that easy to convert the full JBIG2 or TIFF image to PDF though. A JBIG2 image and
a TIFF image can contain different pages. In that case, we need to loop over the pages and extract
every page as a separate image. The same is true for animated GIF images that consist of different
frames.

Animated GIFs / Paged images

In the PagedImages⁵⁹ example, we define three new constants that refer to three different images.

1 public static final String TEST1 =

2 "src/main/resources/img/test/animated_fox_dog.gif";

3 public static final String TEST2 = "src/main/resources/img/test/amb.jb2";

4 public static final String TEST3 = "src/main/resources/img/test/marbles.tif";

Figure 3.22 shows the different frames of an animated GIF that shows an animation of a fox jumping
over a dog.

⁵⁹http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-3#1937-c03e19_pagedimages.java

http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-3#1937-c03e19_pagedimages.java
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-3#1937-c03e19_pagedimages.java

Chapter 3: Using ILeafElement implementations 88

Figure 3.22: frames from an animated GIF

Animated GIFs aren’t supported in PDF, so you can’t add the animation as-is to the document. We
can only add every frame to the document as a separate image. That’s what we do in the next code
snippet.

1 URL url1 = UrlUtil.toURL(TEST1);

2 List<ImageData> list = ImageDataFactory.createGifFrames(url1);

3 for (ImageData data : list) {

4 img = new Image(data);

5 document.add(img);

6 }

We create an URL object that uses the path to the file as input. We then create a List of ImageData
objects containing the ImageData of every frame in the animated GIF. Finally, we add each frame
as a separate Image to the Document.

The code to read the different pages from a JBIG2 and a TIFF file is more complex.

Chapter 3: Using ILeafElement implementations 89

1 // JBIG2

2 URL url2 = UrlUtil.toURL(TEST2);

3 IRandomAccessSource ras2 =

4 new RandomAccessSourceFactory().createSource(url2);

5 RandomAccessFileOrArray raf2 = new RandomAccessFileOrArray(ras2);

6 int pages2 = Jbig2ImageData.getNumberOfPages(raf2);

7 for (int i = 1; i <= pages2; i++) {

8 img = new Image(ImageDataFactory.createJbig2(url2, i));

9 document.add(img);

10 }

11 // TIFF

12 URL url3 = UrlUtil.toURL(TEST3);

13 IRandomAccessSource ras3 =

14 new RandomAccessSourceFactory().createSource(url3);

15 RandomAccessFileOrArray raf3 = new RandomAccessFileOrArray(ras3);

16 int pages3 = TiffImageData.getNumberOfPages(raf3);

17 for (int i = 1; i <= pages3; i++) {

18 img = new Image(

19 ImageDataFactory.createTiff(url3, true, i, true));

20 document.add(img);

21 }

22 document.close();

We first need to know the number of pages in the JBIG2 or TIFF file. This requires us to create
a RandomAccessFileOrArray object. With this object, we can ask the Jbig2ImageData or the
TiffImageData class for the number of pages in the JBIG2 or TIFF file. We can then loop over
the number of pages in that file, and we use the createJbig2() or createTiff() method to get the
ImageData object needed to create an Image.

Up until now, all the Image objects that we have created, resulted in an image XObject stored in the
PDF document. In the next example, we’ll create a different type of XObject.

WMF / PDF

All the image types we’ve worked with so far were raster images. Raster images consist of pixels of a
certain color put next to each other in a grid. In the XObjectTypes⁶⁰ example, we have the following
source files:

1 public static final String WMF = "src/main/resources/img/test/butterfly.wmf";

2 public static final String SRC = "src/main/resources/pdfs/jekyll_hyde.pdf";

⁶⁰http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-3#1938-c03e20_xobjecttypes.java

http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-3#1938-c03e20_xobjecttypes.java
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-3#1938-c03e20_xobjecttypes.java

Chapter 3: Using ILeafElement implementations 90

WMF is a vector image format. Vector images don’t have pixels. They are made up of basic geometric
shapes such as lines and curves. These lines and curves are expressed as a mathematical equation,
which means that you can easily scale them without losing any quality.

The concept of resolution doesn’t exist in the context of vector images. The resolution only
comes into play when you render the image to a device. The resolution of the device –a
printer, a screen– will determine the resolution you perceive when looking at the vector
image.

A PDF can contain raster images, and each of these raster images will have its own resolution, but
the PDF itself doesn’t have a resolution. The content of the PDF is also made up of geometric shapes
defined using PDF syntax.

In figure 3.23, you see a WMF file representing a butterfly and a page from an existing PDF file that
were added to a Document using the Image object.

Chapter 3: Using ILeafElement implementations 91

Figure 3.23: WMF, PDF

If you look inside this PDF file, you won’t find any image XObject; instead you’ll discover two
form XObjects. A form XObject uses the same mechanism as an image XObject, except that a form
XObject doesn’t consist of pixels; it’s a snippet of PDF syntax that is external to the page content.

If we want to add a WMF file to a Document using the Image class, we need to create a
PdfFormXObject first. The WmfImageData object will help us create the ImageData that is needed
to create this form XObject. We can use that xObject1 to create an Image instance.

1 PdfFormXObject xObject1 =

2 new PdfFormXObject(new WmfImageData(WMF), pdf);

3 Image img1 = new Image(xObject1);

4 document.add(img1);

We need to do something similar to import a page from an existing PDF file if we want to import
that page as if it were an image.

Chapter 3: Using ILeafElement implementations 92

1 PdfReader reader = new PdfReader(SRC);

2 PdfDocument existing = new PdfDocument(reader);

3 PdfPage page = existing.getPage(1);

4 PdfFormXObject xObject2 = page.copyAsFormXObject(pdf);

5 Image img2 = new Image(xObject2);

6 img2.scaleToFit(400, 400);

7 document.add(img2);

We start by creating a PdfReader object (line 1) and a PdfDocument based on that reader (line 2). We
obtain a PdfPage from that existing document (line 3), and we copy that page as a PdfXFormObject.
We can use that xObject2 to create an Image instance.

The content of the existing page will be added as if it were a vector image. All interactive
features thatmay exist in the original page, such as links, form fields, and other annotations,
will be lost.

This concludes the overview of the objects that implement the ILeafElement interface.

Summary

In this chapter, we’ve covered the building blocks that implement the ILeafElement interface. These
elements are atomic building blocks; they aren’t composed of other elements.

• Tab– is an element that allows you to put some space between two other building blocks,
either using white space, or by introducing a leader. You can also use the Tab element to align
an element.

• Text– is an element that contains a snippet of text using a single font, single font size, single
font color. It’s the atomic text building block.

• Link– is a Text element for which we can define a PdfAction, for instance: an action that
opens a web site when we click on the text. We’ll discuss more examples of links and actions
in chapter 6.

• Image– is an element that can be used to create an image XObject so that you can use
raster images in your PDF. For reasons of convenience, we also allow developers to wrap
a PdfFormXObject inside an Image object so that they can use form XObjects using the same
functionality that is available for image XObjects.

We haven’t finished talking about these objects. We’ll continue using them in the chapters that
follow, starting with the next chapter that will discuss the Div, LineSeparator, Paragraph, List,
and ListItem object.

Chapter 4: Adding AbstractElement
objects (part 1)
In previous chapters, we’ve already discussed five classes that implement the AbstractElement class.
We’ve discussed the AreaBreak class in chapter 2, and we’ve discussed the four classes implementing
the ILeafElement –Tab, Link, Text, and Image– in chapter 3. In this chapter, we’ll start with a first
series of AbstractElement implementations. We’ll take a look at the Div class to group elements
and at the LineSeparator to draw lines between elements. We’ve already used the Paragraph class
many times in previous chapters, but we’ll revisit it in this chapter. Finally, we’ll introduce the List
and the ListItem class. We’ll save the Table and Cell class for the next chapter.

Grouping elements with the Div class

The Div class is a BlockElement implementation that can be used to group different elements. In
Figure 4.1, we see an overview of movies based on the Jekyll and Hyde story. Each entry consists of
at most three elements:

• a Paragraph showing the title of the movie,
• a Paragraph showing the director, the country, and a year,
• an Image showing the movie poster (if any).

We combined these three elements in a Div and we defined a left border, left padding and bottom
margin for that Div.

Chapter 4: Adding AbstractElement objects (part 1) 94

Figure 4.1: Grouping elements in a Div

The DivExample1⁶¹ example shows how this is done:

1 public void createPdf(String dest) throws IOException {

2 PdfDocument pdf = new PdfDocument(new PdfWriter(dest));

3 Document document = new Document(pdf);

4 List<List<String>> resultSet = CsvTo2DList.convert(SRC, "|");

5 resultSet.remove(0);

6 for (List<String> record : resultSet) {

7 Div div = new Div()

8 .setBorderLeft(new SolidBorder(2))

9 .setPaddingLeft(3)

10 .setMarginBottom(10);

11 String url = String.format(

⁶¹http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-4-examples-abstractelement-part-1#1962-c04e01_
divexample1.java

http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-4-examples-abstractelement-part-1#1962-c04e01_divexample1.java
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-4-examples-abstractelement-part-1#1962-c04e01_divexample1.java
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-4-examples-abstractelement-part-1#1962-c04e01_divexample1.java

Chapter 4: Adding AbstractElement objects (part 1) 95

12 "http://www.imdb.com/title/tt%s", record.get(0));

13 Link movie = new Link(record.get(2), PdfAction.createURI(url));

14 div.add(new Paragraph(movie.setFontSize(14)))

15 .add(new Paragraph(String.format(

16 "Directed by %s (%s, %s)",

17 record.get(3), record.get(4), record.get(1))));

18 File file = new File(String.format(

19 "src/main/resources/img/%s.jpg", record.get(0)));

20 if (file.exists()) {

21 Image img = new Image(

22 ImageDataFactory.create(file.getPath()));

23 img.scaleToFit(10000, 120);

24 div.add(img);

25 }

26 document.add(div);

27 }

28 document.close();

29 }

As usual, we create a PdfDocument and a Document instance (line 2-3). We reuse the CSV file that was
introduced in the previous chapter, and we loop over all the movies listed in that CSV file, excluding
the header row (line 4-6). We create a new Div object (line 7) and we define the left border as a solid
border with a thickness of 2 user units (line 8), we set the left padding to 3 user units (line 9), and
we introduce a bottom margin of 10 user units (line 10). We add the title Paragraph to this Div (line
14), as well as a Paragraph with additional info (line 15 - 17). If we find a movie poster, we add it as
an Image (line 24). We add each Div to the document (line 26) and we close the document (line 28).

If we look at the bottom of the first page and at the top of the second page in Figure 4.1, we see
that the Div containing the information about the movie “Dr. Jekyll and Mr. Hyde” directed by John
S. Roberson, is distributed over two pages. The movie poster didn’t fit on the first page, so it was
forwarded to the second page. Maybe this isn’t the behavior we desire. Maybe we want to keep the
elements added to the same Div together as shown in figure 4.2.

Chapter 4: Adding AbstractElement objects (part 1) 96

Figure 4.2: Keeping a Div on one page

We use only one extra method to achieve this; see the DivExample2⁶² example.

1 Div div = new Div()

2 .setKeepTogether(true)

3 .setBorderLeft(new SolidBorder(2))

4 .setPaddingLeft(3)

5 .setMarginBottom(10);

By adding setKeepTogether(true), we tell iText to try to keep the content of a Div on the same
page. If the content of that Div fits on the next page, all the elements in the Div will be forwarded
to the next page. This is the case in figure 4.2 where the title and the info about the 1920 movie “Dr.
Jekyll and Mr. Hyde” directed by John S. Roberson is no longer added on the first page. Instead it’s
forwarded to the next page.

⁶²http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-4-examples-abstractelement-part-1#1963-c04e02_
divexample2.java

http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-4-examples-abstractelement-part-1#1963-c04e02_divexample2.java
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-4-examples-abstractelement-part-1#1963-c04e02_divexample2.java
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-4-examples-abstractelement-part-1#1963-c04e02_divexample2.java

Chapter 4: Adding AbstractElement objects (part 1) 97

This approach won’t work if the content of a Div doesn’t fit on the next page. In that case, the
elements are distributed over the current page and subsequent pages as if the setKeepTogether()
method wasn’t used. There’s a workaround in case you really want to keep one element on the same
page as the next element. We’ll look at an example demonstrating this workaround after we’ve
discussed the LineSeparator object.

Drawing horizontal lines with the LineSeparator object

The building blocks created for iText are inspired by the tags that are available for HTML. That’s
not a secret. The Text object roughly corresponds with , Paragraph corresponds with <p>,
Div corresponds with <div>, and so on. The best way to explain what the LineSeparator is about,
is to say that it corresponds with the <hr> tag. Figure 4.3 shows a horizontal rule consisting of a red
line, 1 user unit thick, that takes 50% of the available width, for which a top margin of 5 user units
was defined.

Figure 4.3: Using a LineSeparator

Chapter 4: Adding AbstractElement objects (part 1) 98

The LineSeparatorExample⁶³ example shows how it’s done.

1 SolidLine line = new SolidLine(1f);

2 line.setColor(Color.RED);

3 LineSeparator ls = new LineSeparator(line);

4 ls.setWidthPercent(50);

5 ls.setMarginTop(5);

We create a SolidLine object, passing a parameter that defines the thickness. We remember from
the previous chapter that SolidLine is one of the implementations of the ILineDrawer interface. We
set its color to red and we use this ILineDrawer to create a LineSeparator instance. In this case,
we define the width of the line using the setWidthPercent() method. We could also have used
the setWidth() method to define an absolute width expressed in user units. Finally, we set the top
margin to 5 user units.

In the LineSeparatorExample⁶⁴ example, we add the ls object to our Div element containing
information about a movie.

1 div.add(ls);

There isn’t muchmore to be said about LineSeparator. Justmake sure that you use the rightmethods
to set properties. For instance: you can’t change the color of a line at the level of the LineSeparator,
you have to set it at the level of the ILineDrawer. The same goes for the thickness of the line. Check
Appendix B⁶⁵ to find out which AbstractElementmethods are implemented for the LineSeparator
class, and which methods are ignored.

Keeping content together

We’ve been working with the Paragraph class many times in previous examples. For instance: in
chapter 2, we’ve used the Paragraph class to convert a text file to PDF by creating a Paragraph object
for each line in the text file, and by adding all of these Paragraph objects to a Document instance one
way or another. The screen shots in the previous chapters showed that we can make some really
nice PDF documents, but there’s always room for improvement.

Figure 4.4 demonstrates one of the flaws that we still need to fix: we have the title of a chapter on
page 3, but the content of that chapter starts on page 4.

⁶³http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-4-examples-abstractelement-part-1#1964-c04e03_
lineseparatorexample.java

⁶⁴http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-4-examples-abstractelement-part-1#1964-c04e03_
lineseparatorexample.java

⁶⁵http://developers.itextpdf.com/content/itext-7-building-blocks/appendix/b-blockelement

http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-4-examples-abstractelement-part-1#1964-c04e03_lineseparatorexample.java
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-4-examples-abstractelement-part-1#1964-c04e03_lineseparatorexample.java
http://developers.itextpdf.com/content/itext-7-building-blocks/appendix/b-blockelement
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-4-examples-abstractelement-part-1#1964-c04e03_lineseparatorexample.java
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-4-examples-abstractelement-part-1#1964-c04e03_lineseparatorexample.java
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-4-examples-abstractelement-part-1#1964-c04e03_lineseparatorexample.java
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-4-examples-abstractelement-part-1#1964-c04e03_lineseparatorexample.java
http://developers.itextpdf.com/content/itext-7-building-blocks/appendix/b-blockelement

Chapter 4: Adding AbstractElement objects (part 1) 99

Figure 4.4: a widowed title

We’d like to avoid this kind of behavior. We’d like the title to be on the same page as the start of the
content of the chapter. We do a first attempt to fix this problem in the ParagraphAndDiv1⁶⁶ example.

1 public void createPdf(String dest) throws IOException {

2 PdfDocument pdf = new PdfDocument(new PdfWriter(dest));

3 Document document = new Document(pdf);

4 PdfFont font = PdfFontFactory.createFont(FontConstants.TIMES_ROMAN);

5 PdfFont bold = PdfFontFactory.createFont(FontConstants.HELVETICA_BOLD);

6 document.setTextAlignment(TextAlignment.JUSTIFIED)

7 .setHyphenation(new HyphenationConfig("en", "uk", 3, 3));

8 BufferedReader br = new BufferedReader(new FileReader(SRC));

9 String line;

10 Div div = new Div();

⁶⁶http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-4-examples-abstractelement-part-1#1965-c04e04_
paragraphanddiv1.java

http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-4-examples-abstractelement-part-1#1965-c04e04_paragraphanddiv1.java
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-4-examples-abstractelement-part-1#1965-c04e04_paragraphanddiv1.java
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-4-examples-abstractelement-part-1#1965-c04e04_paragraphanddiv1.java

Chapter 4: Adding AbstractElement objects (part 1) 100

11 while ((line = br.readLine()) != null) {

12 Paragraph title = new Paragraph(line)

13 .setFont(bold).setFontSize(12)

14 .setMarginBottom(0);

15 div = new Div()

16 .add(title)

17 .setFont(font).setFontSize(11)

18 .setMarginBottom(18);

19 while ((line = br.readLine()) != null) {

20 div.add(

21 new Paragraph(line)

22 .setMarginBottom(0)

23 .setFirstLineIndent(36)

24);

25 if (line.isEmpty()) {

26 document.add(div);

27 break;

28 }

29 }

30 }

31 document.add(div);

32 document.close();

33 }

This example is very similar to the examples wemade in chapter 2. The main difference is that we no
longer add the Paragraph objects straight to the Document. Instead, we store the Paragraph objects
in a Div object, and we add the Div object to the Document at the end of each chapter.

We could add .setKeepTogether(true) between line 15 and 16, but that wouldn’t have any effect as
the full content of the Div doesn’t fit on a single page. As documented before, the setKeepTogether()
method is ignored. We’ve had long discussions at iText on how to solve this problem. We decided
that the most elegant way to avoid widowed objects consisted of introducing a setKeepWithNext()
method.

The setKeepWithNext() method was introduced in iText 7.0.1. You won’t find it in the
very first iText 7 release. We’re investigating if we could support the method for nested
objects. We’re reluctant to do this because this could have a significant negative impact on
the overall performance of the library.

The ParagraphAndDiv2⁶⁷ example shows how it’s used.

⁶⁷http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-4-examples-abstractelement-part-1#1966-c04e05_
paragraphanddiv2.java

http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-4-examples-abstractelement-part-1#1966-c04e05_paragraphanddiv2.java
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-4-examples-abstractelement-part-1#1966-c04e05_paragraphanddiv2.java
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-4-examples-abstractelement-part-1#1966-c04e05_paragraphanddiv2.java

Chapter 4: Adding AbstractElement objects (part 1) 101

1 BufferedReader br = new BufferedReader(new FileReader(SRC));

2 String line;

3 Div div = new Div();

4 while ((line = br.readLine()) != null) {

5 document.add(new Paragraph(line)

6 .setFont(bold).setFontSize(12)

7 .setMarginBottom(0)

8 .setKeepWithNext(true));

9 div = new Div()

10 .setFont(font).setFontSize(11)

11 .setMarginBottom(18);

12 while ((line = br.readLine()) != null) {

13 div.add(

14 new Paragraph(line)

15 .setMarginBottom(0)

16 .setFirstLineIndent(36)

17);

18 if (line.isEmpty()) {

19 document.add(div);

20 break;

21 }

22 }

23 }

24 document.add(div);

We use a Paragraph added straight to the Document for the title (line 5); we create a Div to combine
the rest of the content in the chapter (line 9). We indicate that the Paragraph needs to be kept on the
same page as (the first part of) the Div by adding setKeepWithNext(true). The result is shown in
figure 4.5. The title “SEARCH FOR MR. HYDE” is now forwarded to the next page when compared
to figure 4.4.

Chapter 4: Adding AbstractElement objects (part 1) 102

Figure 4.5: keeping the title together with the text

The setKeepWithNext() method can be used with all other AbstractElement implementations,
except Cell. The method only works for elements added straight to the Document instance. It doesn’t
work for nested objects such as a Cell that is always added to a Table and never straight to a
Document. In the case of our example, it wouldn’t work if the title Paragraph was added to the Div
instead of to the Document.

Changing the leading of a Paragraph

The Paragraph class has some extra methods on top of the methods defined at the AbstractElement
level. We’ve already used the methods involving TabStops in the previous chapter. We also
introduced the setFirstLineIndent()method on the sly. Now we are going to look at a method to
change the leading.

Chapter 4: Adding AbstractElement objects (part 1) 103

Theword leading is pronounced as ledding, and it’s derived from the word lead (the metal).
When type was set by hand for printing presses, strips of lead were placed between lines
of type to add space. The word originally referred to the thickness of these strips of lead
that were placed between the lines. The PDF standard redefines the leading as “the vertical
distanced between the baselines of adjacent lines of text” (ISO-32000-1, section 9.3.5).

There are two ways to change the leading of a Paragraph:

• setFixedLeading()— changes the leading to an absolute value. For instance: if you define a
fixed leading of 18, the distance between the baseline of two lines of text will be 18 user units.

• setMultipliedLeading—changes the leading to a value relative to the font size. For instance,
if you define a multiplied leading of 1.5f and the font is 12 pt, then the leading will be 18 user
units (which is 1.5 times 12).

These methods are mutually exclusive. If you use both methods on the same Paragraph, the last
method that was invoked will prevail. Figure 4.6 shows yet another conversion of the story to PDF.
The total number of pages is lower because we changed the distance between the lines by adding
.setMultipliedLeading(1.2f).

Chapter 4: Adding AbstractElement objects (part 1) 104

Figure 4.6: changing indentation and leading

The code of the ParagraphAndDiv3⁶⁸ example is identical to what we had in the previous example,
except for the following snippet.

1 div.add(

2 new Paragraph(line)

3 .setMarginBottom(0)

4 .setFirstLineIndent(36)

5 .setMultipliedLeading(1.2f)

6);

When we add an object to a Document either directly or indirectly (e.g. through a Div), iText uses
the appropriate IRenderer to render this object to PDF. In the “Before we start” section of this
book, figure 0.4 shows an overview of the different renderers. Normal use of iText hardly ever

⁶⁸http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-4-examples-abstractelement-part-1#1967-c04e05_
paragraphanddiv3.java

http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-4-examples-abstractelement-part-1#1967-c04e05_paragraphanddiv3.java
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-4-examples-abstractelement-part-1#1967-c04e05_paragraphanddiv3.java
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-4-examples-abstractelement-part-1#1967-c04e05_paragraphanddiv3.java

Chapter 4: Adding AbstractElement objects (part 1) 105

requires creating a custom renderer, but we’ll take a look at one example in which we create a
MyParagraphRenderer extending the default ParagraphRenderer.

Creating a custom renderer

When we look at figure 4.7, we see two Paragraphs with a different background. For the first
Paragraph, we used the .setBackgroundColor() method. This method draws a rectangle based
on the position of the Paragraph. For the second Paragraph, we wanted a rectangle with rounded
corners. As iText 7 doesn’t have a method to achieve this, we wrote a custom ParagraphRenderer

class.

Figure 4.7: default and custom background for a Paragraph

Let’s take a look at the CustomParagraph⁶⁹ example to see the difference between the two
approaches. The first Paragraph was added like this:

1 Paragraph p1 = new Paragraph(

2 "The Strange Case of Dr. Jekyll and Mr. Hyde");

3 p1.setBackgroundColor(Color.ORANGE);

4 document.add(p1);

The second Paragraph was added like this:

⁶⁹http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-4-examples-abstractelement-part-1#1968-c04e06_
customparagraph.java

http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-4-examples-abstractelement-part-1#1968-c04e06_customparagraph.java
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-4-examples-abstractelement-part-1#1968-c04e06_customparagraph.java
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-4-examples-abstractelement-part-1#1968-c04e06_customparagraph.java

Chapter 4: Adding AbstractElement objects (part 1) 106

1 Paragraph p2 = new Paragraph(

2 "The Strange Case of Dr. Jekyll and Mr. Hyde");

3 p2.setBackgroundColor(Color.ORANGE);

4 p2.setNextRenderer(new MyParagraphRenderer(p2));

5 document.add(p2);

This second approach requires an extra class:

1 class MyParagraphRenderer extends ParagraphRenderer {

2 public MyParagraphRenderer(Paragraph modelElement) {

3 super(modelElement);

4 }

5 @Override

6 public void drawBackground(DrawContext drawContext) {

7 Background background =

8 this.<Background>getProperty(Property.BACKGROUND);

9 if (background != null) {

10 Rectangle bBox = getOccupiedAreaBBox();

11 boolean isTagged =

12 drawContext.isTaggingEnabled()

13 && getModelElement() instanceof IAccessibleElement;

14 if (isTagged) {

15 drawContext.getCanvas().openTag(new CanvasArtifact());

16 }

17 Rectangle bgArea = applyMargins(bBox, false);

18 if (bgArea.getWidth() <= 0 || bgArea.getHeight() <= 0) {

19 return;

20 }

21 drawContext.getCanvas().saveState()

22 .setFillColor(background.getColor())

23 .roundRectangle(

24 (double)bgArea.getX() - background.getExtraLeft(),

25 (double)bgArea.getY() - background.getExtraBottom(),

26 (double)bgArea.getWidth()

27 + background.getExtraLeft() + background.getExtraRight(),

28 (double)bgArea.getHeight()

29 + background.getExtraTop() + background.getExtraBottom(),

30 5)

31 .fill().restoreState();

32 if (isTagged) {

33 drawContext.getCanvas().closeTag();

34 }

Chapter 4: Adding AbstractElement objects (part 1) 107

35 }

36 }

37 }

We extend the existing ParagraphRenderer class and we override one single method. We take
the original drawBackground() method from the AbstractRenderer class, and we replace the
rectangle() method with the roundRectangle() method (line 23). As you can see in line 24-29.
the dimension of the rectangle can be fine-tuned with extra space to the left, right, top, and bottom.
These values can be passed to the internal Background object by using a different flavor of the
setBackgroundColor() method that takes 4 extra float values (extraLeft, extraTop, extraRight,
and extraBottom).

We’ll conclude this chapter with some examples involving the List and ListItem class.

Lists and list symbols

Figure 4.8 shows the different types of lists that are available by default. We recognized numbered
lists (roman and arabic numbers), lists with letters of the alphabet (lowercase, uppercase, Latin,
Greek), and so on.

Chapter 4: Adding AbstractElement objects (part 1) 108

Figure 4.8: different types of lists

The ListTypes⁷⁰ example shows how the first three lists are added.

1 List list = new List();

2 list.add("Dr. Jekyll");

3 list.add("Mr. Hyde");

4 document.add(list);

5 list = new List(ListNumberingType.DECIMAL);

6 list.add("Dr. Jekyll");

7 list.add("Mr. Hyde");

8 document.add(list);

9 list = new List(ListNumberingType.ENGLISH_LOWER);

10 list.add("Dr. Jekyll");

11 list.add("Mr. Hyde");

12 document.add(list);

⁷⁰http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-4-examples-abstractelement-part-1#1969-c04e07_listtypes.
java

http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-4-examples-abstractelement-part-1#1969-c04e07_listtypes.java
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-4-examples-abstractelement-part-1#1969-c04e07_listtypes.java
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-4-examples-abstractelement-part-1#1969-c04e07_listtypes.java

Chapter 4: Adding AbstractElement objects (part 1) 109

In line 1, we create a list without specifying a type. By default, this will result in a list with hyphens
as list symbols. We add two list items the quick and dirty way in line 2-3; then we add the list to
the Document in line 4. We repeat these four lines many times, first we create a decimal list (line 5),
then we define an alphabetic list with lowercase letters (line 9).

The parameters we use to create different types of lists are stored in an enum. This ListNumbering-
Type enumeration consists of the following values:

• DECIMAL– the list symbols are arabic numbers: 1, 2, 3, 4, 5,…
• ROMAN_LOWER– the list symbols are lowercase roman numbers: i, ii, iii, iv, v,…
• ROMAN_UPPER– the list symbols are uppercase roman numbers: I, II, III, IV, V,…
• ENGLISH_LOWER– the list symbols are lowercase alphabetic letters (using the English alphabet):
a, b, c, d, e,…

• ENGLISH_UPPER– the list symbols are uppercase alphabetic letters (using the English alphabet):
A, B, C, D, E,…

• GREEK_LOWER– the list symbols are lowercase Greek letters: α, β, γ, δ, ε,…
• GREEK_UPPER– the list symbols are uppercase Greek letters: Α, Β, Γ, Δ, Ε,…
• ZAPF_DINGBATS_1– the list symbols are bullets from the Zapfdingbats font, more specifically
characters in the range [172; 181].

• ZAPF_DINGBATS_2– the list symbols are bullets from the Zapfdingbats font, more specifically
characters in the range [182; 191].

• ZAPF_DINGBATS_3– the list symbols are bullets from the Zapfdingbats font, more specifically
characters in the range [192; 201].

• ZAPF_DINGBATS_4– the list symbols are bullets from the Zapfdingbats font, more specifically
characters in the range [202; 221].

Obviously, we can also define our own custom list symbols, or we can use a combination of the
default list symbols (e.g. numbers) and combine them with a prefix or a suffix. That’s demonstrated
in figure 4.9.

Chapter 4: Adding AbstractElement objects (part 1) 110

Figure 4.9: custom list symbols

The PDF in the screen shot of figure 4.9 was the result of the CustomListSymbols⁷¹ example. We’ll
examine this example snippet by snippet.

First we take a look at how we can introduce a simple bullet as list symbol, instead of the default
hyphen.

1 List list = new List();

2 list.setListSymbol("\u2022");

3 list.add("Dr. Jekyll");

4 list.add("Mr. Hyde");

5 document.add(list);

We create a List and we use the setListSymbol()method to change the list symbol. We can use any
String as list symbol. In our case, we want a single bullet. The Unicode value of the bullet character

⁷¹http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-4-examples-abstractelement-part-1#1970-c04e08_
customlistsymbols.java

http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-4-examples-abstractelement-part-1#1970-c04e08_customlistsymbols.java
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-4-examples-abstractelement-part-1#1970-c04e08_customlistsymbols.java
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-4-examples-abstractelement-part-1#1970-c04e08_customlistsymbols.java

Chapter 4: Adding AbstractElement objects (part 1) 111

is /u2022. If you examine the screen shot, you notice that the bullet is rather close to the content of
the list items. We can change this by defining an indentation using the setSymbolIndent()method
as is done in the next code snippet.

1 list = new List();

2 PdfFont font = PdfFontFactory.createFont(FontConstants.ZAPFDINGBATS);

3 list.setListSymbol(new Text("*").setFont(font).setFontColor(Color.ORANGE));

4 list.setSymbolIndent(10);

5 list.add("Dr. Jekyll");

6 list.add("Mr. Hyde");

7 document.add(list);

Here we set the list symbol to *, but we use a Text object instead of a String. and we set the font
to ZapfDingbats. We also change the font color to orange. This results in a list symbol that looks as
an orange pointing finger. In the next snippet, we use an Image object as a list symbol.

1 Image info = new Image(ImageDataFactory.create(INFO));

2 info.scaleAbsolute(12, 12);

3 list = new List().setSymbolIndent(3);

4 list.setListSymbol(info);

5 list.add("Dr. Jekyll");

6 list.add("Mr. Hyde");

7 document.add(list);

In line 1. we create an Image object; INFO contains the path to a blue info bullet. We scale the image
so that it measures 12 by 12 user units, and we pass the Image as a parameter of the setListSymbol()
method.

In the default list types, iText always added a dot after the list symbol of numbered lists: a., b., c.,
and so on. Maybe we don’t want this dot. Maybe we want the list symbols to look like this: a-, b-,
c-, and so on. The following code snippet shows how to achieve this.

1 list = new List();

2 list.setListSymbol(ListNumberingType.ENGLISH_LOWER);

3 list.setPostSymbolText("- ");

4 list.add("Dr. Jekyll");

5 list.add("Mr. Hyde");

6 document.add(list);

Line 1 and 2 are the equivalent of list = new List(ListNumberingType.ENGLISH_LOWER); It
results in a numbered list using the English alphabet. We use the setPostSymbolText() method
to replace the dot that is automatically added after each letter with "- ".

There’s also a setPreSymbolText() method to add text in front of the default list symbol. The
following code snippet creates a decimal list (1., 2., 3.,…), but by adding a pre- and a post-symbol,
the list symbols have become list labels that look like this: Part 1: , Part 2: , Part 3: , and so on.

Chapter 4: Adding AbstractElement objects (part 1) 112

1 list = new List(ListNumberingType.DECIMAL);

2 list.setPreSymbolText("Part ");

3 list.setPostSymbolText(": ");

4 list.add("Dr. Jekyll");

5 list.add("Mr. Hyde");

6 document.add(list);

Not every numbered list needs to start with 1, i, a, and so on. You can also choose to start with a
higher number (or letter) using the setItemStartIndex()method. In the following code sample, we
start counting at 5.

1 list = new List(ListNumberingType.DECIMAL);

2 list.setItemStartIndex(5);

3 list.add("Dr. Jekyll");

4 list.add("Mr. Hyde");

5 document.add(list);

Finally, we’ll use the setListSymbolAlignment() to change the alignment of the labels. If you
compare the lowercase Roman numbers list in figure 4.8 with the one in figure 4.9, you’ll see a
difference in the way the list labels are aligned.

1 list = new List(ListNumberingType.ROMAN_LOWER);

2 list.setListSymbolAlignment(ListSymbolAlignment.LEFT);

3 for (int i = 0; i < 6; i++) {

4 list.add("Dr. Jekyll");

5 list.add("Mr. Hyde");

6 }

7 document.add(list);

So far, we’ve always added list items to a list using Strings. These String values are changed into
ListItems internally.

Adding ListItem objects to a List

Looking at the class diagram in the “Before we start” section of this book, we notice that ListItem
is a subclass of the Div class. We can add different objects to a ListItem just like we did with the
Div object, but now we do so in the context of a list.

Let’s do the test and adapt one of the first examples of this chapter to use ListItems instead of Divs.
Figure 4.10 shows the result.

Chapter 4: Adding AbstractElement objects (part 1) 113

Figure 4.10: List items

The code of the ListItemExample⁷² example is very similar to the code of the Div examples.

1 public void createPdf(String dest) throws IOException {

2 PdfDocument pdf = new PdfDocument(new PdfWriter(dest));

3 Document document = new Document(pdf);

4 List<List<String>> resultSet = CsvTo2DList.convert(SRC, "|");

5 resultSet.remove(0);

6 com.itextpdf.layout.element.List list =

7 new com.itextpdf.layout.element.List(ListNumberingType.DECIMAL);

8 for (List<String> record : resultSet) {

9 ListItem li = new ListItem();

10 li.setKeepTogether(true);

⁷²http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-4-examples-abstractelement-part-1#1971-c04e09_
listitemexample.java

http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-4-examples-abstractelement-part-1#1971-c04e09_listitemexample.java
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-4-examples-abstractelement-part-1#1971-c04e09_listitemexample.java
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-4-examples-abstractelement-part-1#1971-c04e09_listitemexample.java

Chapter 4: Adding AbstractElement objects (part 1) 114

11 String url = String.format(

12 "http://www.imdb.com/title/tt%s", record.get(0));

13 Link movie = new Link(record.get(2), PdfAction.createURI(url));

14 li.add(new Paragraph(movie.setFontSize(14)))

15 .add(new Paragraph(String.format(

16 "Directed by %s (%s, %s)",

17 record.get(3), record.get(4), record.get(1))));

18 File file = new File(String.format(

19 "src/main/resources/img/%s.jpg", record.get(0)));

20 if (file.exists()) {

21 Image img = new Image(ImageDataFactory.create(file.getPath()));

22 img.scaleToFit(10000, 120);

23 li.add(img);

24 }

25 list.add(li);

26 }

27 document.add(list);

28 document.close();

29 }

Aswe already use a java.util.List (line 4), we need to fully qualify com.itextpdf.layout.element.List
(line 6) to avoid ambiguity for our compiler. We use iText’s List class to create a numbered list (line
7). We create a ListItem for every item in the java.util.List (line 9). We add Paragraphs and an
Image (if present) to each ListItem (line 11-24). We add each ListItem to the List (line 25), and
eventually we add the List to the Document (line 27).

Nested lists

In the final example of this chapter, we’ll create nested lists as shown in figure 4.11.

Chapter 4: Adding AbstractElement objects (part 1) 115

Figure 4.11: nested lists

The NestedLists⁷³ example is rather artificial, so please bear with me. We start with an ordinary list,
named list. That’s the list with the hyphens as list symbol.

1 List list = new List();

We create a numbered list list1 (line 1). This list will have two ListItems, liEL (line 5) and liEU

(line 11). We create a new List to be added to each of these list items respectively: listEL (line
2; lowercase English letters) and listEU (line 8, uppercase English letters). We add list items "Dr.
Jekyll" and "Mr. Hyde" to each of these lists (line 3-4; line 9-10).

⁷³http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-4-examples-abstractelement-part-1#1972-c04e10_
nestedlists.java

http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-4-examples-abstractelement-part-1#1972-c04e10_nestedlists.java
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-4-examples-abstractelement-part-1#1972-c04e10_nestedlists.java
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-4-examples-abstractelement-part-1#1972-c04e10_nestedlists.java

Chapter 4: Adding AbstractElement objects (part 1) 116

1 List list1 = new List(ListNumberingType.DECIMAL);

2 List listEL = new List(ListNumberingType.ENGLISH_LOWER);

3 listEL.add("Dr. Jekyll");

4 listEL.add("Mr. Hyde");

5 ListItem liEL = new ListItem();

6 liEL.add(listEL);

7 list1.add(liEL);

8 List listEU = new List(ListNumberingType.ENGLISH_UPPER);

9 listEU.add("Dr. Jekyll");

10 listEU.add("Mr. Hyde");

11 ListItem liEU = new ListItem();

12 liUL.add(listEU);

13 list1.add(liEU);

14 ListItem li1 = new ListItem();

15 li1.add(list1);

16 list.add(li1);

When we look at figure 4.11, we see the hyphen, we see a numbered list with list symbols 1. and
2.. Nested inside these lists are two lists using the English alphabet (lower- and uppercase).

In the next snippet, we create an extra ListItem for list, more specifically li (line 1). We add four
lists to this ListItem: listGL (line 2), listGU (line 6), listRL (line 10), and listRU (line 14). These
lists are added one after the other (Greek lowercase, Greek uppercase, Roman numbers lowercase,
Roman number uppercase) to the list item with the default list symbol.

1 ListItem li = new ListItem();

2 List listGL = new List(ListNumberingType.GREEK_LOWER);

3 listGL.add("Dr. Jekyll");

4 listGL.add("Mr. Hyde");

5 li.add(listGL);

6 List listGU = new List(ListNumberingType.GREEK_UPPER);

7 listGU.add("Dr. Jekyll");

8 listGU.add("Mr. Hyde");

9 li.add(listGU);

10 List listRL = new List(ListNumberingType.ROMAN_LOWER);

11 listRL.add("Dr. Jekyll");

12 listRL.add("Mr. Hyde");

13 li.add(listRL);

14 List listRU = new List(ListNumberingType.ROMAN_UPPER);

15 listRU.add("Dr. Jekyll");

16 listRU.add("Mr. Hyde");

17 li.add(listRU);

18 list.add(li);

Chapter 4: Adding AbstractElement objects (part 1) 117

Furthermore, we create a list listZ1 with numbered ZapfDingbats bullets. We add this list to a list
item named listZ1.

1 List listZ1 = new List(ListNumberingType.ZAPF_DINGBATS_1);

2 listZ1.add("Dr. Jekyll");

3 listZ1.add("Mr. Hyde");

4 ListItem liZ1 = new ListItem();

5 liZ1.add(listZ1);

We create a second list listZ2 with a different set of ZapfDingbats bullets. We add this list to a list
item named listZ2.

1 List listZ2 = new List(ListNumberingType.ZAPF_DINGBATS_2);

2 listZ2.add("Dr. Jekyll");

3 listZ2.add("Mr. Hyde");

4 ListItem liZ2 = new ListItem();

5 liZ2.add(listZ2);

We create a second list listZ3 with another set of ZapfDingbats bullets. We add this list to a list
item named listZ3.

1 List listZ3 = new List(ListNumberingType.ZAPF_DINGBATS_3);

2 listZ3.add("Dr. Jekyll");

3 listZ3.add("Mr. Hyde");

4 ListItem liZ3 = new ListItem();

5 liZ3.add(listZ3);

We create a final list listZ4 with yet another set of ZapfDingbats bullets. We add this list to a list
item named listZ4.

1 List listZ4 = new List(ListNumberingType.ZAPF_DINGBATS_4);

2 listZ4.add("Dr. Jekyll");

3 listZ4.add("Mr. Hyde");

4 ListItem liZ4 = new ListItem();

5 liZ4.add(listZ4);

Now we nest these lists as follows:

• we add liZ4 to listZ3, which was already added to liZ3,
• we add liZ3 to listZ2, which was already added to liZ2,
• we add liZ2 to listZ1, which was already added to liZ1.
• we add liZ1 to list, which is the original list we created (the one with the hyphen as list
symbol).

Finally, we add list to the Document.

Chapter 4: Adding AbstractElement objects (part 1) 118

1 listZ3.add(liZ4);

2 listZ2.add(liZ3);

3 listZ1.add(liZ2);

4 list.add(liZ1);

5 document.add(list);

The nested ZapfDingbats list is shown to the right in figure 4.11. As you can see, the different
list items are indented exactly the way one would expect. This concludes the first series of
AbstractElement examples.

Summary

In this chapter, we discussed the building blocks Div, LineSeparator, Paragraph, List, and
ListItem. We used Div to group other building blocks and LineSeparator to draw horizontal
lines. We fixed a problem with the chapter 2 examples we weren’t aware of: we learned how to
keep specific elements together on one page. We didn’t go into detail regarding the IRenderer

implementations, but we looked at an example in which we changed the way a background is drawn
for a Paragraph. We created a custom ParagraphRenderer to achieve this. Finally, we created a
handful of List examples demonstrating different types of lists (numbered, unnumbered, straight-
forward, nested, and so on).

The next chapter will be dedicated entirely to tables, more specifically to the Table and Cell class.

Chapter 5: Adding AbstractElement
objects (part 2)
Once we’ve finished this chapter, we’ll have covered all of the basic building blocks available in
iText 7. We’ve saved two of the most used building blocks for last: Table and Cell. These objects
were designed to render content in a tabular form. Many developers use iText to convert the result
set of a database query into a report in PDF. They create a Table of which every row corresponds
with a database record, wrapping every field value in a Cell object.

We could easily create a similar table using our Jekyll and Hyde database to a PDF, but let’s start
with a handful of simple examples first.

My first table

Figure 5.1 shows a simple table that was created with iText 7.

Figure 5.1: my first table

The code to create this table is really simple; see the MyFirstTable⁷⁴ example.

⁷⁴http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-5#2031-c05e01_myfirsttable.java

http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-5#2031-c05e01_myfirsttable.java
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-5#2031-c05e01_myfirsttable.java

Chapter 5: Adding AbstractElement objects (part 2) 120

1 public void createPdf(String dest) throws IOException {

2 PdfDocument pdf = new PdfDocument(new PdfWriter(dest));

3 Document document = new Document(pdf);

4 Table table = new Table(3);

5 table.addCell(new Cell(1, 3).add("Cell with colspan 3"));

6 table.addCell(new Cell(2, 1).add("Cell with rowspan 2"));

7 table.addCell("row 1; cell 1");

8 table.addCell("row 1; cell 2");

9 table.addCell("row 2; cell 1");

10 table.addCell("row 2; cell 2");

11 document.add(table);

12 document.close();

13 }

We create a table with 3 columns in line 4. We add 6 cells in line 5-10:

• The first cell has a rowspan of 1 and a colspan of 3.
• The second cell has a rowspan of 2 and a colspan of 1.
• The following four cells have a rowspan and colspan of 1.

For the first two cells we explicitly created a Cell object because we wanted to define a specific
rowspan or colspan. For the next four cells, we just added a String to the Table. A Cell object was
created internally by iText. Line 7 is shorthand for table.addCell(new Cell().add("row 1; cell

1")).

The PdfPTable and PdfPCell classes that we all know from iText 5 are no longer present.
They were replaced by Table and Cell, and we simplified the way tables are created. The
iText 5 concept of text mode versus composite mode caused a lot of confusion among first-
time iText users. Adding content to a Cell is now done using the add() method.

Figure 5.2 shows a variation of our first table. We changed the width of the table, its alignment, and
the width of the columns.

Chapter 5: Adding AbstractElement objects (part 2) 121

Figure 5.2: defining column widths

This was achieved by changing the constructor and by adding two extra lines; see the Column-
Widths⁷⁵ example.

1 Table table = new Table(new float[]{2, 1, 1});

2 table.setWidthPercent(80);

3 table.setHorizontalAlignment(HorizontalAlignment.CENTER);

Instead of passing the number of columns to the Table constructor, we now pass an array with as
many elements as there are columns. Each element is a float value indicating the relative width of
the corresponding column. In this case, the first column will be twice as wide as the second and
third column.

We use the setWidthPercent() method so that the table takes 80% of the available width –that’s
the width of the page minus the width reserved for the left and right margin.

The default width percentage is 100%. There’s also a setWidth() method that allows you
to set the absolute width. Use this method if you prefer a value in user units over a width
that is relative to the available width.

We use the setHorizontalAlignment() method to center the table.

Table and cell Alignment

In figure 5.3, we also change the alignment of the content inside the cells.

⁷⁵http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-5#2032-c05e02_columnwidths.java

http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-5#2032-c05e02_columnwidths.java
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-5#2032-c05e02_columnwidths.java
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-5#2032-c05e02_columnwidths.java

Chapter 5: Adding AbstractElement objects (part 2) 122

Figure 5.3: alignment of cell content

We can change the alignment of the content of a Cell in different ways. The CellAlignment⁷⁶
example demonstrates the different options.

1 Table table = new Table(new float[]{2, 1, 1});

2 table.setWidthPercent(80);

3 table.setHorizontalAlignment(HorizontalAlignment.CENTER);

4 table.setTextAlignment(TextAlignment.CENTER);

5 table.addCell(new Cell(1, 3).add("Cell with colspan 3"));

6 table.addCell(new Cell(2, 1).add("Cell with rowspan 2")

7 .setTextAlignment(TextAlignment.RIGHT));

8 table.addCell("row 1; cell 1");

9 table.addCell("row 1; cell 2");

10 table.addCell("row 2; cell 1");

11 table.addCell("row 2; cell 2");

12 Cell cell = new Cell()

13 .add(new Paragraph("Left").setTextAlignment(TextAlignment.LEFT))

14 .add(new Paragraph("Center"))

15 .add(new Paragraph("Right").setTextAlignment(TextAlignment.RIGHT));

16 table.addCell(cell);

17 cell = new Cell().add("Middle")

18 .setVerticalAlignment(VerticalAlignment.MIDDLE);

19 table.addCell(cell);

20 cell = new Cell().add("Bottom")

21 .setVerticalAlignment(VerticalAlignment.BOTTOM);

⁷⁶http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-5#2033-c05e03_cellalignment.java

http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-5#2033-c05e03_cellalignment.java
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-5#2033-c05e03_cellalignment.java

Chapter 5: Adding AbstractElement objects (part 2) 123

22 table.addCell(cell);

23 document.add(table);

Once more we use the setHorizontalAlignment() method to define the horizontal alignment of
the table itself (line 3). Additionally, we use the setTextAlignment() method to change the default
alignment of the content of the Cell added to this table. By default, this content is aligned to the
left (TextAlignment.LEFT); we change the alignment to TextAlignment.CENTER (line 4). As a result,
"Cell with colspan 3" will be centered in the first cell we add (line 5).

We change the alignment of "Cell with rowspan 2" to TextAlignment.RIGHT for the second cell.
This time, we use the setTextAlignment() method at the level of the Cell (line 6-7). We complete
the two rows in this rowspan by adding four more cells without specifying the alignment. The
alignment is inherited from the table; their content is centered.

In line 12, we define a Cell for which we define the alignment at the level of the content.

• In line 13, we add a Paragraph that is aligned to the left.
• In line 14, we don’t define an alignment for the Paragraph. The alignment is inherited from
the Cell. No alignment was defined at the level of the Cell either, so the alignment is inherited
from the Table. As a result, the content is centered.

• In line 15, we add a Paragraph that is aligned to the right.

The next two cell demonstrate the vertical alignment and the setVerticalAlignment() method.
Content is aligned to the top by default (VerticalAlignment.TOP). In line 17-18, we create a Cell of
which the alignment is set to the middle (vertically: VerticalAlignment.MIDDLE). In line 20-21, the
content is bottom-aligned (VerticalAlignment.BOTTOM).

Row and cell height

The height of a row will automatically adapt to the height of the cells in that row. The height of a
cell will depend on its content, but we can always increase its height. Let’s take a look at figure 5.4.

Chapter 5: Adding AbstractElement objects (part 2) 124

Figure 5.4: changing the cell height

In this table, we are adding the same Paragraph to a table with 1 column; see the ColumnHeights⁷⁷
example.

1 Paragraph p =

2 new Paragraph("The Strange Case of\nDr. Jekyll\nand\nMr. Hyde")

3 .setBorder(new DashedBorder(0.3f));

We define a border of 0.3 user units for the Paragraph, so that we can clearly make the distinction
between the boundaries of the Paragraph and the borders of the Cell.

The first time, we add the Paragraph directly to the Table.

1 Table table = new Table(1);

2 table.addCell(p);

In this case, iText will determine the height in such a way that the content of the Paragraph fits the
Cell.

In the second row, we change the height of the Cell in such a way that the content wouldn’t fit.

⁷⁷http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-5#2034-c05e04_columnheights.java

http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-5#2034-c05e04_columnheights.java
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-5#2034-c05e04_columnheights.java

Chapter 5: Adding AbstractElement objects (part 2) 125

1 Cell cell = new Cell().setHeight(16).add(p);

2 table.addCell(cell);

If iText would reduce the cell height to 16 user units, content would be lost. Usually this isn’t
acceptable, so iText ignores the setHeight() method. Just like before, the height of the Cell is
determined by its content.

For the third row, we define a height that is much higher than needed.

1 cell = new Cell().setHeight(144).add(p);

2 table.addCell(cell);

The dashed line shows the space needed for the Paragraph. The full line is the border of the Cell.
When we look at the third row in figure 5.4, we see that there’s quite some extra space between the
bottom boundary of the Paragraph and the bottom border of the Cell.

We can also set a rotation angle for the Cell. This is done in figure 6.5. The full block of the Paragraph
is rotated, and the height of the Cell adapts to the height that is necessary to render that rotated
block completely.

Figure 5.5: rotating the content of a cell

Rotating the content of a Cell is done using the setRotationAngle() method. The angle needs to
be expressed in Radians.

Chapter 5: Adding AbstractElement objects (part 2) 126

1 cell = new Cell().add(p).setRotationAngle(Math.PI / 6);

2 table.addCell(cell);

The space between the dashed border of the Paragraph and the border of the Cell is called the
padding. In the next example, we’ll examine the difference between the margin and the padding.

Cell margins and padding

In figure 5.6, we have set the background of the table to orange. We’ve also defined a background
color for the different cells. This way, we can distinguish the difference between the margin of a cell
and its padding.

Figure 5.6: the difference between the margin and the padding of a cell

Let’s take a look at the CellMarginPadding⁷⁸ example to see how this PDF was created.

1 Table table = new Table(new float[]{2, 1, 1});

2 table.setBackgroundColor(Color.ORANGE);

3 table.setWidthPercent(80);

4 table.setHorizontalAlignment(HorizontalAlignment.CENTER);

5 table.addCell(

6 new Cell(1, 3).add("Cell with colspan 3")

7 .setPadding(10).setMargin(5).setBackgroundColor(Color.GREEN));

8 table.addCell(new Cell(2, 1).add("Cell with rowspan 2")

9 .setMarginTop(5).setMarginBottom(5).setPaddingLeft(30)

10 .setFontColor(Color.WHITE).setBackgroundColor(Color.BLUE));

⁷⁸http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-5#2035-c05e05_cellmarginpadding.java

http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-5#2035-c05e05_cellmarginpadding.java
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-5#2035-c05e05_cellmarginpadding.java

Chapter 5: Adding AbstractElement objects (part 2) 127

11 table.addCell(new Cell().add("row 1; cell 1")

12 .setFontColor(Color.WHITE).setBackgroundColor(Color.RED));

13 table.addCell(new Cell().add("row 1; cell 2"));

14 table.addCell(new Cell().add("row 2; cell 1").setMargin(10)

15 .setFontColor(Color.WHITE).setBackgroundColor(Color.RED));

16 table.addCell(new Cell().add("row 2; cell 2").setPadding(10)

17 .setFontColor(Color.WHITE).setBackgroundColor(Color.RED));

18 document.add(table);

We set the background for the full table to orange in line 2. We add six cells to this table:

1. line 5-7: a cell with a green background, a margin of 5 user units and a padding of 10 user
units. Looking at the screen shot, we see that the margin is the space between the border of the
cell and the green rectangle –the background. The padding is the space between the border of
that green rectangle and the content of the cell.

2. line 8-10: a cell with white text, a blue background, a top and bottom margin of 5 user units,
and a left padding of 30 user units. We don’t see any orange ribbons to the left and the right.
We only see 5 user units of orange at the top and the bottom. The default margin of a Cell

is 0 user units. The text doesn’t start immediately at the left. There’s 30 user units of space
between the left border and the text.

3. line 11-12: a cell with white text, a red background, and default values for the margin and the
padding. The text doesn’t stick to the border because iText uses a default padding of 2 user
units.

4. line 13: a cell with default properties. This cell has no background color. It’s orange because
of the background color of the table.

5. line 14-15: a cell with white text, a red background and a margin of 10 user units.
6. line 16-17: a cell with white text, a red background and a padding of 10 user units.

So far, we haven’t defined the border of any of the cells. The default border is a Border instance
define like this: new SolidBorder(0.5f). There is something special about cell borders that requires
more explanation.

Table and cell borders

Figure 5.7 shows three tables with different borders. We’ll discuss each of these tables one by one
by examining the CellBorders⁷⁹ example..

⁷⁹http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-5#2036-c05e06_cellborders.java

http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-5#2036-c05e06_cellborders.java
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-5#2036-c05e06_cellborders.java

Chapter 5: Adding AbstractElement objects (part 2) 128

Figure 5.7: changing table and cell borders

The first table was created like this:

1 Table table1 = new Table(new float[]{2, 1, 1});

2 table1.setWidthPercent(80);

3 table1.setHorizontalAlignment(HorizontalAlignment.CENTER);

4 table1.addCell(

5 new Cell(1, 3).add("Cell with colspan 3")

6 .setPadding(10).setMargin(5).setBorder(new DashedBorder(0.5f)));

7 table1.addCell(new Cell(2, 1).add("Cell with rowspan 2")

8 .setMarginTop(5).setMarginBottom(5)

9 .setBorderBottom(new DottedBorder(0.5f))

10 .setBorderLeft(new DottedBorder(0.5f)));

11 table1.addCell(new Cell().add("row 1; cell 1")

12 .setBorder(new DottedBorder(Color.ORANGE, 0.5f)));

13 table1.addCell(new Cell().add("row 1; cell 2"));

14 table1.addCell(new Cell().add("row 2; cell 1").setMargin(10)

15 .setBorderBottom(new SolidBorder(2)));

Chapter 5: Adding AbstractElement objects (part 2) 129

16 table1.addCell(new Cell().add("row 2; cell 2").setPadding(10)

17 .setBorderBottom(new SolidBorder(2)));

18 document.add(table1);

Let’s compare the code and the resulting table, shown in figure 5.8.

• line 4-6: The first cell has a dashed border that is 0.5 user units wide. The border consists of a
complete rectangle.

• line 7-10: For the second cell, we only defined a bottom border and a left border. A dotted line
is drawn to the left and at the bottom of the cell. The top and the right border are actually the
borders of other cells.

• line 11-12: We introduce an orange dotted border that is 0.5 user units wide. Although we set
the border for the full cell, the top border isn’t drawn as an orange dotted line. The top border
is part of the dashed border of our first cell; iText won’t draw an extra border on top of that
already existing border.

• line 13: We don’t define a border. By default, a solid border of 0.5 user units is drawn. Two
borders were already defined previously, in the context of other, previously added cells. The
borders of those cells prevail.

• line 14-15 and line 16-17: We define a solid bottom border that is 2 user units wide. The top
borders of both cells are already defined: they are also the bottom borders of the corresponding
cells in the previous row. The left and right borders aren’t defined anywhere; iText will use
the default border: a solid line of 0.5 user units.

Figure 5.8: different borders for different cells

This behavior is the result of a design decision.

Chapter 5: Adding AbstractElement objects (part 2) 130

One way to deal with borders would be to let every Cell, or more specifically every
CellRenderer, draw its own borders. In that case, the borders of adjacent cells would
overlap. For instance: the dashed border at the bottom of the cell in the first row would
overlap with the orange dotted top border of a cell in the second row. This is what happened
in previous versions of iText. The border of two adjacent cells often consisted of two
identical lines that overlapped each other. The extra line wasn’t only redundant, it also
caused a visual side-effect in some viewers. Many viewers render identical content that
overlaps in a special way. In the case of overlapping text, a regular font looks as if it is bold.
In the case of overlapping lines, the line width looks thicker than defined. The line width
of two lines that are 0.5 user units wide and that are added at the exact same coordinates
is rendered with a width slightly higher than 0.5 user units. Although this difference isn’t
always visible to the naked eye, we made the design decision to avoid this. All the borders
are drawn at the level of the Table. That is: at the level of the TableRenderer.

In the next example, we define a border for the table, while setting the borders of every cell to
Border.NO_BORDER.

1 Table table2 = new Table(new float[]{2, 1, 1});

2 table2.setMarginTop(10);

3 table2.setBorder(new SolidBorder(1));

4 table2.setWidthPercent(80);

5 table2.setHorizontalAlignment(HorizontalAlignment.CENTER);

6 table2.addCell(new Cell(1, 3)

7 .add("Cell with colspan 3").setBorder(Border.NO_BORDER));

8 table2.addCell(new Cell(2, 1)

9 .add("Cell with rowspan 2").setBorder(Border.NO_BORDER));

10 table2.addCell(new Cell()

11 .add("row 1; cell 1").setBorder(Border.NO_BORDER));

12 table2.addCell(new Cell()

13 .add("row 1; cell 2").setBorder(Border.NO_BORDER));

14 table2.addCell(new Cell()

15 .add("row 2; cell 1").setBorder(Border.NO_BORDER));

16 table2.addCell(new Cell()

17 .add("row 2; cell 2").setBorder(Border.NO_BORDER));

18 document.add(table2);

The result is shown in figure 5.9. The table has a border, but the cells don’t have any “inside borders”.

Chapter 5: Adding AbstractElement objects (part 2) 131

Figure 5.9: table border but no cell borders

Our design decision also has an impact on how we deal with custom renderers for cells. Suppose
that we’d want to create cells with rounded borders. In that case, we could extend the CellRenderer
class and create a RoundedCornersCellRenderer like this:

1 private class RoundedCornersCellRenderer extends CellRenderer {

2 public RoundedCornersCellRenderer(Cell modelElement) {

3 super(modelElement);

4 }

5 @Override

6 public void drawBorder(DrawContext drawContext) {

7 Rectangle occupiedAreaBBox = getOccupiedAreaBBox();

8 float[] margins = getMargins();

9 Rectangle rectangle = applyMargins(occupiedAreaBBox, margins, false);

10 PdfCanvas canvas = drawContext.getCanvas();

11 canvas.roundRectangle(rectangle.getX() + 1, rectangle.getY() + 1,

12 rectangle.getWidth() - 2, rectangle.getHeight() -2, 5).stroke();

13 super.drawBorder(drawContext);

14 }

15 }

In the previous chapter, we’ve used the setNextRenderer() method to replace the default Para-
graphRenderer of a Paragraph by our custom renderer. We could do the same with every Cell we
create. In that case, we’d have something like:

1 Cell cell = new Cell();

2 cell.setNextRenderer(new RoundedCornersCellRenderer(cell));

However, we don’t like having to do this for every Cell we create. It’s much easier to extend the
Cell class, overriding the makeNewRenderer() method.

Chapter 5: Adding AbstractElement objects (part 2) 132

1 private class RoundedCornersCell extends Cell {

2 public RoundedCornersCell() {

3 super();

4 }

5 public RoundedCornersCell(int rowspan, int colspan) {

6 super(rowspan, colspan);

7 }

8 @Override

9 protected IRenderer makeNewRenderer() {

10 return new RoundedCornersCellRenderer(this);

11 }

12 }

We can now use the RoundedCornersCell object instead of the Cell object.

1 Table table3 = new Table(new float[]{2, 1, 1});

2 table3.setMarginTop(10);

3 table3.setWidthPercent(80);

4 table3.setHorizontalAlignment(HorizontalAlignment.CENTER);

5 Cell cell = new RoundedCornersCell(1, 3).add("Cell with colspan 3")

6 .setPadding(10).setMargin(5).setBorder(Border.NO_BORDER);

7 table3.addCell(cell);

8 cell = new RoundedCornersCell(2, 1).add("Cell with rowspan 2")

9 .setMarginTop(5).setMarginBottom(5);

10 table3.addCell(cell);

11 cell = new RoundedCornersCell().add("row 1; cell 1");

12 table3.addCell(cell);

13 cell = new RoundedCornersCell().add("row 1; cell 2");

14 table3.addCell(cell);

15 cell = new RoundedCornersCell().add("row 2; cell 1").setMargin(10);

16 table3.addCell(cell);

17 cell = new RoundedCornersCell().add("row 2; cell 2").setPadding(10);

18 table3.addCell(cell);

19 document.add(table3);

We removed the border of the first cell in line 6. We didn’t remove the borders of the other cells.
Looking at figure 5.10, we see that those cells have two borders.

Chapter 5: Adding AbstractElement objects (part 2) 133

Figure 5.10: custom borders

This may be surprising: now that we’ve overridden the drawBorder()method of the CellRenderer,
why is iText still drawing that extra border? We’ve already answered that question. We have made
the design decision to draw the borders at the level of the Table. The original drawBorder()method
in the CellRenderer class is empty. It doesn’t draw any borders. If we want to use a custom border,
we can either do what we’ve done in line 6 for every cell we create. The better solution would be to
add setBorder(Border.NO_BORDER); to every RoundedCornersCell constructor.

In the next example, we’ll add tables inside tables.

Nesting tables

Figure 5.11 shows two or four tables, depending on how you look at the screen shot. There are two
outer tables. Each of these tables has an inner table nested inside.

Figure 5.11: nested tables

Let’s examine the NestedTable⁸⁰ example. This is how the first table was created:

⁸⁰http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-5#2037-c05e07_nestedtable.java

http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-5#2037-c05e07_nestedtable.java
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-5#2037-c05e07_nestedtable.java

Chapter 5: Adding AbstractElement objects (part 2) 134

1 Table table = new Table(2);

2 table.setWidthPercent(80);

3 table.setHorizontalAlignment(HorizontalAlignment.CENTER);

4 table.addCell(new Cell(1, 2).add("Cell with colspan 2"));

5 table.addCell(new Cell().add("Cell with rowspan 1"));

6 Table inner = new Table(2);

7 inner.addCell("row 1; cell 1");

8 inner.addCell("row 1; cell 2");

9 inner.addCell("row 2; cell 1");

10 inner.addCell("row 2; cell 2");

11 table.addCell(inner);

We create a Table object named table. We add four Cell objects to this table, but one Cell object
is special. We created another Table object named inner and we added this table to the outer table
table using the addCell() method. If we look at figure 5.11, we see that there’s a padding between
the border of the fourth cell and the border of the inner table. That’s the default padding of 2 user
units.

The second table was created in almost the exact same way as the first table. The main difference
can be found in the last line.

1 table.addCell(new Cell().add(inner).setPadding(0));

Instead of adding the nested table straight to the table object, we now create a Cell object to which
we add the inner table. We set the padding of this cell to 0. Now it looks as if the cell with content
"Cell with rowspan 1" has a rowspan of 2. This isn’t the case. We have mimicked a rowspan of 2
by using a nested table.

If you look closely at the screen shot, you may see why you should avoid using nested
tables. Common sense tells us that nesting tables has a negative impact on the performance
of an application, but there’s another reason why you might want to avoid using them in
the context of iText. As mentioned before, all cell borders are drawn at the Table level. In
this case, the border of the cell containing the nested table is drawn by the TableRenderer
of the outer table table. The border of the cells of the nested table are drawn by the
TableRenderer of the inner table inner. This results in overlapping lines, which may cause
an undesired effect. In some PDF viewers, the width of the overlapping lines may seem to
be wider than the width of each separate line.

Now let’s switch to some examples that are less artificial. Let’s convert our CSV file to a Table and
render it to PDF.

Chapter 5: Adding AbstractElement objects (part 2) 135

Repeating headers and footers

In chapter 3, we used Tab elements to render a database containing movies and videos based on
Stevenson’s story about Dr. Jekyll andMr. Hyde in a tabular structure. Although this workedwell, we
experienced some disadvantages, for instance when the content didn’t fit the space we had allocated.
It’s a much better idea to use a Table for this kind of work. Figure 5.12 shows how we introduced
a repeating header with the column names and a repeating footer that reads “Continued on next
page…” when the table doesn’t fit the current page.

Chapter 5: Adding AbstractElement objects (part 2) 136

Figure 5.12: repeating headers and footers

The JekyllHydeTableV1⁸¹ example shows how it’s done.

⁸¹http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-5#2038-c05e08_jekyllhydetablev1.java

http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-5#2038-c05e08_jekyllhydetablev1.java
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-5#2038-c05e08_jekyllhydetablev1.java

Chapter 5: Adding AbstractElement objects (part 2) 137

1 Table table = new Table(new float[]{3, 2, 14, 9, 4, 3});

2 table.setWidthPercent(100);

3 List<List<String>> resultSet = CsvTo2DList.convert(SRC, "|");

4 List<String> header = resultSet.remove(0);

5 for (String field : header) {

6 table.addHeaderCell(field);

7 }

8 Cell cell = new Cell(1, 6).add("Continued on next page...");

9 table.addFooterCell(cell)

10 .setSkipLastFooter(true);

11 for (List<String> record : resultSet) {

12 for (String field : record) {

13 table.addCell(field);

14 }

15 }

16 document.add(table);

We get our data from a CSV file (line 3) and we get the line containing the header information (line
4). Instead of using addCell(), we add each field in that line using the addHeaderCell() method.
This marks these cell as header cells: they will be repeated at the top of the page every time a new
page is started.

We also create footer cell that spans the six columns (line 8). We make this cell a footer cell by using
the addFooterCell()method (line 9). We also instruct the table to skip the last footer (line 10). This
way, the cell won’t appear as a footer after the last row of the table. This is shown in figure 5.13.

Chapter 5: Adding AbstractElement objects (part 2) 138

Figure 5.13: repeating headers and footers

There is also a way to skip the first header. See figure 5.14.

Chapter 5: Adding AbstractElement objects (part 2) 139

Figure 5.14: repeating headers

In this case, we had to use nested tables, because we have two types of headers. We have a header
that needs to be skipped on the first page. We also have a header that needs to appear on every page.
The JekyllHydeTableV2⁸² example shows how it’s done.

⁸²http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-5#2039-c05e09_jekyllhydetablev2.java

http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-5#2039-c05e09_jekyllhydetablev2.java
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-5#2039-c05e09_jekyllhydetablev2.java

Chapter 5: Adding AbstractElement objects (part 2) 140

1 Table table = new Table(new float[]{3, 2, 14, 9, 4, 3});

2 table.setWidthPercent(100);

3 List<List<String>> resultSet = CsvTo2DList.convert(SRC, "|");

4 List<String> header = resultSet.remove(0);

5 for (String field : header) {

6 table.addHeaderCell(field);

7 }

8 for (List<String> record : resultSet) {

9 for (String field : record) {

10 table.addCell(field);

11 }

12 }

13 Table outerTable = new Table(1)

14 .addHeaderCell("Continued from previous page:")

15 .setSkipFirstHeader(true)

16 .addCell(new Cell().add(table).setPadding(0));

17 document.add(outerTable);

Lines 1-12 should have no secrets to us. In lines 13-16, we use what we’ve learned when we discussed
nested tables to create an outer table with a second header. We use the setSkipFirstHeader()

method to make sure that header doesn’t appear on the first page, only on subsequent pages.

Images in tables

Figure 5.15 demonstrates that we can also add images to a table. We can even make them scale so
that they fit the width of the cell.

Chapter 5: Adding AbstractElement objects (part 2) 141

Figure 5.15: images in tables

That’s done in the JekyllHydeTableV3⁸³ example.

1 Table table = new Table(new float[]{3, 2, 14, 9, 4, 3});

2 table.setWidthPercent(100);

3 List<List<String>> resultSet = CsvTo2DList.convert(SRC, "|");

4 List<String> header = resultSet.remove(0);

5 for (String field : header) {

6 table.addHeaderCell(field);

7 }

8 Cell cell;

9 for (List<String> record : resultSet) {

10 cell = new Cell();

⁸³http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-5#2040-c05e10_jekyllhydetablev3.java

http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-5#2040-c05e10_jekyllhydetablev3.java
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-5#2040-c05e10_jekyllhydetablev3.java

Chapter 5: Adding AbstractElement objects (part 2) 142

11 File file = new File(String.format(

12 "src/main/resources/img/%s.jpg", record.get(0)));

13 if (file.exists()) {

14 Image img = new Image(ImageDataFactory.create(file.getPath()));

15 img.setAutoScaleWidth(true);

16 cell.add(img);

17 }

18 else {

19 cell.add(record.get(0));

20 }

21 table.addCell(cell);

22 table.addCell(record.get(1));

23 table.addCell(record.get(2));

24 table.addCell(record.get(3));

25 table.addCell(record.get(4));

26 table.addCell(record.get(5));

27 }

28 document.add(table);

We can add the image to a Cell using the add() method –the same way we’ve added content to a
Cell before. We use the setAutoScaleWidth() method to tell the image that it should try to scale
itself to fit the width of its container, in this case the Cell to which it is added.

There’s also a setAutoScaleHeight()method if youwant the images to scale automatically
depending on the available height, and a setAutoScale()method to scale the image based
on the width and the height.

Not scaling images can result in ugly tables; when the images are too large for the cell, they will
take up space from the adjacent cells.

Splitting cells versus keeping content together

We’re not using any images in figure 5.16. The second column just contains information that consists
of different Paragraph objects added to a Cell.

Chapter 5: Adding AbstractElement objects (part 2) 143

Figure 5.16: splitting cell that don’t fit the page

When the content doesn’t fit the page, the cell is split. The production year and title are on one
page, the director and the country the movie was produced in on the other page. This is the default
behavior when you write your code as done in the JekyllHydeTabV4⁸⁴ example.

⁸⁴http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-5#2041-c05e11_jekyllhydetablev4.java

http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-5#2041-c05e11_jekyllhydetablev4.java
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-5#2041-c05e11_jekyllhydetablev4.java

Chapter 5: Adding AbstractElement objects (part 2) 144

1 Table table = new Table(new float[]{3, 32});

2 table.setWidthPercent(100);

3 List<List<String>> resultSet = CsvTo2DList.convert(SRC, "|");

4 resultSet.remove(0);

5 table.addHeaderCell("imdb")

6 .addHeaderCell("Information about the movie");

7 Cell cell;

8 for (List<String> record : resultSet) {

9 table.addCell(record.get(0));

10 cell = new Cell()

11 .add(new Paragraph(record.get(1)))

12 .add(new Paragraph(record.get(2)))

13 .add(new Paragraph(record.get(3)))

14 .add(new Paragraph(record.get(4)))

15 .add(new Paragraph(record.get(5)));

16 table.addCell(cell);

17 }

18 document.add(table);

You may want iText to do an effort to keep the content of a cell together on one page (if possible).

Chapter 5: Adding AbstractElement objects (part 2) 145

Figure 5.17: keeping cell content together

The PDF in the screen shot of figure 5.17 was created using the JekyllHydeTableV5⁸⁵ example. There’s
only one difference with the previous example. We’ve added the following line of code after line 15:

1 cell.setKeepTogether(true);

The setKeepTogether() method is defined at the BlockElement level. We’ve used that method
before in the previous chapter. Note that the setKeepWithNext() can’t be used in this context,
because we’re not adding the Cell object directly to the Document.

⁸⁵http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-5#2042-c05e12_jekyllhydetablev5.java

http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-5#2042-c05e12_jekyllhydetablev5.java
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-5#2042-c05e12_jekyllhydetablev5.java

Chapter 5: Adding AbstractElement objects (part 2) 146

Table and cell renderers

Let’s make some more renderer methods. We’ve already created a custom CellRenderer to add
rounded corners. In figure 5.18, we’re introducing a TableRenderer to display alternate backgrounds
for the rows.

Figure 5.18: creating alternate backgrounds using a TableRenderer

Let’s take a look at the JekyllHydeTableV6⁸⁶ example to see what this custom TableRenderer looks

⁸⁶http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-5#2043-c05e13_jekyllhydetablev6.java

http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-5#2043-c05e13_jekyllhydetablev6.java
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-5#2043-c05e13_jekyllhydetablev6.java

Chapter 5: Adding AbstractElement objects (part 2) 147

like.

1 class AlternatingBackgroundTableRenderer extends TableRenderer {

2 private boolean isOdd = true;

3 public AlternatingBackgroundTableRenderer(

4 Table modelElement, Table.RowRange rowRange) {

5 super(modelElement, rowRange);

6 }

7 public AlternatingBackgroundTableRenderer(Table modelElement) {

8 super(modelElement);

9 }

10 @Override

11 public AlternatingBackgroundTableRenderer getNextRenderer() {

12 return new AlternatingBackgroundTableRenderer(

13 (Table) modelElement);

14 }

15 @Override

16 public void draw(DrawContext drawContext) {

17 for (int i = 0;

18 i < rows.size() && null != rows.get(i) && null != rows.get(i)[0];

19 i++) {

20 CellRenderer[] renderers = rows.get(i);

21 Rectangle leftCell =

22 renderers[0].getOccupiedAreaBBox();

23 Rectangle rightCell =

24 renderers[renderers.length - 1].getOccupiedAreaBBox();

25 Rectangle rect = new Rectangle(

26 leftCell.getLeft(), leftCell.getBottom(),

27 rightCell.getRight() - leftCell.getLeft(),

28 leftCell.getHeight());

29 PdfCanvas canvas = drawContext.getCanvas();

30 canvas.saveState();

31 if (isOdd) {

32 canvas.setFillColor(Color.LIGHT_GRAY);

33 isOdd = false;

34 } else {

35 canvas.setFillColor(Color.YELLOW);

36 isOdd = true;

37 }

38 canvas.rectangle(rect);

39 canvas.fill();

40 canvas.restoreState();

41 }

Chapter 5: Adding AbstractElement objects (part 2) 148

42 super.draw(drawContext);

43 }

44 }

We create constructors that are similar to the TableRenderer constructors (line 3-9), and we override
the getNextRenderer() method so that it returns an AlternatingBackgroundTableRenderer (line
10-14). We introduce a boolean variable named isOdd to keep track of the rows (line 2).

The draw() method is where we do our magic (line 15-43). We loop over the rows (line 17-19), and
we get the CellRenderer instances of all the cells in each row (line 20). We get the renderer of the
left cell and the right cell in each row (line 21-24), and we use those renderers to determine the
coordinates of the row (line 25-28). We draw the Rectangle based on those coordinates in a color
that depends on the alternating value of the isOdd parameter (line 29-40).

In the next code snippet, we’ll create a table, andwe’ll declare the AlternatingBackgroundTableRen-
derer as the new renderer for that table.

1 Table table = new Table(new float[]{3, 2, 14, 9, 4, 3});

2 int nRows = resultSet.size();

3 table.setNextRenderer(new AlternatingBackgroundTableRenderer(

4 table, new Table.RowRange(0, nRows - 1)));

Note that we have to define the RowRange. We take the number of elements in our resultSet after
having removed the header row. That gives us the number of actual rows that we are going to add
to the table, and to which we want to apply an alternating background.

Figure 5.19 shows another type of background. The width of the “Title” column represents four
hours; the colored bar in the “Title” cells represents the run length of the video. For instance: if the
colored bar takes half of the width of the cell, the run length of the movie is half of four hours; that
is: two hours.

Chapter 5: Adding AbstractElement objects (part 2) 149

Figure 5.19: introducing visual information using a CellRenderer

These are the color codes we used:

• No background– we don’t know the run length of the movie,
• Green background– the movie is shorter than 90 minutes,
• Orange background– the movie is longer than 90 minutes, but shorter than 4 hours,
• Red background– the move is longer than 4 hours (e.g. it’s a series with many episodes). In
this case, we clip the length to 240 minutes.

Chapter 5: Adding AbstractElement objects (part 2) 150

The code for the custom CellRenderer to achieve this can be found in the JekyllHydeTable7⁸⁷
example.

1 private class RunlengthRenderer extends CellRenderer {

2 private int runlength;

3 public RunlengthRenderer(Cell modelElement, String duration) {

4 super(modelElement);

5 if (duration.trim().isEmpty()) runlength = 0;

6 else runlength = Integer.parseInt(duration);

7 }

8 @Override

9 public CellRenderer getNextRenderer() {

10 return new RunlengthRenderer(

11 getModelElement(), String.valueOf(runlength));

12 }

13 @Override

14 public void drawBackground(DrawContext drawContext) {

15 if (runlength == 0) return;

16 PdfCanvas canvas = drawContext.getCanvas();

17 canvas.saveState();

18 if (runlength < 90) {

19 canvas.setFillColor(Color.GREEN);

20 } else if (runlength > 240) {

21 runlength = 240;

22 canvas.setFillColor(Color.RED);

23 } else {

24 canvas.setFillColor(Color.ORANGE);

25 }

26 Rectangle rect = getOccupiedAreaBBox();

27 canvas.rectangle(rect.getLeft(), rect.getBottom(),

28 rect.getWidth() * runlength / 240, rect.getHeight());

29 canvas.fill();

30 canvas.restoreState();

31 super.drawBackground(drawContext);

32 }

33 }

Once more, we create a constructor (line 3-7) and we override the getNextRenderer() method
(line 8-12). We store the run length of the video in a runlength variable (line 2). We override
the drawBackground() method and we draw the background using the appropriate size and color
depending on the value of the runlength variable (line 13-32).

⁸⁷http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-5#2044-c05e14_jekyllhydetablev7.java

http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-5#2044-c05e14_jekyllhydetablev7.java
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-5#2044-c05e14_jekyllhydetablev7.java

Chapter 5: Adding AbstractElement objects (part 2) 151

We’ll conclude this example with a trick to keep the memory use low when creating and adding
tables to a document.

Tables and memory use

Figure 5.20 shows a table that spans 33 pages. It has three columns and a thousand rows.

Figure 5.20: working with large tables

Suppose that we would create a Table object consisting of 3 header cells, 3 footer cells, and
3,000 normal cells, before adding this Table to a document. That would mean that at some point,
we’d have 3,006 Cell objects in memory. That can easily lead to an OutOfMemoryException or an
OutOfMemoryError. We can avoid this by adding the the table to the document while we are still
adding content to the table. See the LargeTable⁸⁸ example.

⁸⁸http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-5#2825-c05e15_largetable.java

http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-5#2825-c05e15_largetable.java
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-5#2825-c05e15_largetable.java

Chapter 5: Adding AbstractElement objects (part 2) 152

1 Table table = new Table(3, true);

2 table.addHeaderCell("Table header 1");

3 table.addHeaderCell("Table header 2");

4 table.addHeaderCell("Table header 3");

5 table.addFooterCell("Table footer 1");

6 table.addFooterCell("Table footer 2");

7 table.addFooterCell("Table footer 3");

8 document.add(table);

9 for (int i = 0; i < 1000; i++) {

10 table.addCell(String.format("Row %s; column 1", i + 1));

11 table.addCell(String.format("Row %s; column 2", i + 1));

12 table.addCell(String.format("Row %s; column 3", i + 1));

13 if (i %50 == 0) {

14 table.flush();

15 }

16 }

17 table.complete();

The Table class implements the ILargeElement interface. This interface defines methods such as
setDocument(), isComplete() and flushContent() that are used internally by iText. When we use
the ILargeElement interface in our code, we only need to use the flush() and complete()method.

We start by creating a Table for which we set the value of the largeTable parameter to true (line
1). We add the Table object to the document before we’ve completed adding content (line 8). As we
marked the table as a large table, iText will use the setDocument() method internally so that the
table and the document know of each other’s existence. We add our 3,000 cells in a loop (line 9), but
we flush() the content every 50 rows (line 13-15). When we flush the content, we already render
part of the table. The Cell objects that were rendered are made available to the garbage collector
so that the memory used by those objects can be released. Once we’ve added all the cells, we use
the complete() method to write the remainder of the table that wasn’t rendered yet, including the
footer row.

This concludes the chapter about tables and cells.

Summary

In this chapter, we’ve experimented with tables and cells. We talked about the dimensions and the
alignment of tables, cells, and cell content. We learned about the difference between the margin and
the spacing of a cell. We changed the borders of tables and cells using predefined Border objects
and using a custom CellRenderer implementation. We nested tables, repeated headers and footers,
changed the way tables are split when they don’t fit a page. We extended the TableRenderer and
the CellRenderer class to implement special features that aren’t offered out-of-the-box. Finally, we
learned how to reduce the memory use when creating and adding a Table.

Chapter 5: Adding AbstractElement objects (part 2) 153

We could stop here, because we’ve now covered every building block, but we’ll add two more
chapters to discuss some extra functionality that is useful when creating PDF documents using
iText.

Chapter 6: Creating actions,
destinations, and bookmarks
When we discussed the Link building block in chapter 3, we created a URI action that opened a
web page on IMDB when we clicked the text rendered by the Link object. We briefly mentioned
that clickable areas are defined using Link annotations, and we referred to chapter 6 –this chapter–
when we explained that createURI() created only one of many types of actions. In the examples
that follow, we’ll discover some more types, and we’ll also learn about different types of destinations
that can be used in a link. Finally, we’ll also use those actions and destinations to create outlines,
better known as bookmarks.

URI actions

If you look at the AbstractAction class, you notice that it has a method named secAction(). When
you use this method on a building block, you can define actions that will be triggered when clicking
on its content. This is an alternative to using the Link object.

The setAction() method doesn’t make sense for every building block. For instance: you
can’t click an AreaBreak. Please consult the appendix to find out for which objects the
setAction() method can be used.

In figure 6.1, we see a PDF that is almost identical to the one we created in chapter 4 when we
rendered the entries in our CSV file to a PDF with a numbered list.

Chapter 6: Creating actions, destinations, and bookmarks 155

Figure 6.1: using setAction() on a ListItem

In the original example, we used a Link object so that you could jump to the corresponding IMDB
page when clicking the title. In the URIAction⁸⁹ example, we make the complete ListItem clickable.

1 List<List<String>> resultSet = CsvTo2DList.convert(SRC, "|");

2 resultSet.remove(0);

3 com.itextpdf.layout.element.List list =

4 new com.itextpdf.layout.element.List(ListNumberingType.DECIMAL);

5 for (List<String> record : resultSet) {

6 ListItem li = new ListItem();

7 li.setKeepTogether(true);

8 li.add(new Paragraph().setFontSize(14).add(record.get(2)))

9 .add(new Paragraph(String.format(

10 "Directed by %s (%s, %s)",

11 record.get(3), record.get(4), record.get(1))));

12 File file = new File(String.format(

13 "src/main/resources/img/%s.jpg", record.get(0)));

14 if (file.exists()) {

15 Image img = new Image(ImageDataFactory.create(file.getPath()));

16 img.scaleToFit(10000, 120);

17 li.add(img);

⁸⁹http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-6#2567-c06e01_uriaction.java

http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-6#2567-c06e01_uriaction.java
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-6#2567-c06e01_uriaction.java

Chapter 6: Creating actions, destinations, and bookmarks 156

18 }

19 String url = String.format(

20 "http://www.imdb.com/title/tt%s", record.get(0));

21 li.setAction(PdfAction.createURI(url));

22 list.add(li);

23 }

24 document.add(list);

In line 21, we create a URI action using a link to IMDB and we set the action for the complete list
item using the setAction() method.

Named actions

Figure 6.2 shows links that are added to the first and the last page of a similar document. The link
on the first page is marked “Go to last page”; the link on the last page is marked “Go to first page”,
and that’s exactly what the links do when you click them.

Figure 6.2: Named actions

We used named actions to achieve this; see the NamedAction⁹⁰ example.

⁹⁰http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-6#2568-c06e02_namedaction.java

http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-6#2568-c06e02_namedaction.java
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-6#2568-c06e02_namedaction.java

Chapter 6: Creating actions, destinations, and bookmarks 157

1 Paragraph p = new Paragraph()

2 .add("Go to last page")

3 .setAction(PdfAction.createNamed(PdfName.LastPage));

4 document.add(p);

5 p = new Paragraph()

6 .add("Go to first page")

7 .setAction(PdfAction.createNamed(PdfName.FirstPage));

8 document.add(p);

The createNamed() method accepts a PdfName as a parameter. You can use one of the following
values:

• PdfName.FirstPage– the action allows you to jump to the first page of the document.
• PdfName.PrevPage– the action allows you to jump to the previous page in the document.
• PdfName.NextPage– the action allows you to jump to the next page in the document.
• PdfName.LastPage– the action allows you to jump to the last page of the document.

You could create these names yourself, for instance new PdfName("PrevPage"), but it’s always better
to use the names that are predefined in the PdfName class.

iText won’t check if you pass a parameter that corresponds to one of these four values,
because a PDF viewer may support additional, non-standard named actions. However, any
document using such a non-standard action isn’t portable.

These named actions allow us to navigate through a document, but they are rather limited, aren’t
they? If we want to create a table of contents that allows us to jump to a specific page, we need a
GoTo action.

GoTo actions

Figure 6.3 shows the table of contents of the Jekyll and Hyde story. If we’d click on a line, we’d jump
to the corresponding page.

Chapter 6: Creating actions, destinations, and bookmarks 158

Figure 6.3: A clickable table of contents

To achieve this, we keep track of the titles and the page numbers on which these titles appear. The
TOC_GoToPage⁹¹ example shows how.

1 BufferedReader br = new BufferedReader(new FileReader(SRC));

2 String name, line;

3 Paragraph p;

4 boolean title = true;

5 int counter = 0;

6 List<SimpleEntry<String, Integer>> toc = new ArrayList<>();

7 while ((line = br.readLine()) != null) {

8 p = new Paragraph(line);

9 p.setKeepTogether(true);

10 if (title) {

11 name = String.format("title%02d", counter++);

12 p.setFont(bold).setFontSize(12)

13 .setKeepWithNext(true)

14 .setDestination(name);

15 title = false;

⁹¹http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-6#2569-c06e03_toc_gotopage.java

http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-6#2569-c06e03_toc_gotopage.java
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-6#2569-c06e03_toc_gotopage.java

Chapter 6: Creating actions, destinations, and bookmarks 159

16 document.add(p);

17 toc.add(new SimpleEntry(line, pdf.getNumberOfPages()));

18 }

19 else {

20 p.setFirstLineIndent(36);

21 if (line.isEmpty()) {

22 p.setMarginBottom(12);

23 title = true;

24 }

25 else {

26 p.setMarginBottom(0);

27 }

28 document.add(p);

29 }

30 }

31 document.add(new AreaBreak(AreaBreakType.NEXT_PAGE));

32 p = new Paragraph().setFont(bold).add("Table of Contents");

33 document.add(p);

34 toc.remove(0);

35 List<TabStop> tabstops = new ArrayList();

36 tabstops.add(new TabStop(580, TabAlignment.RIGHT, new DottedLine()));

37 for (SimpleEntry<String, Integer> entry : toc) {

38 p = new Paragraph()

39 .addTabStops(tabstops)

40 .add(entry.getKey())

41 .add(new Tab())

42 .add(String.valueOf(entry.getValue()))

43 .setAction(PdfAction.createGoTo(

44 PdfExplicitDestination.createFit(entry.getValue())));

45 document.add(p);

46 }

Most of the code repeats what we’ve done before to render the TXT file to a PDF, but these are the
new lines that interest us the most:

• Line 6: we create an ArrayList named toc that will contain a series of SimpleEntry key-value
pair entries. The key is a String we’ll use for the title. They value is an Integer we’ll use for
the page number.

• Line 17: each time we add a title to the document (line 10-19), we add a new SimpleEntry to
the toc list. We get the current page number using the getNumberOfPage() method.

• Line 31-33: once the full text is added, we go to a new page. We add a Paragraph saying "Table
of Contents".

Chapter 6: Creating actions, destinations, and bookmarks 160

• Line 34: we remove the first entry of the list, because that’s the title of the book, not the title
of a chapter.

• Line 35-36: we create a list of TabStop elements. We use a DottedLine as the tab leader.
• Line 37-46: we loop over all the entries in our toc. We use the key of each entry as well as the
corresponding value to construct a Paragraph with the title and the page number as content.
We also use the page number to create a GoTo action that jumps to that specific page.

In line 43, we use the createGoTo()method with a PdfExplicitDestination object as a parameter.
The PdfExplicitDestination class extends the PdfDestination class. We’ll take a closer look at
these classes later on in this chapter.What’s more important right now, is that there are two problems
with this example, one problem is worse than the other.

1. The link jumps to another page in the document and shows this page in full. A more
elegant solution would be to jump to the start of the actual title. We could use a different
PdfExplicitDestination to achieve this (for instance createFitH() instead of createFit()).

2. The link doesn’t always jump to the correct page. We store the page number of the last page
in the document at the moment we add the title. That’s the page number of the current page.
However, we’re also using the setKeepWithNext()method. This method forwards the title to
a new page if the first paragraph of the chapter doesn’t fit the current page. In that case, our
TOC points at the wrong page, more specifically at the page just before the one we need.

We’ll fix these two problems in the next example. Instead of an explicit destination, we’ll use named
destinations for a change.

Named destinations

Figure 6.4 looks almost identical to figure 6.3. The fact that the page numbers are now correct is the
only visible difference.

Chapter 6: Creating actions, destinations, and bookmarks 161

Figure 6.4: A clickable table of contents

The other difference is that we now used named destinations. We create those destinations by using
the setDestination() method. This method is defined in the ElementPropertyContainer and can
be used on many building blocks (see appendix). In the TOC_GoToNamed⁹² example, we use it on
a Paragraph.

1 BufferedReader br = new BufferedReader(new FileReader(SRC));

2 String name, line;

3 Paragraph p;

4 boolean title = true;

5 int counter = 0;

6 List<SimpleEntry<String,SimpleEntry<String, Integer>>> toc = new ArrayList<>();

7 while ((line = br.readLine()) != null) {

8 p = new Paragraph(line);

9 p.setKeepTogether(true);

10 if (title) {

11 name = String.format("title%02d", counter++);

12 SimpleEntry<String, Integer> titlePage

13 = new SimpleEntry(line, pdf.getNumberOfPages());

⁹²http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-6#2570-c06e04_toc_gotonamed.java

http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-6#2570-c06e04_toc_gotonamed.java
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-6#2570-c06e04_toc_gotonamed.java

Chapter 6: Creating actions, destinations, and bookmarks 162

14 p.setFont(bold).setFontSize(12)

15 .setKeepWithNext(true)

16 .setDestination(name)

17 .setNextRenderer(new UpdatePageRenderer(p, titlePage));

18 title = false;

19 document.add(p);

20 toc.add(new SimpleEntry(name, titlePage));

21 }

22 else {

23 p.setFirstLineIndent(36);

24 if (line.isEmpty()) {

25 p.setMarginBottom(12);

26 title = true;

27 }

28 else {

29 p.setMarginBottom(0);

30 }

31 document.add(p);

32 }

33 }

34 document.add(new AreaBreak(AreaBreakType.NEXT_PAGE));

35 p = new Paragraph().setFont(bold)

36 .add("Table of Contents").setDestination("toc");

37 document.add(p);

38 toc.remove(0);

39 List<TabStop> tabstops = new ArrayList();

40 tabstops.add(new TabStop(580, TabAlignment.RIGHT, new DottedLine()));

41 for (SimpleEntry<String, SimpleEntry<String, Integer>> entry : toc) {

42 SimpleEntry<String, Integer> text = entry.getValue();

43 p = new Paragraph()

44 .addTabStops(tabstops)

45 .add(text.getKey())

46 .add(new Tab())

47 .add(String.valueOf(text.getValue()))

48 .setAction(PdfAction.createGoTo(entry.getKey()));

49 document.add(p);

50 }

Let’s examine what is so different about this example when compared to the previous one.

• Line 6: we create an ArrayList named toc that will contain a series of SimpleEntry key-value
pair entries. The key is a String that we’ll use for a unique name. The value is no longer a

Chapter 6: Creating actions, destinations, and bookmarks 163

page number, but another SimpleEntry. The key of this second key-value pair will be the title
of the chapter; the value will be the corresponding page number.

• Line 11: we create a unique name for every title: title00, title01, title03, and so on.
• Line 12-13: we create a SimpleEntry named titlePage using the title as a key and the current
page number as the value. We know that this page number will be wrong in some cases. We
will use a custom ParagraphRenderer to update the page number.

• Line 16: we use the unique name as a destination for the Paragraph using the setDestina-

tion() method.
• Line 17: we create an UpdatePageRenderer that will serve as the renderer for the title
paragraph. We pass the titlePage entry as a parameter so that the renderer can update the
page number.

• Line 20: we add a new SimpleEntry instance to the toc object. This entry contains the unique
name and another entry with the title and the page number.

• Line 34-37: once the full text is added, we go to a new page. We add a Paragraph saying "Table
of Contents". Note that we define a destination named "toc" for that paragraph (line 36).

• Line 38: we remove the first entry of the list, because that’s the title of the book, not the title
of a chapter.

• Line 39-40: we create a list of TabStop elements. We use a DottedLine as the tab leader.
• Line 41-50: we loop over all the entries in our toc. We get the value of each entry (line 42)
to construct the content of each line in the table of contents: the title (line 45) and the page
number (line 47). We make the line clickable by adding a GoTo action that jumps to a location
in the document based on a name.

Summarized: we mark a building block using a unique name. Internally, iText will map that name
with a specific position –aka an explicit destination– in the document. Because of this, you can use
the createGoTo()method passing that name as a parameter to create a link to that specific building
block. We will even be able to use that name outside of the PDF document, but let’s take a look at
the UpdatePageRenderer before we do so.

1 protected class UpdatePageRenderer extends ParagraphRenderer {

2 protected SimpleEntry<String, Integer> entry;

3 public UpdatePageRenderer(

4 Paragraph modelElement, SimpleEntry<String, Integer> entry) {

5 super(modelElement);

6 this.entry = entry;

7 }

8 @Override

9 public LayoutResult layout(LayoutContext layoutContext) {

10 LayoutResult result = super.layout(layoutContext);

11 entry.setValue(layoutContext.getArea().getPageNumber());

12 return result;

Chapter 6: Creating actions, destinations, and bookmarks 164

13 }

14 }

The entry object contains a title and a page number. That page number could be wrong if the title
is moved to the next page. We can only know if that happens when the title paragraph is rendered.
Only at that moment, a layout decision will be made. The easiest way to update the page number
in the entry object, is to override the layout() method as is done in line 11.

Remote GoTo actions

Figure 6.5 is a PDF with two links marked in blue. When we click on the first link, the PDF we
created in the previous example is opened on the first page in a new viewer window. When we
click on the second link, the same document is opened on the table of contents page in the current
window, replacing the document with the two links.

Figure 6.5: Links to named destinations in another PDF document

We use two Link objects to achieve this in the RemoteGoto⁹³ example.

1 Link link1 = new Link("Strange Case of Dr. Jekyll and Mr. Hyde",

2 PdfAction.createGoToR(

3 new File(TOC_GoToNamed.DEST).getName(), 1, true));

4 Link link2 = new Link("table of contents",

5 PdfAction.createGoToR(

6 new File(TOC_GoToNamed.DEST).getName(), "toc", false));

7 Paragraph p = new Paragraph()

8 .add("Read the amazing horror story ")

9 .add(link1.setFontColor(Color.BLUE))

10 .add(" or, if you're too afraid to start reading the story, read the ")

11 .add(link2.setFontColor(Color.BLUE))

⁹³http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-6#2571-c06e05_remotegoto.java

http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-6#2571-c06e05_remotegoto.java
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-6#2571-c06e05_remotegoto.java

Chapter 6: Creating actions, destinations, and bookmarks 165

12 .add(".");

13 document.add(p);

In line 2 and 3, we use the createGoToR() method to create a link to a remote PDF document.

• The first parameter is the name of the file we created in the previous example. We expect it
to be in the same directory as the file we refer from.

• The second parameter is the page number; we want the link to jump to the first page.
• The third parameter indicates that we want to open the document in a new PDF viewer
window.

In line 5 and 6, we use another createGoToR() method to create a link to a named destination in
another document.

• The first parameter is the name of the file we created in the previous example.
• The second parameter is the name we used when we added the paragraph "Table of

Contents".
• The third parameter indicates that we want to open the document in the current PDF viewer
window.

There are many other variations of the createGoToR()method, but they are all similar to one of the
two methods that were just explained.

How can I create a link that opens a PDF in a new
browser window or tab?
There’s a short answer to this question: you can’t open a PDF in a new browser window
using PDF syntax.

It is a common misconception that the boolean parameter indicating whether or not the
PDF should be opened in the current window or in a new window, can also be used in
the context of a browser. This isn’t the case. There is a clear separation between the PDF
viewer and the browser. The PDF viewer is usually a closed container that doesn’t have
access to the browser functionality. You shouldn’t expect the PDF syntax to have the same
capabilities as HTML. Those are two separate technologies.

Talking about HTML: you can use JavaScript in a PDF file that is very similar to the JavaScript you’d
use in HTML. Many methods, such as methods that communicate with a server, are restricted, but
you also have some extra methods that are specific to PDF. For instance: the JavaScript inside a PDF
file has access to an app object that offers some functionality to communicate with the PDF viewer.

Chapter 6: Creating actions, destinations, and bookmarks 166

JavaScript actions

We won’t go into detail regarding the JavaScript functionality in PDF, but we’ll create a simple PDF
that shows an alert when you click a link; see figure 6.6.

Figure 6.6: A PDF with a JavaScript action

We create the Link that allows us to trigger this alert in the JavaScript⁹⁴ example.

1 Link link = new Link("here",

2 PdfAction.createJavaScript("app.alert('Boo!');"));

3 Paragraph p = new Paragraph()

4 .add("Click ")

5 .add(link.setFontColor(Color.BLUE))

6 .add(" if you want to be scared.");

7 document.add(p);

In the next example, we’ll use the same action, and we’ll make it follow by another action.

Chained actions

We’ve already used several create() convenience methods in the PdfAction class; we’ve ex-
perimented with createURI(), createGoTo(), createGoToR() and so on. If you consult the API
documentation for the PdfAction⁹⁵ class, you’ll find many more, such as createGoToE() to go to an
embedded PDF file, createLaunch() to launch an application. All of these other methods are out of
scope in the context of this tutorial, but we’ll look at one more action example, the ChainedActions⁹⁶
example. It explains how to chain actions.

⁹⁴http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-6#2572-c06e06_javascript.java
⁹⁵http://itextsupport.com/apidocs/itext7/latest/com/itextpdf/kernel/pdf/action/PdfAction.html
⁹⁶http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-6#2573-c06e07_chainedactions.java

http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-6#2572-c06e06_javascript.java
http://itextsupport.com/apidocs/itext7/latest/com/itextpdf/kernel/pdf/action/PdfAction.html
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-6#2573-c06e07_chainedactions.java
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-6#2572-c06e06_javascript.java
http://itextsupport.com/apidocs/itext7/latest/com/itextpdf/kernel/pdf/action/PdfAction.html
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-6#2573-c06e07_chainedactions.java

Chapter 6: Creating actions, destinations, and bookmarks 167

1 PdfAction action = PdfAction.createJavaScript("app.alert('Boo');");

2 action.next(PdfAction.createGoToR(

3 new File(C06E04_TOC_GoToNamed.DEST).getName(), 1, true));

4 Link link = new Link("here", action);

5 Paragraph p = new Paragraph()

6 .add("Click ")

7 .add(link.setFontColor(Color.BLUE))

8 .add(" if you want to be scared.");

9 document.add(p);

In line 1, we create the same JavaScript action as in the previous example. We chain a remote GoTo
action to this JavaScript action using the next() method in line 2. Now when we click the word
"here", a Boo alert will be triggered first; then another PDF will open in a new window.

The createSubmitForm()method is one of themany PdfActionmethods we didn’t discuss.
We mention it here because of a common use case for the next()method. It is not unusual
to validate fields that were filled in manually before submitting a form. This validation
could be done using JavaScript. The submit action could be the last action in a validation
chain.

While we were talking about actions, we mentioned the concept of destinations a couple of times.
We also explained that links are actually annotations. In the next couple of examples, we’ll spend
some more time on these concepts.

Destinations

The PdfDestination class is the abstract superclass of the PdfExplicitDestination, the Pdf-

StringDestination, and the PdfNamedDestination class. The PdfExplicitDestination class can
be used to create a destination to a specific page, using specific coordinates if needed. PdfStringDes-
tination and PdfNamedDestination can be used to create a named destination.

Chapter 6: Creating actions, destinations, and bookmarks 168

What’s the difference between PdfStringDestination
and PdfNamedDestination?
That’s a great question, but the answer might require being read more than once.
Both PdfStringDestination and PdfNamedDestination can be used to create a named
destination, but:

• Whenwe use the PdfNamedDestination class, the namewill be stored inside the PDF
document as a PDF name object. This is how named destinations were originally
stored in PDF 1.1.

• When we use the PdfStringDestination class, the name will be stored as a PDF
string object. This was introduced in PDF 1.2, because a PDF string object offers
more possibilities than a name object.

Today, the name of a named destination should be stored as a PDF string, not as a PDF
name. The PdfNamedDestination class is offered should you need it, but it is recommended
that you use the PdfStringDestination class.

Using a PDF string as name is also the default way used by iTextwhen you use the setDestination()
method. We’ll discover another way to create named destinations once we discuss bookmarks, but
first, we’ll create a couple of explicit destinations in the ExplicitDestinations⁹⁷ example.

1 PdfDestination jekyll =

2 PdfExplicitDestination.createFitH(1, 416);

3 PdfDestination hyde =

4 PdfExplicitDestination.createXYZ(1, 150, 516, 2);

5 PdfDestination jekyll2 =

6 PdfExplicitDestination.createFitR(2, 50, 380, 130, 440);

7 document.add(new Paragraph()

8 .add(new Link("Link to Dr. Jekyll", jekyll)));

9 document.add(new Paragraph()

10 .add(new Link("Link to Mr. Hyde", hyde)));

11 document.add(new Paragraph()

12 .add(new Link("Link to Dr. Jekyll on page 2", jekyll2)));

13 document.add(new Paragraph()

14 .setFixedPosition(50, 400, 80)

15 .add("Dr. Jekyll"));

16 document.add(new Paragraph()

17 .setFixedPosition(150, 500, 80)

18 .add("Mr. Hyde"));

19 document.add(new AreaBreak(AreaBreakType.NEXT_PAGE));

⁹⁷http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-6#2574-c06e08_explicitdestinations.java

http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-6#2574-c06e08_explicitdestinations.java
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-6#2574-c06e08_explicitdestinations.java

Chapter 6: Creating actions, destinations, and bookmarks 169

20 document.add(new Paragraph()

21 .setFixedPosition(50, 400, 80)

22 .add("Dr. Jekyll on page 2"));

We create three different types of explicit destinations:

• Line 1-2: an explicit destination that will go to page 1, and fit that page horizontally at
coordinate y = 416.

• Line 3-4: an explicit destination that will go to page 1, so that the top-left corner has the
coordinate x = 150; y = 516 and the zoom factor is set to 200%.

• Line 5-6: an explicit destination that will go to page 2, so that at least a rectangle is visible
with x = 50; y = 380 as the coordinate of the lower-left corner and x = 130; y = 440 as
the coordinate of the upper-right corner.

These links are added in lines 7-8, 9-10, and 11-12 respectively. We also add some text that marks
the destinations:

• Line 13-15: some text at coordinate x = 50; y = 400 which is right below the first explicit
destination.

• Line 16-18: some text at coordinate x = 150; y = 500, which puts it in the top-left corner of
the visible area when we go to the second explicit destination.

• Line 20-22: some text on the second page at coordinate x = 50; y = 400, which makes it fit
inside the rectangle defined in the third explicit destination.

We’ve used three different methods to create an explicit destination. The following table lists all
the methods that are available to create an explicit destination. The first parameter is always an int

referring to a page number, or a PdfPage instance. The other parameters, if any, are all of type float.

Method Parameters Description

createFit() - The page is displayed with its
contents magnified just enough to
fit the document window, both
horizontally and vertically.

createFitB() - The page is displayed magnified
just enough to fit the bounding
box of the contents (the smallest
rectangle enclosing all of its
contents).

Chapter 6: Creating actions, destinations, and bookmarks 170

Method Parameters Description

createFitH() top The page is displayed so that the
page fits within the document
window horizontally (the entire
width of the page is visible). The
extra parameter specifies the
vertical coordinate of the top edge
of the page.

createFitBH() top This option is almost identical to
createFitH(), but the with of the
bounding box of the page is
visible. This isn’t necessarily the
entire width of the page.

createFitV() left The page is displayed so that the
page fits within the document
window vertically (the entire
height of the page is visible). The
extra parameter specifies the
horizontal coordinate of the left
edge of the page.

createFitBV() left This option is almost identical to
createFitV(), but the height of
the bounding box of the page is
visible. This isn’t necessarily the
entire height of the page.

createXYZ() left, top, zoom The left parameter defines an x

coordinate; top defines a y
coordinate; and zoom defines a
zoom factor. If you want to keep
the current x coordinate, the
current y coordinate, or zoom
factor, you can pass negative
values or 0 for the corresponding
parameter.

createFitR() left, bottom, right, top The parameters define a rectangle.
The page is displayed with its
contents magnified just enough to
fit this rectangle. If the required
zoom factors for the horizontal
and the vertical magnification are
different, the smaller of the two is
used.

Chapter 6: Creating actions, destinations, and bookmarks 171

So far, we’ve created Link objects either by passing a PdfAction object as a parameter, or a
PdfDestination. Both these methods create a PdfLinkAnnotation. We could have created that
PdfLinkAnnotation ourselves and we could have passed that annotation as a parameter. This allows
us to add some extra flavor to the link.

Link annotations

There are two links in the document shown in figure 6.7. One is underlined; the other is marked by
a rectangle.

Figure 6.7: Link annotations

This line and rectangle shown in this screen shot are not part of the actual content of the PDF
document. They weren’t drawn using a sequence of moveTo(), lineTo(), and stroke() methods.
They are part of the link annotation, and they are drawn by the PDF viewer that renders annotations
on top of the existing content.

Also, when you would click the annotation, you would see a specific behavior. When clicking the
first link, the colors would be inverted. When clicking the second link, you’d have a push-down
effect. See the Annotation⁹⁸ example.

⁹⁸http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-6#2575-c06e09_annotation.java

http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-6#2575-c06e09_annotation.java
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-6#2575-c06e09_annotation.java

Chapter 6: Creating actions, destinations, and bookmarks 172

1 PdfAction js = PdfAction.createJavaScript("app.alert('Boo!');");

2 PdfAnnotation la1 = new PdfLinkAnnotation(new Rectangle(0, 0, 0, 0))

3 .setHighlightMode(PdfAnnotation.HIGHLIGHT_INVERT)

4 .setAction(js).setBorderStyle(PdfAnnotation.STYLE_UNDERLINE);

5 Link link1 = new Link("here", (PdfLinkAnnotation)la1);

6 document.add(new Paragraph()

7 .add("Click ")

8 .add(link1)

9 .add(" if you want to be scared."));

10 PdfAnnotation la2 = new PdfLinkAnnotation(new Rectangle(0, 0, 0, 0))

11 .setDestination(PdfExplicitDestination.createFit(2))

12 .setHighlightMode(PdfAnnotation.HIGHLIGHT_PUSH)

13 .setBorderStyle(PdfAnnotation.STYLE_INSET);

14 Link link2 = new Link("next page", (PdfLinkAnnotation)la2);

15 document.add(new Paragraph()

16 .add("Go to the ")

17 .add(link2)

18 .add(" if you're too scared."));

We recognize the two links:

• We create a JavaScript action in line 1. We use this object as an action for the PdfLinkAnnota-
tion we create in line 2. In line 2, we set the highlight mode to HIGHLIGHT_INVERT. This will
invert the colors when we click the link. In line 4, we set the border style to STYLE_UNDERLINE.
We use the PdfLinkAnnotation to create a Link object in line 5. We add a Paragraph with
this link in lines 6 to 9.

• We create another PdfLinkAnnotation in line 10. This time we set a destination; see line 11.
In line 12, we set the highlight mode to HIGHLIGHT_PUSH to get a push-down effect when we
click the link. In line 13, we set the border style to STYLE_INSET. We create a Link with this
PdfLinkAnnotation in line 14. We add another Paragraph in lines 15 to 18.

We could write a complete tutorial about annotations –and we will–, but whatever will be written
in that tutorial is out of scope in this tutorial. We’ll finish this chapter with a couple of bookmarks
examples.

Outlines aka bookmarks

We’ve already created a couple of documents that contained a table of contents. This table of contents
was added as an extra page, listing the different chapters and the corresponding page numbers.When
we clicked a line in this table of contents, we jumped to the corresponding chapter. In figure 6.8, we
see a table of contents of a different nature. It’s a table of contents that isn’t printed when we print

Chapter 6: Creating actions, destinations, and bookmarks 173

the document. We only see it when we open the bookmarks panel in our PDF viewer, and we can
use it to easily navigate the document by collapsing items in a tree structure.

Figure 6.8: Bookmarks using named destinations

This tree structure is called an outline tree. Each branch and leaf of this tree is an outline object.
In iText, we create these objects using the PdfOutline class. In the TOC_OutlinesNames⁹⁹ example,
we use named destinations to jump to each chapter.

1 BufferedReader br = new BufferedReader(new FileReader(SRC));

2 String name, line;

3 Paragraph p;

4 boolean title = true;

5 int counter = 0;

6 PdfOutline outline = null;

7 while ((line = br.readLine()) != null) {

8 p = new Paragraph(line);

9 p.setKeepTogether(true);

10 if (title) {

11 name = String.format("title%02d", counter++);

12 outline = createOutline(outline, pdf, line, name);

13 p.setFont(bold).setFontSize(12)

⁹⁹http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-6#2576-c06e10_toc_outlinesnames.java

http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-6#2576-c06e10_toc_outlinesnames.java
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-6#2576-c06e10_toc_outlinesnames.java

Chapter 6: Creating actions, destinations, and bookmarks 174

14 .setKeepWithNext(true)

15 .setDestination(name);

16 title = false;

17 document.add(p);

18 }

19 else {

20 p.setFirstLineIndent(36);

21 if (line.isEmpty()) {

22 p.setMarginBottom(12);

23 title = true;

24 }

25 else {

26 p.setMarginBottom(0);

27 }

28 document.add(p);

29 }

30 }

We initialize a PdfOutline object in line 6. We create a unique name for each chapter title in line 11.
We use this name in line 15 as a destination, and pass it to the createOutline() method to create a
PdfOutline that will link to the corresponding destination.

1 public PdfOutline createOutline(

2 PdfOutline outline, PdfDocument pdf, String title, String name) {

3 if (outline == null) {

4 outline = pdf.getOutlines(false);

5 outline = outline.addOutline(title);

6 outline.addDestination(

7 PdfDestination.makeDestination(new PdfString(name)));

8 return outline;

9 }

10 PdfOutline kid = outline.addOutline(title);

11 kid.addDestination(PdfDestination.makeDestination(new PdfString(name)));

12 return outline;

13 }

If the outline object passed to the createOutline() method is null, we’re at the very beginning
of our story. We get the root outline from the PdfDocument and we add an outline to this root
object with the first title we encounter. This is the title of our novel “THE STRANGE CASE OF
DR. JEKYLL AND MR. HYDE”. We want this PdfOutline to be the parent of all the other titles.
We use the makeDestination() method using a PdfString object. This is equivalent to creating a
PdfStringDestination using a String instance. We do more or less the same for the other titles.

Chapter 6: Creating actions, destinations, and bookmarks 175

Whenwe create a destination using the setDestination()method, iText creates an XYZ destination
using the top-left coordinate of the corresponding building block and a zoom factor of 100%. This
creates the awkward effect that we no longer see the margin when we click on one of the bookmarks.
We can fix this by creating explicit destinations. See figure 6.9.

Figure 6.9: Bookmarks using explicit destinations

We remember from the previous table of contents example for which we used explicit destinations
that it’s easy to point to the wrong page. Once again, we’ll use a renderer to make sure we link to
the correct page. See the TOC_OutlinesDestinations¹⁰⁰ example.

1 BufferedReader br = new BufferedReader(new FileReader(SRC));

2 String line;

3 Paragraph p;

4 boolean title = true;

5 PdfOutline outline = null;

6 while ((line = br.readLine()) != null) {

7 p = new Paragraph(line);

8 p.setKeepTogether(true);

9 if (title) {

10 outline = createOutline(outline, pdf, line, p);

11 p.setFont(bold).setFontSize(12)

¹⁰⁰http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-6#2577-c06e11_toc_outlinesdestinations.java

http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-6#2577-c06e11_toc_outlinesdestinations.java
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-6#2577-c06e11_toc_outlinesdestinations.java

Chapter 6: Creating actions, destinations, and bookmarks 176

12 .setKeepWithNext(true);

13 title = false;

14 document.add(p);

15 }

16 else {

17 p.setFirstLineIndent(36);

18 if (line.isEmpty()) {

19 p.setMarginBottom(12);

20 title = true;

21 }

22 else {

23 p.setMarginBottom(0);

24 }

25 document.add(p);

26 }

27 }

This code snippet is shorter than the previous one because we don’t have to create a name and we
don’t have to set that name as a destination. The main difference is in the createOutline()method.
It now looks like this:

1 public PdfOutline createOutline(

2 PdfOutline outline, PdfDocument pdf, String title, Paragraph p) {

3 if (outline == null) {

4 outline = pdf.getOutlines(false);

5 outline = outline.addOutline(title);

6 return outline;

7 }

8 OutlineRenderer renderer = new OutlineRenderer(p, title, outline);

9 p.setNextRenderer(renderer);

10 return outline;

11 }

We use the first title we encounter (when outline == null) as the top-level outline in the outline
tree. We create an OutlineRenderer to add the links to the kids of this top-level outline.

Chapter 6: Creating actions, destinations, and bookmarks 177

1 protected class OutlineRenderer extends ParagraphRenderer {

2 protected PdfOutline parent;

3 protected String title;

4 public OutlineRenderer(

5 Paragraph modelElement, String title, PdfOutline parent) {

6 super(modelElement);

7 this.title = title;

8 this.parent = parent;

9 }

10 @Override

11 public void draw(DrawContext drawContext) {

12 super.draw(drawContext);

13 Rectangle rect = getOccupiedAreaBBox();

14 PdfDestination dest =

15 PdfExplicitDestination.createFitH(

16 drawContext.getDocument().getLastPage(),

17 rect.getTop());

18 PdfOutline outline = parent.addOutline(title);

19 outline.addDestination(dest);

20 }

21 }

In this case, we override the draw()method.We create a PdfOutline object with the top-level outline
as parent (line 18), and we use the top y coordinate of the area occupied by the Paragraph as the top
parameter for an explicit destination that fits the page horizontally (line 14-17) as the destination
for that newly created outline (line 19).

If you study both examples carefully, you’ll discover that the top-level outline of the example using
named destination can be clicked to jump to the title of the novel. This isn’t the case in the example in
which we create explicit destinations: we only created destinations for the titles of the chapters, not
for the title of the novel. The PdfOutline objects in an outline tree don’t need to be real bookmarks.
They don’t have to point to a destination on a specific page in the document. They can point to
nowhere; they can also be used to trigger an action. We’ll make one more bookmark example to
demonstrate this. Additionally, we’ll change the color and style of the elements in the bookmarks
panel.

Color and style of the outline elements.

In figure 6.10, we have a PDF document with a single blank page.

Chapter 6: Creating actions, destinations, and bookmarks 178

Figure 6.10: Example of an outline tree without actual bookmarks

When we open the bookmark panel, we see an outline tree of which all first-level elements are titles
of a movie, cartoon or video. These outlines are the parent of two kids:

1. One shows “Link to IMDB” in bold and blue. When we click that outline, an URI action is
triggered that brings us to the corresponding web page.

2. The other reads as “More info:” in italic. It is closed by default, but when we open it, we see
information in different colors about the director, the country where the movie is produced,
and its release data.

None of these PdfOutline objects point to a location in the document. The Outlines¹⁰¹ example
shows how this outline tree was built.

¹⁰¹http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-6#2578-c06e12_outlines.java

http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-6#2578-c06e12_outlines.java
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-6#2578-c06e12_outlines.java

Chapter 6: Creating actions, destinations, and bookmarks 179

1 public void createPdf(String dest) throws IOException {

2 PdfDocument pdf = new PdfDocument(new PdfWriter(dest));

3 pdf.addNewPage();

4 pdf.getCatalog().setPageMode(PdfName.UseOutlines);

5 PdfOutline root = pdf.getOutlines(false);

6 List<List<String>> resultSet = CsvTo2DList.convert(SRC, "|");

7 resultSet.remove(0);

8 for (List<String> record : resultSet) {

9 PdfOutline movie = root.addOutline(record.get(2));

10 PdfOutline imdb = movie.addOutline("Link to IMDB");

11 imdb.setColor(Color.BLUE);

12 imdb.setStyle(PdfOutline.FLAG_BOLD);

13 String url = String.format(

14 "http://www.imdb.com/title/tt%s", record.get(0));

15 imdb.addAction(PdfAction.createURI(url));

16 PdfOutline info = movie.addOutline("More info:");

17 info.setOpen(false);

18 info.setStyle(PdfOutline.FLAG_ITALIC);

19 PdfOutline director = info.addOutline("Directed by " + record.get(3));

20 director.setColor(Color.RED);

21 PdfOutline place = info.addOutline("Produced in " + record.get(4));

22 place.setColor(Color.MAGENTA);

23 PdfOutline year = info.addOutline("Released in " + record.get(1));

24 year.setColor(Color.DARK_GRAY);

25 }

26 pdf.close();

27 }

Let’s go through this code step by step:

• We create a PdfDocument (line 2) to which we add a single page (line 3). We change the page
mode so that the bookmarks panel is opened by default (line 4). We’ll learn more about page
mode, layout mode and other viewer preferences in the next chapter.

• We get the root object of the outline tree (line 5). The boolean parameter indicates if iText
needs to update the outlines. If true, the method will read the whole document and create
the outline tree. This isn’t necessary here, we can just get the cached outline tree. As we have
just created the PdfDocument there aren’t any outlines in that tree yet anyway.

• We create a list with all the records in our Jekyll and Hyde movie database (line 6) and we
remove the record with the field names (line 7). We loop over the different records (line 8 -
25).

• Each movie gets its own outline containing its title (line 9).

Chapter 6: Creating actions, destinations, and bookmarks 180

• We add a first child outline with as title “Link to IMDB” (line 10). We change the color of this
title to blue (line 11) and bold (line 12). We add a URI action that jumps to the movie page for
that specific movie on IMDB (line 13-15).

• We add a second child outline with as title “More info:” (line 16). By default all the outlines
we create are open; in this case, we want the outline to be closed (line 17). We change the
style to italic (line 18). Finally we add three children to this outline: the director (line 19) as
red text (line 20), the country (line 21) as magenta text (line 22), and the year (line 23) as dark
gray text (line 24).

• Finally, we close the PdfDocument (line 26).

This example shows how you can easily create an outline tree with different branches, branches of
branches, and leaves. It also shows how you can change the color and style of an element in the
outline tree, and how you can change the open or closed status of each outline element.

Summary

This chapter was all about interactive elements that help us navigate through and between
documents. We started by experimenting with a series of actions:

• URI actions to navigate to external web pages,
• Named actions to navigate to the first page, previous page, next page, and last page,
• GoTo actions to go to a named destination or an explicit destination inside the document,
• Remote GoTo action to navigate to another PDF document in the same or in a new window,
• JavaScript actions to trigger the execution of PDF-specific JavaScript.

We took a close look at destinations, and how to create them using one of the subclasses of the
abstract PdfDestination class.

After we learned that links are stored inside a PDF as annotations, we looked at some bookmark
examples. We learned how to create an outline tree, and we used the setDestination() method to
jump to a destination inside the document, the setAction() method to trigger an action, and none
of these to create an inert hierarchical entry in the outline tree.

We already saw a glimpse of the next chapter, when we changed the page mode to make sure the
bookmarks panel was opened when opening the document. Viewer preferences will be one of the
topics we’ll discuss next, but first we’ll learn more about the concept of event handling.

Chapter 7: Handling events; setting
viewer preferences and writer
properties
This book is meant for developers who want to create PDF documents from scratch in a program-
matic way, using source code as opposed to using a template. We started with a chapter about fonts.
In the chapters that followed, we discussed the default behavior of every element: Paragraph, Text,
Image, and so on. We discovered that these elements can be used in a very intuitive way, but also
that we can change their default behavior by creating custom renderer implementations –which
isn’t always trivial, depending on what you want to achieve. In the previous chapter, we discussed
interactivity. We introduced actions and added links and bookmarks that help us navigate through
a document.

We’ll use this final chapter to introduce a couple of concepts that weren’t discussed before. iText
creates a new page automatically when elements don’t fit the current page, but what if we want to
add a watermark, background, header or footer to every page? How do we know when a new page
is created? We’ll need to look at the IEventHandler interface to find out. In the previous chapter, we
changed a viewer preference so that the bookmarks panel is open by default. We’ll look at some other
viewer preferences that can be set. Finally, we’ll learn how to change the settings of the PdfWriter,
for instance to create a PDF of a version that is different from the default PDF version used by iText.

Implementing the IEventHandler interface

In previous examples, we used the rotate() method to switch a page from portrait to landscape.
For instance, when we created PDF with tables in chapter 5, we created our Document object like
this new Document(pdf, PageSize.A4.rotate()). In figure 7.1, we also see pages that are rotated,
but they are rotated with a different purpose. In chapter 5, we wanted to take advantage of the fact
that the width of the page is greater than the height when using landscape orientation. When using
the rotate() method, it was our purpose to rotate the page, but not its content as is done in figure
7.1.

Chapter 7: Handling events; setting viewer preferences and writer properties 182

Figure 7.1: Pages with different orientations

In the EventHandlers¹⁰² example, we create four A6 pages to which we add content as if the page
is in portrait. We change the rotation of the page at the page level in an IEventHandler. As defined
in the ISO standard for PDF, the rotation of a page needs to be a multiple of 90. This leaves us four
possible orientations when we divide the rotation by 360: portrait (rotation 0), landscape (rotation
90), inverted portrait (rotation 180) and seascape (rotation 270).

¹⁰²http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-7#2579-c07e01_eventhandlers.java

http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-7#2579-c07e01_eventhandlers.java
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-7#2579-c07e01_eventhandlers.java

Chapter 7: Handling events; setting viewer preferences and writer properties 183

1 public static final PdfNumber PORTRAIT = new PdfNumber(0);

2 public static final PdfNumber LANDSCAPE = new PdfNumber(90);

3 public static final PdfNumber INVERTEDPORTRAIT = new PdfNumber(180);

4 public static final PdfNumber SEASCAPE = new PdfNumber(270);

We create a PageRotationEventHandler that allows us to change the rotation of a page, while we
are creating a document.

1 protected class PageRotationEventHandler implements IEventHandler {

2 protected PdfNumber rotation = PORTRAIT;

3 public void setRotation(PdfNumber orientation) {

4 this.rotation = orientation;

5 }

6 @Override

7 public void handleEvent(Event event) {

8 PdfDocumentEvent docEvent = (PdfDocumentEvent) event;

9 docEvent.getPage().put(PdfName.Rotate, rotation);

10 }

11 }

The default orientation will be portrait (line 2), but we can change this default using the setRo-

tation() method (line 4-6). We override the handleEvent() method that is triggered when an
event occurs. We can get the PdfPage instance of the page on which the event is triggered from the
PdfDocumentEvent. This PdfPage object represents the page dictionary. One of the possible entries
of a page dictionary, is its rotation. We change this entry to the current value of rotation (line 9)
every time the event is triggered.

The following snippet shows how we can introduce this event handler in the PDF creation process.

1 public void createPdf(String dest) throws IOException {

2 PdfDocument pdf = new PdfDocument(new PdfWriter(dest));

3 pdf.getCatalog().setPageLayout(PdfName.TwoColumnLeft);

4 PageRotationEventHandler eventHandler =

5 new PageRotationEventHandler();

6 pdf.addEventHandler(

7 PdfDocumentEvent.START_PAGE, eventHandler);

8 Document document = new Document(pdf, PageSize.A8);

9 document.add(new Paragraph("Dr. Jekyll"));

10 eventHandler.setRotation(INVERTEDPORTRAIT);

11 document.add(new AreaBreak());

12 document.add(new Paragraph("Mr. Hyde"));

13 eventHandler.setRotation(LANDSCAPE);

Chapter 7: Handling events; setting viewer preferences and writer properties 184

14 document.add(new AreaBreak());

15 document.add(new Paragraph("Dr. Jekyll"));

16 eventHandler.setRotation(SEASCAPE);

17 document.add(new AreaBreak());

18 document.add(new Paragraph("Mr. Hyde"));

19 document.close();

20 }

We create an instance of the PageRotationEventHandler (line 4-5). We declare this eventHandler as
an event that needs to be triggered every time a new page is started (PdfDocumentEvent.START_PAGE)
in the PdfDocument (line 6-7). We create a PDF with tiny pages (line 8). We add a first paragraph
(line 9) on a page that will use the default orientation. The START_PAGE event has already happened,
when we change this default to inverted portrait (line 10). Only when a new page is created, after
introducing a page break (line 11), the new orientation will become active. In this example, we repeat
this a couple of times to demonstrate every possible page orientation.

There are four types of events that can be triggered:

• START_PAGE– triggered when a new page is started,
• END_PAGE– triggered right before a new page is started,
• INSERT_PAGE– triggered when a page is inserted, and
• REMOVE_PAGE– triggered when a page is removed.

We’ll try all of these types in the next handful of examples.

Adding a background and text to every page

We have created many documents in which we rendered a novel by Robert Louis Stevenson to
PDF. We reused the code of one of these examples to create the PDF shown in figure 7.2, and we
introduced an event handler to create a lime-colored background for the odd pages and a blue-
colored background for the even pages. Starting on page 2, we also added a running header with the
title of the novel and a footer with the page number.

Chapter 7: Handling events; setting viewer preferences and writer properties 185

Figure 7.2: Colored background and running header

For this TextWatermark¹⁰³ example, we added an END_PAGE event for a change.

1 pdf.addEventHandler(

2 PdfDocumentEvent.END_PAGE,

3 new TextWatermark());

This choice for the END_PAGE event has an impact on the TextWatermark class.

¹⁰³http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-7#2580-c07e02_textwatermark.java

http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-7#2580-c07e02_textwatermark.java
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-7#2580-c07e02_textwatermark.java

Chapter 7: Handling events; setting viewer preferences and writer properties 186

1 protected class TextWatermark implements IEventHandler {

2 Color lime, blue;

3 PdfFont helvetica;

4 protected TextWatermark() throws IOException {

5 helvetica = PdfFontFactory.createFont(FontConstants.HELVETICA);

6 lime = new DeviceCmyk(0.208f, 0, 0.584f, 0);

7 blue = new DeviceCmyk(0.445f, 0.0546f, 0, 0.0667f);

8 }

9 @Override

10 public void handleEvent(Event event) {

11 PdfDocumentEvent docEvent = (PdfDocumentEvent) event;

12 PdfDocument pdf = docEvent.getDocument();

13 PdfPage page = docEvent.getPage();

14 int pageNumber = pdf.getPageNumber(page);

15 Rectangle pageSize = page.getPageSize();

16 PdfCanvas pdfCanvas = new PdfCanvas(

17 page.newContentStreamBefore(), page.getResources(), pdf);

18 pdfCanvas.saveState()

19 .setFillColor(pageNumber % 2 == 1 ? lime : blue)

20 .rectangle(pageSize.getLeft(), pageSize.getBottom(),

21 pageSize.getWidth(), pageSize.getHeight())

22 .fill().restoreState();

23 if (pageNumber > 1) {

24 pdfCanvas.beginText()

25 .setFontAndSize(helvetica, 10)

26 .moveText(pageSize.getWidth() / 2 - 120, pageSize.getTop() - 20)

27 .showText("The Strange Case of Dr. Jekyll and Mr. Hyde")

28 .moveText(120, -pageSize.getTop() + 40)

29 .showText(String.valueOf(pageNumber))

30 .endText();

31 }

32 pdfCanvas.release();

33 }

34 }

We create color objects (line 2) and a font (line 3) in the constructor (line 4-8), so that we can reuse
these objects every time the event is triggered.

The PdfDocumentEvent (line 11) gives us access to the PdfDocument (line 12) and the PdfPage (line 13)
on which the event was triggered. We get the current page number (line 14) and the page size (line
15) from the PdfPage. In this example, we will add all the content using low-level PDF functionality.
We need a PdfCanvas object to do this (line 16-17). We draw the background using a rectangle()
and fill() method (line 18-22). For pages with page number greater than 1 (line 23), We create

Chapter 7: Handling events; setting viewer preferences and writer properties 187

a text object marked by beginText() and endText() with two snippets of text that are positioned
using the moveText() method and added with showText() method (line 24-30).

As we add this content after the current page has been completed and right before a
new page is created, we have to be careful not to overwrite already existing content. For
instance: to create a colored background, we draw an opaque rectangle. If we do this
after we have added content to the page, this content won’t be visible anymore: it will
be covered by the opaque rectangle. We can solve this by creating the PdfCanvas using
the page.newContentStreamBefore()method. This will allow us to write PDF syntax to a
content stream that will be parsed before the rest of the content of the page is parsed.

In iText 5, we used page events to add content when a specific event occurred. It was
forbidden to add content in an onStartPage() event. One could only add content to a page
using the onEndPage()method. This often led to confusion among developers who assumed
that headers needed to be added in the onStartPage()method, whereas footers needed to
be added in the onEndPage() method. Although this was a misconception, we fixed this
problem anyway. Actually, in the case of this example, it would probably be a better idea to
add the back ground in the START_PAGE event. We can use page.getLastContentStream()
to create the content stream needed for the PdfCanvas object.

In the next example, we’ll add a header using a START_PAGE event and a footer using an END_PAGE

event. The footer will show the page number as well as the total number of pages.

Solving the “Page X of Y” problem

In figure 7.3, we see a running header that starts on page 2. We also see a footer formatted as “page
X of Y” where X is the current page and Y the total number of pages.

Chapter 7: Handling events; setting viewer preferences and writer properties 188

Figure 7.3: Page X of Y footer

The event handlers in the PageXofY¹⁰⁴ example are added like this:

1 PdfDocument pdf = new PdfDocument(new PdfWriter(dest));

2 pdf.addEventHandler(PdfDocumentEvent.START_PAGE,

3 new Header("The Strange Case of Dr. Jekyll and Mr. Hyde"));

4 PageXofY event = new PageXofY(pdf);

5 pdf.addEventHandler(PdfDocumentEvent.END_PAGE, event);

Instead of using low-level PDF operators to create the text object, we use the showTextAligned()
method that was introduced when we talked about the Canvas object. See for instance the
handleEvent implementation of the Header class.

¹⁰⁴http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-7#2581-c07e03_pagexofy.java

http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-7#2581-c07e03_pagexofy.java
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-7#2581-c07e03_pagexofy.java

Chapter 7: Handling events; setting viewer preferences and writer properties 189

1 protected class Header implements IEventHandler {

2 String header;

3 public Header(String header) {

4 this.header = header;

5 }

6 @Override

7 public void handleEvent(Event event) {

8 PdfDocumentEvent docEvent = (PdfDocumentEvent) event;

9 PdfDocument pdf = docEvent.getDocument();

10 PdfPage page = docEvent.getPage();

11 if (pdf.getPageNumber(page) == 1) return;

12 Rectangle pageSize = page.getPageSize();

13 PdfCanvas pdfCanvas = new PdfCanvas(

14 page.getLastContentStream(), page.getResources(), pdf);

15 Canvas canvas = new Canvas(pdfCanvas, pdf, pageSize);

16 canvas.showTextAligned(header,

17 pageSize.getWidth() / 2,

18 pageSize.getTop() - 30, TextAlignment.CENTER);

19 }

20 }

This time, we use the getLastContentStream() method (line 14). As we use this class to create a
START_PAGE event, the header will be the first thing that is written in the total content stream of the
page.

The “Page X of Y” footer confronts us with a problem we’ve already solved once in chapter
2. In the JekyllHydeV8¹⁰⁵ example, we wanted to add the total number of pages of the
document on the first page. However, at the moment we wrote that first page, we didn’t
know the total number of pages in advance. We used a placeholder instead of the final
number, and we instructed iText not to flush any content to the OutputStream until all
pages were created. At that moment, we used a TextRenderer to replace the place holder
with the total number of pages, and we recreated the layout using the relayout()method.

There is one major disadvantage with this approach: it requires that we keep a lot of
content in memory before we flush it to the OutputStream. The more pages, the more we’ll
risk an OutOfMemoryException. We can solve this problem by using a PdfFormXObject as
placeholder.

A form XObject is a snippet of PDF syntax stored in a separate stream that is external to the content
stream of a page. It can be referred to from different pages. If we create one form XObject as a
placeholder, and we add it to multiple pages, we have to update it only once, and that change will

¹⁰⁵http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-2#1902-c02e12_jekyllhydev8.java

http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-2#1902-c02e12_jekyllhydev8.java
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-2#1902-c02e12_jekyllhydev8.java

Chapter 7: Handling events; setting viewer preferences and writer properties 190

be reflected on every page. We can update the content of a form XObject as long as it hasn’t been
written to the OutputStream. This is what we’ll do in the PageXofY class.

1 protected class PageXofY implements IEventHandler {

2 protected PdfFormXObject placeholder;

3 protected float side = 20;

4 protected float x = 300;

5 protected float y = 25;

6 protected float space = 4.5f;

7 protected float descent = 3;

8 public PageXofY(PdfDocument pdf) {

9 placeholder =

10 new PdfFormXObject(new Rectangle(0, 0, side, side));

11 }

12 @Override

13 public void handleEvent(Event event) {

14 PdfDocumentEvent docEvent = (PdfDocumentEvent) event;

15 PdfDocument pdf = docEvent.getDocument();

16 PdfPage page = docEvent.getPage();

17 int pageNumber = pdf.getPageNumber(page);

18 Rectangle pageSize = page.getPageSize();

19 PdfCanvas pdfCanvas = new PdfCanvas(

20 page.getLastContentStream(), page.getResources(), pdf);

21 Canvas canvas = new Canvas(pdfCanvas, pdf, pageSize);

22 Paragraph p = new Paragraph()

23 .add("Page ").add(String.valueOf(pageNumber)).add(" of");

24 canvas.showTextAligned(p, x, y, TextAlignment.RIGHT);

25 pdfCanvas.addXObject(placeholder, x + space, y - descent);

26 pdfCanvas.release();

27 }

28 public void writeTotal(PdfDocument pdf) {

29 Canvas canvas = new Canvas(placeholder, pdf);

30 canvas.showTextAligned(String.valueOf(pdf.getNumberOfPages()),

31 0, descent, TextAlignment.LEFT);

32 }

33 }

We define a member-variable name placeholder in line 2, and we initialize this PdfFormXObject
in the constructor of our IEventHandler implementation (line 9-10). The other member-variables in
line 3-7 are there for our convenience. They reflect the dimension of the placeholder (side is the side
of the square that defines the placeholder), the position of the footer (x and y), the space between
the “Page X of” and “Y” part (space) of the footer, and the space we will allow under the baseline of
the “Y” value (descent).

Chapter 7: Handling events; setting viewer preferences and writer properties 191

Lines 14 to 21 are identical to what we had in the Header class. We create the “Page X of” part of the
footer in line 21 and 22. We add this Paragraph to the left of the coordinates x and y (line 24). We add
the placeholder at the coordinates x + space and y - descent. We release the Canvas, but we don’t
release the placeholder yet. Once the complete document is generated, we call the writeTotal()
method, right before we close the document.

1 document.add(div);

2 event.writeTotal(pdf);

3 document.close();

In this writeTotal() method, we add the total number of pages at the coordinate x = 0; y =

descent (line 30-31). This way, the “Page X of Y” text will always be nicely aligned with ‘x’ and
‘y’ as the coordinate that has “Page X of” to the left and “Y” to the right.

Adding a transparent background image

In figure 7.4, we’ve added a transparent image in the background of each page of text. You could use
this technique to add watermarks to a document.

Chapter 7: Handling events; setting viewer preferences and writer properties 192

Figure 7.4: Transparent background image

Let’s take a look at the TransparentImage class in the ImageWatermark¹⁰⁶ example.

1 protected class TransparentImage implements IEventHandler {

2 protected PdfExtGState gState;

3 protected Image img;

4 public TransparentImage(Image img) {

5 this.img = img;

6 gState = new PdfExtGState().setFillOpacity(0.2f);

7 }

8 @Override

9 public void handleEvent(Event event) {

10 PdfDocumentEvent docEvent = (PdfDocumentEvent) event;

11 PdfDocument pdf = docEvent.getDocument();

12 PdfPage page = docEvent.getPage();

¹⁰⁶http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-7#2582-c07e04_imagewatermark.java

http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-7#2582-c07e04_imagewatermark.java
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-7#2582-c07e04_imagewatermark.java

Chapter 7: Handling events; setting viewer preferences and writer properties 193

13 Rectangle pageSize = page.getPageSize();

14 PdfCanvas pdfCanvas = new PdfCanvas(

15 page.getLastContentStream(), page.getResources(), pdf);

16 pdfCanvas.saveState().setExtGState(gState);

17 Canvas canvas = new Canvas(pdfCanvas, pdf, page.getPageSize());

18 canvas.add(img

19 .scaleAbsolute(pageSize.getWidth(), pageSize.getHeight()));

20 pdfCanvas.restoreState();

21 pdfCanvas.release();

22 }

23 }

Note that we store the Image object as a member-variable; this way, we can use it as many times we
want and the bytes of the image will be added to the PDF document only once.

Creating a new Image instance of the same image in the handleEvent would result in a
bloated PDF document. The same image bytes would be added to the document as many
times as there are pages. This was already explained in chapter 3.

We also reuse the PdfExtGState object. This is a graphics state object that is external to the content
stream. We use it to set the fill opacity to 20%.

In this example, we use a mix of PdfCanvas and Canvas. We use PdfCanvas to save, change, and
restore the graphics state. We use Canvas to add the image resized to the dimensions of the page.

In this example, we didn’t want the background image to appear for the table of contents. See figure
7.5.

Chapter 7: Handling events; setting viewer preferences and writer properties 194

Figure 7.5: Removing a specific handler

We achieve this by removing the event handler, right before we add the table of contents.

1 PdfDocument pdf = new PdfDocument(new PdfWriter(dest));

2 Image img = new Image(ImageDataFactory.create(IMG));

3 IEventHandler handler = new TransparentImage(img);

4 pdf.addEventHandler(PdfDocumentEvent.START_PAGE, handler);

5 Document document = new Document(pdf);

6 ... // Code that adds the text of the novel

7 pdf.removeEventHandler(

8 PdfDocumentEvent.START_PAGE, handler);

9 document.add(new AreaBreak(AreaBreakType.NEXT_PAGE));

10 ... // code that adds the TOC

11 document.close();

We can remove a specific handler, using the removeEventHandler() method. We can remove all
handlers using the removeAllHandlers()method. That’s whatwe’re going to do in the next example.

Chapter 7: Handling events; setting viewer preferences and writer properties 195

Insert and remove page events

To obtain the PDF shown in figure 7.6, we took an existing PDF generated by one of the examples
in the previous chapter. We inserted one page to be the new page 1. We removed all pages starting
with the third chapter. As you can see, the bookmarks were updated accordingly.

Figure 7.6: Insert and remove page events

The AddRemovePages¹⁰⁷ example uses the INSERT_PAGE event to add content to the inserted page,
and the REMOVE_PAGE method to write something to the System.out. At some point, we remove all
handlers.

1 public void manipulatePdf(String src, String dest) throws IOException {

2 PdfReader reader = new PdfReader(src);

3 PdfWriter writer = new PdfWriter(dest);

4 PdfDocument pdf = new PdfDocument(reader, writer);

5 pdf.addEventHandler(

6 PdfDocumentEvent.INSERT_PAGE, new AddPageHandler());

7 pdf.addEventHandler(

8 PdfDocumentEvent.REMOVE_PAGE, new RemovePageHandler());

9 pdf.addNewPage(1, PageSize.A4);

10 int total = pdf.getNumberOfPages();

¹⁰⁷http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-7#2583-c07e05_addremovepages.java

http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-7#2583-c07e05_addremovepages.java
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-7#2583-c07e05_addremovepages.java

Chapter 7: Handling events; setting viewer preferences and writer properties 196

11 for (int i = 9; i <= total; i++) {

12 pdf.removePage(9);

13 if (i == 12)

14 pdf.removeAllHandlers();

15 }

16 pdf.close();

17 }

18 protected class AddPageHandler implements IEventHandler {

19 @Override

20 public void handleEvent(Event event) {

21 PdfDocumentEvent docEvent = (PdfDocumentEvent) event;

22 PdfDocument pdf = docEvent.getDocument();

23 PdfPage page = docEvent.getPage();

24 PdfCanvas pdfCanvas = new PdfCanvas(page);

25 Canvas canvas = new Canvas(pdfCanvas, pdf, page.getPageSize());

26 canvas.add(new Paragraph().add(docEvent.getType()));

27 }

28 }

29 protected class RemovePageHandler implements IEventHandler {

30 @Override

31 public void handleEvent(Event event) {

32 PdfDocumentEvent docEvent = (PdfDocumentEvent) event;

33 System.out.println(docEvent.getType());

34 }

35 }

In this example, we have an AddPageHandler (line 18-28) and a RemovePageHandler (line 29-35). We
declare these handlers to the PdfDocument as INSERT_PAGE and REMOVE_PAGE event respectively (line
5-8). The AddPageHandlerwill be triggered only once, when we add a new page (line 9). The remove
page will be triggered four times. We remove all pages from page 9 to the total number of pages. We
do this by removing page 9 over and over again (line 12), until no pages are left. As soon as we’ve
removed page 12, we remove all handlers (line 13-14), which means that the event is triggered after
we removed pages 9, 10, 11, and 12.

In the next example, we’re going to define page labels.

Page labels

Figure 7.7 shows a document with 38 pages. In the toolbar above the document, Adobe Acrobat
shows that we’re on page “i” or page 1 of 38. We have opened the Page Thumbnails panel to see a
thumbnail for each page. We see that the first three pages are number i, ii, iii. Then we have 34 pages
numbered from 1 to 34. Finally, we have a page with page label TOC.

Chapter 7: Handling events; setting viewer preferences and writer properties 197

Figure 7.7: Page labels

These page labels aren’t part of the actual content. For instance: you won’t see them when you print
the document. They are only visible in the PDF viewer –that is: if the PDF viewer supports page
labels. The PDF in figure 7.7 was created using the PageLabels¹⁰⁸ example.

1 PdfDocument pdf = new PdfDocument(new PdfWriter(dest));

2 PdfPage page = pdf.addNewPage();

3 page.setPageLabel(PageLabelNumberingStyleConstants

4 .LOWERCASE_ROMAN_NUMERALS, null);

5 Document document = new Document(pdf);

6 document.add(new Paragraph().add("Page left blank intentionally"));

7 ... // add some more pages left blank intentionally

8 page = pdf.getLastPage();

9 page.setPageLabel(PageLabelNumberingStyleConstants

10 .DECIMAL_ARABIC_NUMERALS, null, 1);

11 ... // add content of the novel

12 document.add(new AreaBreak(AreaBreakType.NEXT_PAGE));

13 p = new Paragraph().setFont(bold)

¹⁰⁸http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-7#2584-c07e06_pagelabels.java

http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-7#2584-c07e06_pagelabels.java
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-7#2584-c07e06_pagelabels.java

Chapter 7: Handling events; setting viewer preferences and writer properties 198

14 .add("Table of Contents").setDestination("toc");

15 document.add(p);

16 page = pdf.getLastPage();

17 page.setPageLabel(null, "TOC", 1);

18 ... // add table of contents

19 document.close();

We change the page label style three times in this code snippet:

1. We create the first page in line 2 and we set the page label style for this page to LOWERCASE_-

ROMAN_NUMERALS. We don’t define a prefix. All the pages that follow this first page will be
numbered like this: i, ii, iii, iv, v,… until we change the page label style. This happens in line 9.

2. In line 8, we get the last page that was added so far, andwe change the page labels to DECIMAL_-
ARABIC_NUMERALS in line 9. Once more we don’t define a prefix, and we tell the current page
to start the page count with 1. We didn’t really have to do this, because the page count always
restart when you change the page labels. You can use this method if you don’t want that to
happen. For instance: we could pass 4 instead of 1 if we want the first page that follows the
pages with Roman numerals to be page 4.

3. In line 17, we change the page label style to null. This means that no numbering will be used,
even if we pass a value for the first page after the page label change. In this case, we do pass
a prefix. That’s the page label we see when we reach the table of contents of our document.
The prefix can be combined with a page number, for instance if you have Arabic numerals for
page numbers and the prefix is “X-“, then the pages will be numbered as “X-1”, “X-2”, “X-3”,
and so on.

In this example, we had to manually open the Page Thumbnails panel to see the thumbnail overview
of all the pages. We could have instructed the document to open that panel by default. In the next
example, we’ll change the page display and the page mode.

Page display and page mode

The file page_mode_page_layout.pdf is almost identical to the file with the page labels we created
in the previous example, but when we open it, we see that the panel with the page thumbnails is
open by default. This is the page mode. We also see that the first page only takes half of the space
that is available horizontally and that it’s pushed to the right. At the bottom, we see that the second
and third page are shown next to each other. This is the page layout.

Chapter 7: Handling events; setting viewer preferences and writer properties 199

Figure 7.8: Page layout and page mode

The PageLayoutPageMode¹⁰⁹ example is identical to the previous example, except for the following
lines.

1 pdf.getCatalog().setPageLayout(PdfName.TwoColumnRight);

2 pdf.getCatalog().setPageMode(PdfName.UseThumbs);

We get the catalog from the PdfDocument. The catalog is also known as the root dictionary of the
PDF file. It’s the first object that is read when a parser reads a PDF document.

We can set the page layout for the document with the setPageLayout() method using one of the
following parameters:

• PdfName.SinglePage— Display one page at a time.
• PdfName.OneColumn— Display the pages in one column.
• PdfName.TwoColumnLeft— Display the pages in two columns, with the odd-numbered pages
on the left.

¹⁰⁹http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-7#2585-c07e07_pagelayoutpagemode.java

http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-7#2585-c07e07_pagelayoutpagemode.java
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-7#2585-c07e07_pagelayoutpagemode.java

Chapter 7: Handling events; setting viewer preferences and writer properties 200

• PdfName.TwoColumnRight— Display the pages in two columns, with the odd-numbered pages
on the right.

• PdfName.TwoPageLeft— Display the pages two at a time, with the odd-numbered pages on
the left.

• PdfName.TwoPageRight— Display the pages two at a time, with the odd-numbered pages on
the right.

We can set the page mode for the document with the setPageMode() method using one of the
following parameters

• PdfName.UseNone— No panel is visible by default.
• PdfName.UseOutlines— The bookmarks panel is visible, showing the outline tree.
• PdfName.UseThumbs— A panel with pages visualized as thumbnails is visible.
• PdfName.FullScreen— The document is shown in full screen mode.
• PdfName.UseOC— The panel with the optional content structure is open.
• PdfName.UseAttachments— The attachments panel is visible.

We haven’t discussed optional content yet, nor attachments. That’s something we’ll save for another
tutorial.

When we use PdfName.FullScreen, the PDF will try to open in full screen mode. Many viewers
won’t do this without showing a warning first.

Figure 7.9: Warning before switching to full screen mode

The warning shown in figure 7.9 was triggered by the PDF created with the FullScreen¹¹⁰ example.

¹¹⁰http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-7#2586-c07e08_fullscreen.java

http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-7#2586-c07e08_fullscreen.java
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-7#2586-c07e08_fullscreen.java

Chapter 7: Handling events; setting viewer preferences and writer properties 201

1 pdf.getCatalog().setPageMode(PdfName.FullScreen);

2 PdfViewerPreferences preferences = new PdfViewerPreferences();

3 preferences.setNonFullScreenPageMode(

4 PdfViewerPreferencesConstants.USE_THUMBS);

5 pdf.getCatalog().setViewerPreferences(preferences);

In this example, we also create a PdfViewerPreferences instance (line 2). We set the viewer
preference that tells the viewer what to do when we exit full screen mode. The possible values
for the setNonFullScreenPageMode() are:

• PdfViewerPreferencesConstants.USE_NONE— No panel is opened when we return from full
screen mode.

• PdfViewerPreferencesConstants.USE_OUTLINES— The bookmarks panel is visible, showing
the outline tree.

• PdfViewerPreferencesConstants.USE_THUMBS—Apanel with pages visualized as thumbnails
is visible.

• PdfViewerPreferencesConstants.USE_OC— The panel with the optional content structure is
open.

We used PdfViewerPreferencesConstants.USE_THUMBSwhich means that we see the PDF as shown
in figure 7.10.

Chapter 7: Handling events; setting viewer preferences and writer properties 202

Figure 7.10: Viewer after exiting full screen mode

Let’s take a look at some other viewer preferences that are available in the PDF specification.

Viewer preferences

When we open the PDF shown in figure 7.11, we don’t see a menu bar, we don’t see a tool bar, we
see the title of the document in the top bar, and so on.

Chapter 7: Handling events; setting viewer preferences and writer properties 203

Figure 7.11: Different viewer preferences at work in one document

The ViewerPreferences¹¹¹ example shows us which viewer preferences have been set for this
document.

1 public void createPdf(String dest) throws IOException {

2 PdfDocument pdf = new PdfDocument(new PdfWriter(dest));

3 PdfViewerPreferences preferences = new PdfViewerPreferences();

4 preferences.setFitWindow(true);

5 preferences.setHideMenubar(true);

6 preferences.setHideToolbar(true);

7 preferences.setHideWindowUI(true);

8 preferences.setCenterWindow(true);

9 preferences.setDisplayDocTitle(true);

10 pdf.getCatalog().setViewerPreferences(preferences);

11 PdfDocumentInfo info = pdf.getDocumentInfo();

¹¹¹http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-7#2587-c07e09_viewerpreferences.java

http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-7#2587-c07e09_viewerpreferences.java
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-7#2587-c07e09_viewerpreferences.java

Chapter 7: Handling events; setting viewer preferences and writer properties 204

12 info.setTitle("A Strange Case");

13 Document document = new Document(pdf, PageSize.A4.rotate());

14 document.add(new Paragraph("Mr. Jekyl and Mr. Hyde"));

15 document.close();

16 }

All of these preferences expect true or false as a parameter; false being the default value if no
preference is chosen.

• Line 4: with setFitWindow(), we tell the viewer to resize the document’s window to fit the
size of the first displayed page.

• Line 5: with setHideMenubar(), we tell the viewer to hide the menu bar; that is the bar with
menu items such as File, Edit, View,…

• Line 6: with setHideToolbar(), we tell the viewer to hide the tool bar; that is the bar with the
icons that give us direct access to some features also available through the menu items.

• Line 7: with setHideWindowUI(), we tell the viewer to hide all user interface elements such
as scroll bars and other navigational controls.

• Line 8: with setCenterWindow(), we tell the viewer to position the document’s window in the
center of the screen.

• Line 9: with setDisplayDocTitle(), we tell the viewer to show the title of the document in
the title bar.

Setting the title in the title bar requires that we define a title in the metadata. We do this in line
11-12. We’ll have a closer look at metadata in a moment.

You can also use the PdfViewerPreferences class to define the predominant reading order of text
using the setDirection() method, the view area using the setViewArea() and setViewClip()

method. We won’t do that in this tutorial, we’ll skip to some printer preferences.

Printer preferences

The mechanism of viewer preferences can also be used to set some printer preferences. For
instance: we can select the area that will be printed by default using the setPrintArea() and
the setPrintClip() method. Specific printer settings can be selected using the setDuplex() and
setPickTrayByPDFSize()method. You can select a default page range that needs to be printed using
the setPrintPageRange() method.

Figure 7.12 shows the default settings in the Print Dialog after using the setPrintScaling() and
setNumCopies() method.

Chapter 7: Handling events; setting viewer preferences and writer properties 205

Figure 7.12: Printer preferences

The values in the screen shot correspond with the code of the PrinterPreferences¹¹² example.

1 PdfViewerPreferences preferences = new PdfViewerPreferences();

2 preferences.setPrintScaling(

3 PdfViewerPreferencesConstants.NONE);

4 preferences.setNumCopies(5);

5 pdf.getCatalog().setViewerPreferences(preferences);

Although PDF viewers nowadays offer many print-scaling options, the PDF specification only
allows you to choose between NONE (no print scaling; the actual size of the document is preserved)
and APP_DEFAULT (the default scaling of the viewer application). We set the number of copies to 5,
which is reflected in the Print Dialog.

¹¹²http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-7#2588-c07e10_printerpreferences.java

http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-7#2588-c07e10_printerpreferences.java
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-7#2588-c07e10_printerpreferences.java

Chapter 7: Handling events; setting viewer preferences and writer properties 206

As you can see, setting a printer preference doesn’t enforce the preference that is chosen.
For instance, if we set the number of copies to 5, a user can easily change this to any
other number in the dialog. In PDF 2.0, an extra viewer preference, named /Enforce will
be introduced. Its value will be an array. A PDF 2.0 viewer should check the entries and
enforce all the viewer preferences that are present in that array. The Draft specification only
provides a way to enforce the print scaling so far. We haven’t implemented this /Enforce
preference in iText yet, but we’ll do so as soon as the PDF 2.0 standard aka ISO-32000-2 is
released.

Once in a while, we get the question if it’s possible to set a viewer preference to open a document
at a certain page. It’s possible to jump to a specific page when opening a document, but that isn’t
achieved using a viewer preference. We need an open action to do this.

Open action and additional actions

The PDF document shown in figure 7.13 jumps straight to the last page when we open it. But there’s
more: when we leave the last page, we get a message saying “Goodbye last page!”

Figure 7.13: Document opens on last page and page says goodbye when we leave it

When we go to the first page, the document shows another alert: “This is where it starts!”

Chapter 7: Handling events; setting viewer preferences and writer properties 207

Figure 7.14: The first page says ”This is where it starts!”

Finally, when we close the document, it says: “Thank you for reading”.

Chapter 7: Handling events; setting viewer preferences and writer properties 208

Figure 7.15: The document says ”Thank you for reading” upon closing it

The action that jumps to the last page is an open action; all the other actions are additional actions
with respect to events triggered on the document or on a page. The Actions¹¹³ example shows us
what it’s all about.

1 public void createPdf(String dest) throws IOException {

2 PdfDocument pdf = new PdfDocument(new PdfWriter(dest));

3 pdf.getCatalog().setOpenAction(

4 PdfDestination.makeDestination(new PdfString("toc")));

5 pdf.getCatalog().setAdditionalAction(PdfName.WC,

6 PdfAction.createJavaScript("app.alert('Thank you for reading');"));

7 pdf.addNewPage().setAdditionalAction(PdfName.O,

8 PdfAction.createJavaScript("app.alert('This is where it starts!');"));

9 Document document = new Document(pdf);

10 PdfPage page = pdf.getLastPage();

11 page.setAdditionalAction(PdfName.C,

12 PdfAction.createJavaScript("app.alert('Goodbye last page!');"));

13 document.close();

14 }

¹¹³http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-7#2589-c07e11_actions.java

http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-7#2589-c07e11_actions.java
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-7#2589-c07e11_actions.java

Chapter 7: Handling events; setting viewer preferences and writer properties 209

Let’s start with the open action (line 3-4). This action is added to the catalog using the setOpenAc-
tion()method. This method accepts an instance of the PdfDestination class –in this case a link to
a named destination– or of the PdfAction class.

The next action is an additional action for the document (line 5-6). This action is also added to the
catalog, using the setAdditionalAction() method. The second parameter has to be a PdfAction

object. The first parameter is one of the following names:

• PdfName.WC– which stands for Will Close. This action will be performed right before closing
a document.

• PdfName.WS– which stands forWill Save. This action will be performed right before saving a
document. Note that this will only work for viewers that allow you to save a document; and
that save isn’t the same as save as in this context.

• PdfName.DS– which stands for Did Save. This action will be performed right after saving a
document. Note that this will only work for viewers that allow you to save a document; and
that save isn’t the same as save as in this context.

• PdfName.WP– which stands forWill Print. This action will be performed right before printing
a document.

• PdfName.DP– which stands for Did Print. This action will be performed right after printing a
document.

The next two additional actions are actions that are added to a PdfPage object (line 7-8; line 11-12).
The parameters of this setAdditionalAction()method are again an instance of the PdfAction class
as the second parameter, but the first parameter has to be one of the following names:

• PdfName.O– the action will be performed when the page is opened, for instance when a user
navigates to it from the next or previous page, or by clicking a link. If this page is the first
page that opens when opening a document, and if there’s also an open action, the open action
will be triggered first.

• PdfName.C– the action will be performed when the page is closed, for instance when a user
navigates away from it by going to the next or previous page, or by clicking a link that moves
away from this page.

There are more types of additional actions, especially in the context of interactive forms. Those
actions are out of the scope of this tutorial and will be discussed in a tutorial about forms. We’ll
finish this chapter by looking at some writer properties.

Writer properties

In one of the previous examples, we added somemetadata to a PdfDocumentInfo object. We obtained
this object from the PdfDocument using the getDocumentInfo() method. This PdfDocumentInfo

Chapter 7: Handling events; setting viewer preferences and writer properties 210

object corresponds with the info dictionary of the PDF; that’s a dictionary containing metadata
in the form of key-value pairs. This is how metadata was originally stored inside a PDF, but soon
it turned out that it was a better idea to store metadata as XML inside a PDF file. This is shown in
figure 7.16.

Figure 7.16: PDF and metadata

The XML is added as an uncompressed stream, which allows software that doesn’t understand PDF
syntax to extract the XML stream anyway and interpret it. The format of the XML is defined in the
eXtensible Metadata Platform (XMP) standard. This standard allows much more flexibility than a
simple key-value pair dictionary.

XMP metadata

When you create a document, you can create your own XMP metadata using the XMPMeta class and
then add this metadata to the PdfDocument by passing it as a parameter with the setXmpMetadata()
method. But you can also ask iText to create the metadata automatically, based on the entries in the
info dictionary. That’s what we did in the Metadata¹¹⁴ example.

¹¹⁴http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-7#2590-c07e12_metadata.java

http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-7#2590-c07e12_metadata.java
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-7#2590-c07e12_metadata.java

Chapter 7: Handling events; setting viewer preferences and writer properties 211

1 public void createPdf(String dest) throws IOException {

2 PdfDocument pdf = new PdfDocument(

3 new PdfWriter(dest,

4 new WriterProperties()

5 .addXmpMetadata()

6 .setPdfVersion(PdfVersion.PDF_1_6)));

7 PdfDocumentInfo info = pdf.getDocumentInfo();

8 info.setTitle("The Strange Case of Dr. Jekyll and Mr. Hyde");

9 info.setAuthor("Robert Louis Stevenson");

10 info.setSubject("A novel");

11 info.setKeywords("Dr. Jekyll, Mr. Hyde");

12 info.setCreator("A simple tutorial example");

13 Document document = new Document(pdf);

14 document.add(new Paragraph("Mr. Jekyl and Mr. Hyde"));

15 document.close();

16 }

We create a WriterProperties object (line 4) that is used as a second parameter of the PdfWriter
class (line 3).We use the addXmpMetadata()method (line 5) to instruct iText to create an XMP stream
based on the metadata added to the PdfDocumentInfo object: the title (line 8), the author (line 9), the
subject (line 10), the keywords (line 11), and the creator application (line 12). The producer, creation
time and modification time are set automatically. You can’t change them.

iText 5 generated PDF 1.4 files by default. In some cases, this version was changed auto-
matically when you used specific functionality, For instance: when using full compression,
the version was changed to PDF 1.5. Full compression means that the cross-reference table
and possibly some indirect objects will be compressed. That wasn’t possible in PDF 1.4.
iText 7 creates PDF 1.7 files (ISO-32000-1) by default. In the previous example, we changed
the version to PDF 1.6 using the setPdfVersion() method on the WriterProperties.

You can also change the compression in the WriterProperties.

Compression

In one of the event handler examples, we created a document with an image as background. The
size of this PDF was 134 KB. In figure 7.17, you see another version of a document with the exact
same content. The size of that PDF is only 125 KB.

Chapter 7: Handling events; setting viewer preferences and writer properties 212

Figure 7.17: PDF and compression

This difference in size is caused by the way some content is stored inside the PDF. For small
files, without many objects, the effect of full compression won’t be significant. All content streams
with PDF syntax are compressed by default by iText. Starting with PDF 1.5, more objects can be
compressed, but that doesn’t always make sense. A fully compressed file can count more bytes than
an ordinary PDF 1.4 file if the PDF consists of only a dozen objects. The effect is more significant
the more objects are needed in the PDF. If you plan to create large PDF files with many pages and
many objects, you should take a look at the Compressed¹¹⁵ example.

1 PdfDocument pdf = new PdfDocument(new PdfWriter(dest,

2 new WriterProperties().setFullCompressionMode(true)));

Once again, we use the WriterProperties object, now in combination with the setFullCom-

pressionMode() method. There’s also a setCompressionLevel() method that allows you to set a
compression level ranging from 0 (best speed) to 9 (best compression), or you can set it to the default
value -1.

We’ll conclude this chapter with a small encryption example.

Encryption

There are two ways to encrypt a PDF file. You can encrypt a PDF file using the public key of a
public/private key pair. In that case, the PDF can only be viewed by the person who has access to
the corresponding private key. This is very secure.

Using passwords is another way to encrypt a file. You can define two passwords for a PDF file: an
owner password and a user password.

If a PDF is encrypted with an owner password, the PDF can be opened and viewed without that
password, but some permissions can be in place. In theory, only the person who knows the owner
password can change the permissions.

The concept of protecting a document using only an owner password is flawed. Many tools,
including iText, can remove an owner password if there’s no user password in place.

¹¹⁵http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-7#2591-c07e13_compressed.java

http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-7#2591-c07e13_compressed.java
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-7#2591-c07e13_compressed.java

Chapter 7: Handling events; setting viewer preferences and writer properties 213

If a PDF is also encrypted with a user password, the PDF can’t be opened without a password. Figure
7.18 shows what happens when you try to open such a file.

Figure 7.18: A PDF that requires a password

The document only opens when we pass one of the two passwords, the user password in which case
the permissions will be in place, or the owner password inwhich case we can change the permissions.

Figure 7.19: A secured PDF

As we can see in the Encrypted¹¹⁶ example, the passwords and the permissions were defined using
WriterProperties.

¹¹⁶http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-7#2592-c07e14_encrypted.java

http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-7#2592-c07e14_encrypted.java
http://developers.itextpdf.com/content/itext-7-building-blocks/examples/chapter-7#2592-c07e14_encrypted.java

Chapter 7: Handling events; setting viewer preferences and writer properties 214

1 byte[] user = "It's Hyde".getBytes();

2 byte[] owner = "abcdefg".getBytes();

3 PdfDocument pdf = new PdfDocument(new PdfWriter(dest,

4 new WriterProperties().setStandardEncryption(user, owner,

5 EncryptionConstants.ALLOW_PRINTING

6 | EncryptionConstants.ALLOW_ASSEMBLY,

7 EncryptionConstants.ENCRYPTION_AES_256)));

We define a user password and an owner password as a byte array (line 1-2). Those are the first
two parameters of the setStandardEncryption() method. The third parameter can be used to
define permissions. In our example, we allow printing and document assembly –that is: splitting
and merging. Finally, we define the encryption algorithm: AES 256.

The possible values for the permissions are:

• ALLOW_DEGRADED_PRINTING– Allow printing at a low resolution only,
• ALLOW_PRINTING– Allow printing at a low as well as at high resolution,
• ALLOW_SCREENREADERS– Allows the extraction of text for accessibility purposes,
• ALLOW_COPY– Allow copy/paste of text and images,
• ALLOW_FILL_IN– Allow filling out interactive form fields,
• ALLOW_MODIFY_ANNOTATIONS– Allow the modification of text annotations and filling out
interactive form fields,

• ALLOW_ASSEMBLY– Allow the insertion, rotation and deletion of pages, as well as the creation
of outline items and thumbnail images,

• ALLOW_MODIFY_CONTENTS– Allow the modification of the document by operations other than
those controlled by ALLOW_FILL_IN, ALLOW_MODIFY_ANNOTATIONS, and ALLOW_ASSEMBLY.

If you want to combine different permissions, always use the “or” (|) operator because some
permissions overlap. For instance ALLOW_PRINTING sets the bit for printing as well as for degraded
printing.

iText supports the following encryption algorithms, to be used for the fourth parameter:

• STANDARD_ENCRYPTION_40– encrypt using the 40-bit alleged RC4 (ARC4) algorithm,
• STANDARD_ENCRYPTION_128– encrypt using the 128-bit alleged RC4 (ARC4) algorithm.
• AES_128– encrypt using the 128-bit AES algorithm,
• AES_256– encrypt using the 256-bit AES algorithm.

You can also add one of the following extra parameters to the encryption algorithm using an “or”
(|) operation:

Chapter 7: Handling events; setting viewer preferences and writer properties 215

• DO_NOT_ENCRYPT_METADATA– if you want to avoid that the metadata will also be encrypted.
Encrypting the metadata doesn’t make sense if you want the metadata to be accessible for
your document management system, but be aware that this option is ignored when using
40-bit ARC encryption.

• EMBEDDED_FILES_ONLY– if you want to encrypt the embedded files only, and not the actual
PDF document. For instance: if the PDF document itself is a wrapper for other documents,
such as a cover note explaining that it’s not possible to open the document without having
the right credentials at hand immediately. In this case the PDF is an unencrypted wrapper for
encrypted documents.

All of these parameters can also be used for the setPublicKeyEncryption() method, in which case
the first parameter is an array of Certificate objects, the second parameter an array with the
corresponding permissions, and the third parameter the encryption mode –that is: the encryption
algorithm and the option to not encrypt the metadata and to encrypt only the embedded files.

With this last example, we have given away the punch line of The Strange Case of Dr. Jekyll and
Mr. Hyde: “Dr. Jekyll has a secret: he changes into Mr. Hyde.” But you probably already knew that
after all the Jekyll and Hyde examples we’ve made in this book.

Summary

In this final chapter of the “iText 7: Building Blocks”, we have covered the IEventHandler func-
tionality that allows us to take action when specific events –such as starting, ending, inserting, and
removing a page– occur. We looked at viewer preferences that allowed us to tell PDF viewers how
to present the document when we open it. We could also use the mechanism of viewer preferences
to set some printer preferences. Finally, we looked at some writer properties. We discussed these
properties in the context of metadata, compression, and encryption.

We’ve covered a lot of ground in this tutorial. You should now have a clear understanding of the basic
building blocks that are available when you want to create a document from scratch. You also know
how to establish document interactivity (actions) and navigation (links, destinations, bookmarks).
You know themechanism to handle events, and you can set viewer preferences andwriter properties.
You’re all set to create some really cool PDFs.

Obviously, this is not the definitive guide on iText. In future tutorials, we’ll also take a look under
the hood, examining the PDF syntax that is used to create the content stream of a page and the
structure of a PDF document. We’ll spend a tutorial on forms, how to create them and how to
use forms as templates. We’ll create a tutorial on manipulating existing documents by adding and
removing content. We’ll also update the old tutorial on digital signatures. We don’t have an ETA on
those tutorials, but make sure to check our Books¹¹⁷ page on a regular basis.

THE END

¹¹⁷http://developers.itextpdf.com/books

http://developers.itextpdf.com/books
http://developers.itextpdf.com/books

Appendix
A: AbstractElement methods

Method Text / Link Image Tab AreaBreak

addStyle() Yes Yes No No
setHyphenation() Yes No No No
setSplitCharacters() Yes No No No
setHorizontalAlignment() No Yes No No
setTextAlignment() No No No No
setHeight() No Yes No No
setWidth() No Yes No No
setWidthPercent() No Yes No No
setBorder() Yes Yes* No No
setBorderLeft() Yes Yes* No No
setBorderRight() Yes Yes* No No
setBorderTop() Yes Yes* No No
setBorderBottom() Yes Yes* No No
setBackgroundColor() Yes Yes* No No
setFont() Yes No No No
setFontSize() Yes No No No
setFontColor() Yes No No No
setBold() Yes No No No
setItalic() Yes No No No
setLineThrough() Yes No No No
setUnderline() Yes No No No
setTextRenderingMode() Yes No No No
setStrokeColor() Yes No No No
setStrokeWidth() Yes No No No
setCharacterSpacing() Yes No No No
setWordSpacing() Yes No No No
setFontKerning() Typ No No No
setFontScript() Typ No No No
setBaseDirection() Typ No No No
setRelativePosition() Yes Yes No No
setFixedPosition() No Yes No No
setAction() Yes Yes No No
setDestination() Yes Yes No No

Appendix 217

In the Image column, some methods have an asterisk next to “Yes”. The asterisk means that you may
not notice that the method works because the image isn’t transparent. For instance: it doesn’t make
sense to set a background color for an opaque image: the image covers the background completely.
The same is true for borders.

B: BlockElement methods

Method Paragraph Div List Table Cell LineSeparator

addStyle() Yes Yes Yes Yes Yes Yes
setHyphenation() Yes Yes Yes Yes Yes No
setSplitCharacters() Yes Yes Yes Yes Yes No
setHorizontalAlignment() Yes Yes Yes Yes No* Yes
setVerticalAlignment() No No No No Yes No
setRotationAngle() Yes Yes Yes No Yes No
setTextAlignment() Yes Yes Yes Yes Yes No
setKeepTogether() Yes Yes Yes Yes Yes No
setKeepWithNext() Yes* Yes* Yes* Yes* No* Yes*
setHeight() Yes Yes Yes No Yes No
setWidth() Yes Yes Yes Yes No* Yes
setWidthPercent() Yes Yes Yes Yes No* Yes
setMargin() Yes Yes Yes Yes Yes Yes
setMargins() Yes Yes Yes Yes Yes Yes
setMarginLeft() Yes Yes Yes Yes Yes Yes
setMarginRight() Yes Yes Yes Yes Yes Yes
setMarginTop() Yes Yes Yes Yes Yes Yes
setMarginBottom() Yes Yes Yes Yes Yes Yes
setPadding() Yes Yes Yes No Yes No
setPaddings() Yes Yes Yes No Yes No
setPaddingLeft() Yes Yes Yes No Yes No
setPaddingRight() Yes Yes Yes No Yes No
setPaddingTop() Yes Yes Yes No Yes No
setPaddingBottom() Yes Yes Yes No Yes No
setBorder() Yes Yes Yes Yes Yes** No
setBorderLeft() Yes Yes Yes Yes Yes** No
setBorderRight() Yes Yes Yes Yes Yes** No
setBorderTop() Yes Yes Yes Yes Yes** No
setBorderBottom() Yes Yes Yes Yes Yes** No
setBackgroundColor() Yes Yes Yes Yes Yes Yes
setFont() Yes Yes Yes Yes Yes No
setFontSize() Yes Yes Yes Yes Yes No
setFontColor() Yes Yes Yes Yes Yes No
setBold() Yes Yes Yes Yes Yes No
setItalic() Yes Yes Yes Yes Yes No

Appendix 218

Method Paragraph Div List Table Cell LineSeparator

setLineThrough() Yes Yes Yes Yes Yes No
setUnderline() Yes Yes Yes Yes Yes No
setTextRenderingMode() Yes Yes Yes Yes Yes No
setStrokeColor() Yes Yes Yes Yes Yes No
setStrokeWidth() Yes Yes Yes Yes Yes No
setSpacingRatio() Yes Yes Yes Yes Yes No
setCharacterSpacing() Yes Yes Yes Yes Yes No
setWordSpacing() Yes Yes Yes Yes Yes No
setFontKerning() Typ Typ Typ Typ Typ No
setFontScript() Typ Typ Typ Typ Typ No
setBaseDirection() Typ Typ Typ Typ Typ No
setRelativePosition() Yes Yes Yes Yes Yes No
setFixedPosition() Yes Yes Yes Yes Yes No
setAction() Yes Yes Yes Yes Yes Yes
setDestination() Yes Yes Yes Yes Yes Yes

There’s an asterisk added to the “Yes” value of setKeepWithNext() because this method only works
for objects added directly to the Document. It won’t work for nested objects.

There’s an asterisk added to the “No” value for some methods of the Cell method because these
methods can’t be used when the Cell is part of a Table. But you can also use a Cell outside the
context of a Table. In that case, you can define the width and the horizontal alignment. There are
two asterisks next to the Yes for the border methods of the Cell. Borders are drawn at the level of
the Table. Changing the border of a Cell changes a line in the grid of the Table, but you can’t use
the setBorder() methods if you are using a Cell outside a Table.

C: RootElement methods

Method Document Canvas

setHyphenation() Yes Yes
setSplitCharacters() Yes Yes
setHorizontalAlignment() No No
setTextAlignment() Yes Yes
setHeight() No No
setWidth() No No
setWidthPercent() No No
setBorder() No No
setBorderLeft() No No
setBorderRight() No No
setBorderTop() No No
setBorderBottom() No No
setBackgroundColor() No No

Appendix 219

Method Document Canvas

setFont() Yes Yes
setFontSize() Yes Yes
setFontColor() Yes Yes
setBold() Yes Yes
setItalic() Yes Yes
setLineThrough() Yes Yes
setUnderline() Yes Yes
setTextRenderingMode() Yes Yes
setStrokeColor() Yes Yes
setStrokeWidth() Yes Yes
setCharacterSpacing() Yes Yes
setWordSpacing() Yes Yes
setFontKerning() Typ Typ
setFontScript() Typ Typ
setBaseDirection() Typ Typ
setRelativePosition() No No
setFixedPosition() No No
setDestination() No No
showTextAligned() Yes Yes
showTextAlignedKerned() Typ Typ
add(BlockElement) Yes Yes
add(Image) Yes Yes
add(AreaBreak) Yes No
setMargins() Yes No
setLeftMargin() Yes No
setRightMargin() Yes No
setTopMargin() Yes No
setBottomMargin() Yes No

	Table of Contents
	Before we start: Overview of the classes and interfaces
	Chapter 1: Introducing the PdfFont class
	Creating a PdfFont object
	Embedding a font
	Choosing the appropriate encoding
	Font properties
	Reusing styles
	Summary

	Chapter 2: Working with the RootElement
	Using Canvas to add content inside a Rectangle
	Converting text to PDF with the Document class
	Changing the Document renderer
	Switching between different renderers
	Flushing the Document renderer
	Changing content that was previously added
	Adding a Page X of Y footer
	Adding text with showTextAligned
	Using iText 7 add-ons
	Improving the typography
	Summary

	Chapter 3: Using ILeafElement implementations
	Working with Tab elements
	Limitations of the Tab functionality
	Adding links
	Extra methods available in the Text class
	Introducing images
	Changing the position and width of an image
	Adding an image to an existing PDF
	Resizing and rotating an image
	Image types supported by iText
	Summary

	Chapter 4: Adding AbstractElement objects (part 1)
	Grouping elements with the Div class
	Drawing horizontal lines with the LineSeparator object
	Keeping content together
	Changing the leading of a Paragraph
	Creating a custom renderer
	Lists and list symbols
	Adding ListItem objects to a List
	Nested lists
	Summary

	Chapter 5: Adding AbstractElement objects (part 2)
	My first table
	Table and cell Alignment
	Row and cell height
	Cell margins and padding
	Table and cell borders
	Nesting tables
	Repeating headers and footers
	Images in tables
	Splitting cells versus keeping content together
	Table and cell renderers
	Tables and memory use
	Summary

	Chapter 6: Creating actions, destinations, and bookmarks
	URI actions
	Named actions
	GoTo actions
	Named destinations
	Remote GoTo actions
	JavaScript actions
	Chained actions
	Destinations
	Link annotations
	Outlines aka bookmarks
	Color and style of the outline elements.
	Summary

	Chapter 7: Handling events; setting viewer preferences and writer properties
	Implementing the IEventHandler interface
	Adding a background and text to every page
	Solving the ``Page X of Y'' problem
	Adding a transparent background image
	Insert and remove page events
	Page labels
	Page display and page mode
	Viewer preferences
	Printer preferences
	Open action and additional actions
	Writer properties
	Summary

	Appendix
	A: AbstractElement methods
	B: BlockElement methods
	C: RootElement methods

