
M A N N I N G

Bruno Lowagie

SECOND EDITION

Covers iText 5

Praise for the First Edition

Each aspect is explained with numerous examples that can be applied to real-world
problems right away.

 —Ulf Ditmer, JavaRanch

Any developer who is making serious use of iText would be a fool not to buy this book.
—Dave Gilbert, jfree.org

Thorough and complete ... will be a long-running, valuable resource for iText and PDF.
—Alan Dennis

Software Architect, MyFamily.com

One of the best technical books I have ever read! Great work!
—Oliver Zeigermann

Technical Trainer, CoreMedia AG

I wholeheartedly recommend it.
 —Doug James
 eReporting Team Lead, Benefitfocus.com, Inc.

Impressive! It provides depth without all the noise.
—Justin Lee, President, Antwerkz Inc.

Valuable to any developer using PDF.
—Stuart Caborn, Consultant, Thoughtworks
Licensed to Bruno Lowagie <bruno@lowagie.com>

Licensed to Bruno Lowagie <bruno@lowagie.com>

iText in Action
Second Edition

BRUNO LOWAGIE

M A N N I N G
Greenwich

(74° w. long.)
Licensed to Bruno Lowagie <bruno@lowagie.com>

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
180 Broad Street
Suite 1323
Stamford, CT 06901
Email: orders@manning.com

©2011 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books are
printed on paper that is at least 15 percent recycled and processed without the use of elemental
chlorine.

Manning Publications Co.Development editor:Katharine Osborne
180 Broad Street, Suite 1323 Copyeditor: Andy Carroll
Stamford, CT 06901 Cover designer: Marija Tudor

Typesetter: Gordan Salinovic

ISBN 9781935182610
Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 – MAL – 15 14 13 12 11 10
Licensed to Bruno Lowagie <bruno@lowagie.com>

http://www.manning.com

 To Ingeborg, Inigo, and Jago
Licensed to Bruno Lowagie <bruno@lowagie.com>

Licensed to Bruno Lowagie <bruno@lowagie.com>

brief contents
PART 1 CREATING PDF DOCUMENTS FROM SCRATCH1

1 ■ Introducing PDF and iText 3

2 ■ Using iText’s basic building blocks 20

3 ■ Adding content at absolute positions 57

4 ■ Organizing content in tables 93

5 ■ Table, cell, and page events 122

PART 2 MANIPULATING EXISTING PDF DOCUMENTS...............157

6 ■ Working with existing PDFs 159

7 ■ Making documents interactive 194

8 ■ Filling out interactive forms 236

PART 3 ESSENTIAL ITEXT SKILLS..281

9 ■ Integrating iText in your web applications 283

10 ■ Brightening your document with color and images 317

11 ■ Choosing the right font 349

12 ■ Protecting your PDF 380
vii

Licensed to Bruno Lowagie <bruno@lowagie.com>

BRIEF CONTENTSviii
PART 4 UNDER THE HOOD...411

13 ■ PDFs inside-out 413

14 ■ The imaging model 452

15 ■ Page content and structure 493

16 ■ PDF streams 526
Licensed to Bruno Lowagie <bruno@lowagie.com>

contents
preface xvii
preface to the first edition xviv
acknowledgments xxi
about this book xxiii
about the title xxviii
about the cover illustration xxix

PART 1 CREATING PDF DOCUMENTS FROM SCRATCH......1

1 Introducing PDF and iText 3
1.1 Things you can do with PDF 4
1.2 Working with the examples in this book 6
1.3 Creating a PDF document in five steps with iText 8

Creating a new Document object 9 ■ Getting a PdfWriter
instance 12 ■ Opening the Document 13 ■ Adding
content 15 ■ Closing the Document 17

1.4 Summary 19
ix

Licensed to Bruno Lowagie <bruno@lowagie.com>

CONTENTSx
2 Using iText’s basic building blocks 20
2.1 Illustrating the examples with a real-world database 21
2.2 Adding Chunk, Phrase, Paragraph, and List objects 22

The Chunk object: a String, a Font, and some attributes 23 ■ The Phrase
object: a List of Chunks with leading 25 ■ Paragraph object: a Phrase
with extra properties and a newline 30 ■ Distributing text over different
lines 34 ■ The List object: a sequence of Paragraphs called ListItem 37
The DrawInterface: vertical position marks, separators, and tabs 41

2.3 Adding Anchor, Image, Chapter, and Section objects 46
The Anchor object: internal and external links 47 ■ Chapter and
Section: get bookmarks for free 49 ■ The Image object: adding raster
format illustrations 51 ■ Summary 56

3 Adding content at absolute positions 57
3.1 Introducing the concept of direct content 58

Direct content layers 58 ■ Graphics state and text state 60 ■ A real-
world database: three more tables 62

3.2 Adding text at absolute positions 67
Convenience method: PdfContentByte.showTextAligned() 67
Convenience method: ColumnText.showTextAligned() 70

3.3 Working with the ColumnText object 74
Using ColumnText in text mode 75 ■ Using ColumnText in
composite mode 81

3.4 Creating reusable content 84
Image XObjects 84 ■ The PdfTemplate object 87

3.5 Summary 92

4 Organizing content in tables 93
4.1 Constructing tables 94

Your first PdfPTable 94 ■ PdfPTable properties 95

4.2 Changing the properties of a cell 98
PdfPCell in text mode 99 ■ PdfPCell in composite mode 107

4.3 Dealing with large tables 112
Repeating headers and footers 112 ■ Splitting tables 113
Memory management for LargeElement implementations 115

4.4 Adding a table at an absolute position 116
Working with writeSelectedRows() 116 ■ Wrapping tables in
columns 119

4.5 Summary 121
Licensed to Bruno Lowagie <bruno@lowagie.com>

CONTENTS xi
5 Table, cell, and page events 122
5.1 Decorating tables using table and cell events 123

Implementing the PdfPTableEvent interface 123 ■ Implementing the
PdfPCellEvent interface 125 ■ Combining table and cell events 128

5.2 Events for basic building blocks 133
Generic Chunk functionality 134 ■ Paragraph events 138 ■ Chapter
and Section events 138 ■ Page order and blank pages 141

5.3 Overview of the page boundaries 142
The media box 143 ■ The crop box 145 ■ Other page boundaries 147

5.4 Adding page events to PdfWriter 148
Adding a header and a footer 148 ■ Solving the “page X of Y”
problem 150 ■ Adding a watermark 152 ■ Creating a
slideshow 154

5.5 Summary 155

PART 2 MANIPULATING EXISTING PDF DOCUMENTS ...157

6 Working with existing PDFs 159
6.1 Accessing an existing PDF with PdfReader 160

Retrieving information about the document and its pages 160
Reducing the memory use of PdfReader 163

6.2 Copying pages from existing PDF documents 164
Importing pages 165 ■ Scaling and superimposing pages 167
N-up copying and tiling PDF documents 170

6.3 Adding content with PdfStamper 173
Adding content at absolute positions 173 ■ Creating a PDF in multiple
passes 175 ■ Adding company stationery to an existing document 176
Inserting pages into an existing document 178 ■ Filling out a PDF
form 179

6.4 Copying pages with PdfCopy 186
Concatenating and splitting PDF documents 187 ■ PdfCopy
versus PdfSmartCopy 189 ■ Concatenating forms 191

6.5 Summary 192

7 Making documents interactive 194
7.1 Introducing actions 195

Document-navigation actions 195 ■ Explicit destinations 199
JavaScript in PDF documents 202 ■ More actions 205
Licensed to Bruno Lowagie <bruno@lowagie.com>

CONTENTSxii
7.2 Adding bookmarks 208
Creating bookmarks for a new document 208 ■ Retrieving
bookmarks from an existing document 210 ■ Adding bookmarks to
an existing document 212 ■ Concatenating documents with
bookmarks 213 ■ Open parameters 214

7.3 Creating annotations 215
Text annotations 215 ■ Link annotations 220 ■ File
attachments 222 ■ Stamp, line, and rectangle annotations 224

7.4 JavaScript programming in PDF 226
Triggering JavaScript from a button 226 ■ Showing and hiding
an annotation 227 ■ A popup triggered by a button that doesn’t
need to be pushed 229 ■ Additional actions 231 ■ A PDF
calculator 232

7.5 Summary 234

8 Filling out interactive forms 236
8.1 Introducing AcroForms 237
8.2 Selecting states or trigger actions with button fields 238

Radio fields and radio buttons 238 ■ Check boxes 240
Pushbuttons 241

8.3 Filling in data with text fields 244
Creating text fields 244 ■ Filling out text fields 247 ■ Text fields
and fonts 249 ■ Validating text fields 252

8.4 Selecting options with choice fields 252
Creating lists and combo boxes 253 ■ Manipulating lists and
combo boxes 255

8.5 Refining the form-filling process 255
Choosing field names 256 ■ Optimizing the filling process 257
Partial form flattening 258 ■ Customized form flattening 260

8.6 Introducing the XML Forms Architecture (XFA) 264
Static XFA forms 265 ■ Dynamic XFA forms 270

8.7 Preserving the usage rights of Reader-enabled forms 275
Reader-enabling a form using Adobe Acrobat 276 ■ Filling out
Reader-enabled forms using iText 277

8.8 Summary 278
Licensed to Bruno Lowagie <bruno@lowagie.com>

CONTENTS xiii
PART 3 ESSENTIAL ITEXT SKILLS281

9 Integrating iText in your web applications 283
9.1 Creating a PDF from a servlet 284

The five steps of PDF creation in a web application 284 ■ Troubleshooting
web applications 286 ■ Generating a PDF from a JSP page 291

9.2 Making a form “web ready” 293
Adding a submit button to an existing form 293 ■ Filling out a form on
the server side 298 ■ FDF and XFDF in web applications 299

9.3 JavaScript communication between HTML and PDF 304
9.4 Creating basic building blocks from HTML and XML 307

Parsing HTML 308 ■ Parsing XML 312

9.5 Summary 315

10 Brightening your document with color and images 317
10.1 Working with the iText color classes 318

Device colors 318 ■ Spot colors 320 ■ Painting patterns 321
Transparency 325

10.2 Overview of supported image types 329
JPEG, JPEG2000, GIF, PNG, BMP, WMF, TIFF, and JBIG2 330
Creating a raw image 332 ■ CCITT compressed images 333
Creating barcodes 334 ■ Working with java.awt.Image 338
Compressing images 338 ■ Images consisting of multiple pages or
frames 340

10.3 Making images transparent 341
Images and transparency 341 ■ Masking images 344 ■ Clipping
images 345

10.4 Summary 348

11 Choosing the right font 349
11.1 Getting fonts from a file 349

Font files and their extensions 350 ■ Type 1 fonts 352 ■ TrueType
and OpenType fonts 353

11.2 Examining font types from a PDF perspective 354
Simple fonts 355 ■ Composite fonts 357
Licensed to Bruno Lowagie <bruno@lowagie.com>

CONTENTSxiv
11.3 Using fonts in iText 359
Overview of the Font classes 359 ■ Type 3 fonts 361 ■ CJK
fonts 363 ■ Writing from right to left 366 ■ Advanced
typography 369

11.4 Automating font creation and selection 373
Getting a Font from the FontFactory 374 ■ Automatic font
selection 377

11.5 Summary 379

12 Protecting your PDF 380
12.1 Adding metadata 381

The info dictionary 381 ■ The Extensible Metadata Platform
(XMP) 383

12.2 PDF and compression 385
Compression levels 385 ■ Compressing and decompressing existing
files 386

12.3 Encrypting a PDF document 387
Creating a password-encrypted PDF 387 ■ Public-key
encryption 390

12.4 Digital signatures, OCSP, and timestamping 395
Creating an unsigned signature field 395 ■ Signing a
PDF 396 ■ Adding multiple signatures 399 ■ Verifying the
signatures in a document 402 ■ Creating the digest and signing
externally 403 ■ CRLs, OCSP, and timestamping 405 ■ PDF
Advanced Electronic Signatures (PAdES) profiles 409

12.5 Summary 410

PART 4 UNDER THE HOOD...411

13 PDFs inside-out 413
13.1 PDF, why and how? 414

The ancestors of PDF 414 ■ The history of PDF 414 ■ PDF as
an ISO standard 418 ■ PDF/X, PDF/A, PDF/E, PDF/UA, and
other types of PDF 419

13.2 Understanding the Carousel Object System 424
Basic PDF objects 424 ■ The PDF file structure 426 ■ Climbing
up the object tree 432
Licensed to Bruno Lowagie <bruno@lowagie.com>

CONTENTS xv
13.3 Exploring the root of a PDF file 434
Page layout, page mode, and viewer preferences 435 ■ Pages and page
labels 441 ■ Outlines, destinations, and names 446 ■ AcroForms
revisited 447

13.4 Summary 451

14 The imaging model 452
14.1 Examining the content stream 453
14.2 Path construction and painting operators 454

Constructing paths 454 ■ Painting and clipping paths 456
Convenience methods to draw shapes 459

14.3 Overview of the graphics state methods 460
Line characteristics 461 ■ Colors 464 ■ Changing the
coordinate system 466 ■ Affine transformations using Java 470

14.4 Overview of the text and text state methods 471
Text state operators 471 ■ Text-positioning and text-showing
operators 472 ■ Convenience methods for text 476

14.5 Using java.awt.Graphics2D 477
Drawing content to PdfGraphics2D 478 ■ Drawing text to
PdfGraphics2D 483

14.6 Summary 492

15 Page content and structure 493
15.1 Making content visible or invisible 493

Optional content groups 494 ■ Adding structure to layers 495
Optional content membership 500 ■ Changing the state of a layer with
an action 501vOptional content in XObjects and annotations 503

15.2 Working with marked content 506
Object data 506 ■ Section 508 and accessibility 508 ■ Adding
structure 511

15.3 Parsing PDFs 514
Examining the content stream with PRTokeniser 514 ■ Processing
content streams with PdfContentStreamProcessor 517 ■ Extracting text
with PdfReaderContentParser and PdfTextExtractor 519 ■ Finding text
margins 523 ■ Extracting images 524

15.4 Summary 525
Licensed to Bruno Lowagie <bruno@lowagie.com>

CONTENTSxvi
16 PDF streams 526
16.1 Finding and replacing image and font streams 526

Adding a special ID to an Image 527 ■ Resizing an image in an existing
document 528 ■ Listing the fonts used 529 ■ Replacing a font 531

16.2 Embedding files into a PDF 533
File attachment annotations 533 ■ Document-level
attachments 535 ■ Go to embedded file action 536 ■ PDF
packages, portable collections, or portfolios 538

16.3 Integrating rich media 545
Movie annotations 545 ■ 3D annotations 546 ■ Embedding
Flash into a PDF 548 ■ Establishing communication between Flex
and PDF 555

16.4 Summary 558

appendix A Bibliography 563
appendix B Useful links 565

index 569
Licensed to Bruno Lowagie <bruno@lowagie.com>

preface
In the summer of 2009, Manning Publications contacted me with the offer to write a
revision of the first edition of iText in Action, published in 2007.

 I initially refused, much to the surprise of the publisher. He put forward several
arguments in favor of a second edition: the book had received good reviews, the first
printing sold out in about a year, and the book was still selling well, in spite of the fact
that it was almost three years old and that its content was probably somewhat outdated.

 So I had to clarify: “I want to write a second edition, but I don’t want it to be a revi-
sion.” I’m always disappointed when a revised version of a book is a rehash of the first
version, with only a limited amount of new material. I wanted to write a book that was
valuable for developers who already owned the first edition.

 I had accumulated a series of new examples, demonstrating techniques that were
either presented differently, or were missing from the first edition. Moreover, I had
been giving iText training sessions for different companies, and I had discovered that
the order of the chapters in the first book wasn’t ideal. The content needed to be reor-
ganized, and the only good way to achieve that was to rewrite the book from scratch.

 I realized that this meant more work than merely writing a revision, and although
hard work doesn’t scare me, I hesitated. For many companies and families, 2008 had
been the year of the economic crisis, but that was the least of my concerns. For me, it
was the year my twelve-year-old son was diagnosed with bone cancer. Suddenly all pri-
orities changed.

 Eighteen chemotherapy treatments later, with major surgery in between to replace
his knee by a prosthesis, life wasn’t the same as before. I received plenty of support
xvii

Licensed to Bruno Lowagie <bruno@lowagie.com>

PREFACExviii
from the iText community, and I want to thank everyone for being patient with me.
Unfortunately, there were some who emailed me, demanding a solution for their prob-
lem for free, not realizing that I had far more important personal worries than their
technical problems.

 In the end, I decided to accept the offer from Manning and write a second book
about iText, because it was an opportunity, and probably the best chance I would get
to pick up the iText thread. There’s no better way to make an inventory of a product’s
functionality than to write a book about it. Some new iText features were written to fill
gaps I discovered while writing the book. The creative process was also very inspiring;
some recently added enhancements started off as examples for the book, and eventu-
ally made it into the main iText release.

 Looking back, I’m glad I took up the challenge, and I’m happy with the result.
This second edition is more advanced than the first edition, aiming at the more expe-
rienced developer who wants to know more about the Portable Document Format,
not just about iText. I can’t hide that I’m very passionate about PDF, and I hope this
book transmits this passion to as many readers as possible.
Licensed to Bruno Lowagie <bruno@lowagie.com>

preface to the first edition
I have lost count of the number of PCs I have worn out since I started my career as a
software developer—but I will never forget my first computer.

 I was only 12 years old when I started programming in BASIC. I had to learn Eng-
lish at the same time because there simply weren’t any books on computer program-
ming in my mother tongue (Dutch). This was in 1982. Windows didn’t exist yet; I
worked on a TI99/4A home computer from Texas Instruments. When I told my friends
at school about it, they looked at me as if I had just been beamed down from the Star-
ship Enterprise.

 Two years later, my parents bought me my first personal computer: a Tandy/Radio
Shack TRS80/4P. As the P indicates, it was supposed to be a portable computer, but in
reality it was bigger than my mother’s sewing machine. It could be booted from a hard
disk, but I didn’t have one; nor did I have any software besides the TRSDOS and its
BASIC interpreter. By the time I was 16, I had written my own word-processing pro-
gram, an indexed flat-file database system, and a drawing program—nothing fancy,
considering the low resolution of the built-in, monochrome green computer screen.

 I don’t remember exactly what happened to me at that age—maybe it was my
delayed discovery of girls—but it suddenly struck me that I was becoming a first-class
nerd. So I made a 180-degree turn, studying Latin and math in high school and taking
evening classes at a local art school. I decided that I wanted to become an artist
instead of going to college. As a compromise with my parents, I studied civil architec-
tural engineering at Ghent University. In my final year, I bought myself a Compaq
portable computer to write my master’s thesis. It was like finding a long-lost friend!
xix

Licensed to Bruno Lowagie <bruno@lowagie.com>

PREFACE TO THE FIRST EDITIONxx
After I earned my degree as an architect, I decided that it was time to return to the
world of computers.

 In 1996 I enrolled in a program that would retrain me as a software engineer. I
learned and taught a brand-new programming language, Java. During my apprentice-
ship, I was put in charge of an experimental broadband Internet project. It was my
first acquaintance with the web. This expertise resulted in different assignments for
the Flemish government. One of my tasks was to write an R&D report on standard
internet-intranet tools for GIS applications. That’s when I wrote my first Java servlets.

 I returned to Ghent University as an employee in 1998. When I published my first
free/open source software library, I knew I had finally found my vocation. Now I have
had the chance to write a book about it. I tried to give this book the personal touch I
often miss when reading technical writings. I hope you will enjoy reading it as much as
I have enjoyed writing it.
Licensed to Bruno Lowagie <bruno@lowagie.com>

acknowledgments
I thought that writing this second edition would be easier than writing the first. I was
wrong. Yes, the process of writing itself was easier because I had the experience, but I
didn’t take into account how little free time I have now, compared to three years ago.
On top of that, different incidents have cost me handfuls of time, such as my now ex-
hosting provider which caused me to lose all the data on my dedicated server.

 I don’t know what I would have done without the support of my wife, Ingeborg Wil-
laert, and my children, Inigo and Jago, during those moments of despair. They always
remind me of what is really important in life, and that helps when faced with prob-
lems big and small. I want to thank them for that.

 iText wouldn’t be iText if it weren’t for the developers. In the first place, I would
like to thank Paulo Soares, who started working on iText in the summer of 2000 and
who has been contributing code ever since. Kudos to Xavier Le Vourch for the contin-
uous integration server he has set up for iText, and for the many code clean-up opera-
tions. Two other developers complete the list of project members on the SourceForge
pages of the iText project: Mark Storer, who was the technical editor of the first edi-
tion, and Kevin Day, who designed the functionality to extract text from PDF files.
Numerous people contributed valuable code, fixed bugs, added new features, and
posted useful answers on the mailing list. The list of names is too long to sum up.
Thank you all for making iText the library it is today!

 I want to thank Adobe’s PDF technical standards evangelist Leonard Rosenthol, for
sharing his insights on the PDF format; Adobe’s VP of engineering Bob Wulff; and last
xxi

Licensed to Bruno Lowagie <bruno@lowagie.com>

ACKNOWLEDGMENTSxxii
but not least, Adobe’s principal scientist Jim King, who reviewed and corrected sec-
tions 13.1 and 13.2.

 Special thanks go to Andrew Binstock, Kevin Brown, and Michael Bradbury. There
wouldn’t be any iText business without their help. I’m also grateful to Christophe Van-
geel, Evi Mellebeek, Frank Gielen, Peter Camps, Peter Myngheer, and Wouter De
Stecker for helping me understand the different aspects of doing business, and I want
to thank Stephan Janssen for organizing Devoxx.

 A Flemish “hartelijk bedankt” goes to all of my current and former colleagues at
Ghent University, especially to my fellow whiteboard artists, Johan Lauryssens, Cédric
Peirsegaele, and Peter Van de Voorde; to my former bosses, professor Geert De Soete
and Bernard Becue; to my current bosses, Danny Schellemans and Luc Verschraegen;
and to the rector and vice-rector of the University, professor Paul Van Cauwenberghe
and professor Luc Moens.

 I want to take advantage of these acknowledgment pages to thank my employer for
the flexibility I was offered while my son was treated for cancer.

 During the year my son was in the hospital, many people gave me the courage to
keep strong: William Alexander Segraves, Juancho Diaz, Ingrid Adriaens, Heidi
Naeye, Marleen Depaemelaere, Ines Bruyninckx, Liesje Berteloot, Tania Bruggeman,
Cathy De Kerf, Mieke Simoen, Wendy Jacobs, and many others.

 The theme of this book was inspired by the friends of the film festival in Ghent,
and I want to thank Wim De Witte for the excellent selection of movies presented
each year, and Daniella De Decker, for helping us enjoy as many movies as possible
during the festival.

 I would like to thank all the people at Manning Publications for giving me the
opportunity to write this book, including publisher Marjan Bace, Michael Stephens,
Katharine Osborne, Andy Carroll, Elizabeth Martin, Gordan Salinovic, and Mary Pier-
gies, as well as everyone else on the team who worked on my book.

 Sincere thanks to the people who reviewed my manuscript. Their remarks and sug-
gestions at different stages of development were invaluable to me in making this a bet-
ter book: Andrew Binstock, Mark Stephens, Marc Gravell, Leonardo Padula, Jim King,
Kevin Day, John S. Griffin, William A. Segraves, Alexis Pigeon, Paulo Soares, Thomas
Morgner, Michael Klink, Matt Michalak, Michael Niedermair, and Saicharan Manga
for completing a technical proofread of the manuscript shortly before it went to press.

 Finally, I want to thank you, the people who are using iText. You are the ones who
have kept me going! Many of you have sent me nice notes of appreciation. Thanks! I
couldn’t have written this book without your encouragement.

Licensed to Bruno Lowagie <bruno@lowagie.com>

about this book
This book will teach you about PDF, Adobe’s Portable Document Format, from a Java
developer’s point of view. You’ll learn how to use iText in a Java/J2EE application to
produce and manipulate PDF documents. Along the way, you’ll become acquainted
with interesting PDF features and discover e-document functionality you may not have
known about before.

Who should read this book?
This book is intended for Java developers who want to enhance their projects with
dynamic PDF generation or manipulation. It assumes you have some background in
Java programming.

 This book includes lots of ready-made solutions that can easily be adapted and inte-
grated into larger projects. For reasons of convenience, most of the examples are con-
structed as standalone command-line applications. If you want to run these examples
in a web application, you should know how to set up an application server, where to put
the necessary Java archive files (JARs) and resources, and how to deploy a servlet.

 .NET developers using iTextSharp, the C# port of iText, can also benefit from this
book, but they’ll have to adapt the examples.

 Knowledge of the Portable Document Format isn’t necessary, because this book will
explain a good deal of the PDF functionality and syntax where needed. ISO-32000-1 is a
good companion to this book, for those who want to know every detail about
PDF internals.
xxiii

Licensed to Bruno Lowagie <bruno@lowagie.com>

ABOUT THIS BOOKxxiv
How to use this book
You can read this book chronologically, starting with the part about creating PDFs, mov-
ing on to the part about manipulating documents, and then learning some essential
skills in part 3. Part 4 looks under the hood and digs deeper into the PDF specification.

 You can also read the book in random order or thematically, selecting specific chap-
ters that explain how to meet your own requirements. Once you’re well acquainted with
iText, you’ll probably use the book as a reference manual. In particular, the tables in
chapter 14 are the result of my own frustration with tables that were too scattered
throughout different chapters in the first edition.

What you’ll be able to achieve after reading this book
The book consists of four parts:

■ Part 1—Creating PDF documents from scratch
■ Part 2—Manipulating existing PDF documents
■ Part 3—Essential iText skills
■ Part 4—Under the hood

Throughout this book, the examples use a movie database created for a (fictional)
film festival. You’ll access this database from a series of simple applications, creating
and manipulating different PDF files that could be useful for the visitors of the imagi-
nary film festival.

Creating PDF documents

In chapters 1 and 2 you’ll create a series of PDF documents from scratch. You’ll use
SQL statements to query a movie database, loop over the ResultSet, and add the data
from each record to a PDF document using high-level objects such as Chunks, Phrases,
Paragraphs, and so on. You’ll create PDF documents without having to know anything
about the PDF specification.

 In chapter 3, you’ll learn how to draw lines, shapes, and text to create a timeta-
ble visualizing the screenings, using a different color for each festival category. To
achieve this, you’ll need low-level operations that demand a sound understanding of
how PDF works.

 In chapter 4, one of the most important chapters of the first part, you’ll use the
database information to create documents containing tabular data. You’ll learn
almost everything there is to know about the PdfPTable and PdfPCell objects.

 Your knowledge about tables and cells will be completed in chapter 5, where you’ll
learn how to add custom behavior to a table and its cells using events. Finally, you’ll
also learn about page events. You’ll add the finishing touch to your documents in the
form of headers, footers, page numbers, and a watermark.

 After reading the first part of the book, you’ll be able to write a proof of concept
for any project that requires you to generate PDF reports from scratch. If your project
also involves existing PDF documents, you’ll need to move on to part 2.
Licensed to Bruno Lowagie <bruno@lowagie.com>

ABOUT THIS BOOK xxv
Manipulating PDF documents

Consider what you can do with paper documentation: you can bundle different arti-
cles into a book, you can cut out the pages of a large catalog to create a brochure con-
taining only those pages that are interesting for your customers, you can fill out blanks
in an exercise book, and so on.

 All of this is also possible with PDF and iText. You’ll use PdfReader to access an
existing PDF file, and you’ll use one or more of these document manipulation classes:

■ PdfWriter in combination with PdfImportedPage objects, if you want to take
“photocopies” of specific pages

■ PdfStamper, if you want to add content to an existing PDF document
■ PdfCopy, PdfSmartCopy, or PdfCopyFields to combine a selection of pages

from different, existing documents into a new PDF document

All these classes will be explained in chapter 6.
 You’ll have a closer look at the PdfStamper class in chapter 7, where you’ll use it to

annotate a document.
 You can interpret the word “annotate” in different ways. One special type of anno-

tation in PDF is the interactive form field. These are used in forms using AcroForm
technology. Another type of PDF form is based on the XML Forms Architecture (XFA).
You’ll learn about both types of interactive forms in chapter 8.

 Having read parts 1 and 2, you’ll have a good idea of the possibilities offered by
iText, but there’s more.

Essential iText skills

For the sake of simplicity, most of the examples in this book are standalone applica-
tions, but a majority of projects use iText as a PDF engine in server-side web applica-
tions. You’ll certainly benefit from chapter 9 if you want to avoid the pitfalls you might
encounter while integrating your iText application into a Java servlet.

 Once your proof of concept is online, you’ll probably be confronted with many
extra user requirements:

■ Can you change this or that color?
■ Can you print the text in a different font?
■ Can you protect the document against abuse?

Part 3 will complete your knowledge about iText.
 After mastering the content of the first three parts of the book, you’ll be able to

meet over 90 percent of the standard requirements that have ever come up on the
iText mailing list in the past 10 years. But please read on if you’re hungry for more.

Under the hood

While the first three parts give you the high-level view of PDF, part 4 will focus on the
lowest level of PDF creation and manipulation. You should read this part
Licensed to Bruno Lowagie <bruno@lowagie.com>

ABOUT THIS BOOKxxvi
■ if you want to know what a PDF looks like under the hood
■ if you need a short introduction to and a quick reference for ISO-32000-1
■ if you want to learn how to tweak PDF files using iText’s low-level objects and

methods

In chapter 13, you’ll learn that PDF has undergone many changes over the years. One
of Adobe’s important goals was that every new version of the specification had to be
backward-compatible. This was possible thanks to the well-designed architecture of a
PDF file (the Carousel Object System). By studying the different objects that make up a
PDF document, you’ll learn how iText creates a PDF file.

 Chapter 14 focuses on the streams holding the content of a page in a PDF docu-
ment. You’ll learn all the methods for drawing lines and shapes (graphics state), and
for writing letters and words (text state).

 In chapter 15, you’ll discover how to make content optional, and you’ll also learn
about structure in the content stream of a page. You’ll learn how to parse content
streams of existing PDF pages.

 Finally, you’ll get a closer look at the other streams that can be found in a PDF doc-
ument: images, fonts, file attachments, and rich media.

The goal of the book

My goal for this book is for it to become a must-have reference for the many develop-
ers who are already familiar with iText. With this book, they’ll have a complete over-
view of iText’s powerful PDF capabilities. But, let’s not forget the first-time users of
iText. This book will lower their learning curve and inspire them to use PDF in ways
they hadn’t previously considered.

Code conventions
First use of technical terms is in italic. The same goes for emphasized terms.

 Source code in listings or in text is in fixed width font. Some code lines are in
bold fixed width font for emphasis. Java methods and parameters, XML elements
and attributes, PDF operators and operands, are also presented using fixed width
font. PDF names are preceded by a forward slash; this is a /Name. Methods can be rec-
ognized by the parentheses that are added: this is a method(). In most cases, the
parameters are omitted but are explained in the text.

 Occasionally, code lines that are too long for the page but that shouldn’t be split
on screen are broken with a code-continuation character (➥).

 Code annotations accompany many of the source code listings, highlighting
important concepts. Numbered annotations correspond to explanations that follow
the listing.

Software requirements and downloads
iText is a free and open source library distributed by 1T3XT BVBA. You can down-
load it from itextpdf.com or from the SourceForge site. The software is protected by
Licensed to Bruno Lowagie <bruno@lowagie.com>

ABOUT THIS BOOK xxvii
the Affero General Public License (AGPL). iText requires Java 5; iTextSharp requires
.NET 2.0.

 All examples have been tested in a SUN Java runtime environment on Windows XP
and Fedora Linux. You can download the source code, resources, and all the tools that
are required to compile and run the examples from the SVN repository on SourceForge
or from the publisher’s website at www.manning.com/iTextinActionSecondEdition.

 See appendix B.1.2 to find out how to get access to these examples.
Licensed to Bruno Lowagie <bruno@lowagie.com>

www.manning.com/iTextinActionSecondEdition

about the title
By combining introductions, overviews, and how-to examples, the In Action books
are designed to help with learning and remembering. According to research in cog-
nitive science, the things people remember are things they discover during self-
motivated exploration.

 Although no one at Manning is a cognitive scientist, we’re convinced that for learn-
ing to become permanent, it must pass through stages of exploration, play, and, inter-
estingly, retelling of what is being learned. People understand and remember new
things, which is to say they master them, only after actively exploring them. Humans
learn in action. An essential part of an In Action book is that it is example driven. It
encourages the reader to try things out, to play with new code, and to explore new ideas.

 There is another, more mundane reason for the title of this book: our readers are
busy. They use books to do a job or solve a problem. They need books that allow them
to jump in and jump out easily and learn just what they want just when they want it.
They need books that aid them in action. The books in this series are designed for
such readers.
xxviii

Licensed to Bruno Lowagie <bruno@lowagie.com>

about the cover illustration
On the cover of iText in Action, Second Edition is “A woman from Kastela,” a small town
near Split in Dalmatia, Croatia. The illustration is taken from a reproduction of an
album of Croatian traditional costumes from 1879 by Nikola Arsenovic, published by the
Ethnographic Museum in Split. The illustrations were obtained from a helpful librarian
at the Ethnographic Museum in Split, itself situated in the Roman core of the medieval
center of the town: the ruins of Emperor Diocletian’s retirement palace from around
AD 304. The book includes finely colored illustrations of figures from different regions
of Croatia, accompanied by descriptions of the costumes and of everyday life.

 Kastela is a series of seven settlements located northwest of Split that developed
around seven castles overlooking a large bay. The settlements are now treated as a sin-
gle town with a population of 40,000. Once an ancient Greek port, a stopover point
for Roman patricians and Venetian royals and a summer place for Croatian kings,
Kastela today is a tourist resort, with long sandy beaches and terraces overlooking the
Adriatic Sea, surrounded by pine, tamaris, and olive trees.

 Dress codes and lifestyles have changed over the last 200 years, and the diversity by
region, so rich at the time, has faded away. It is now hard to tell apart the inhabitants
of different continents, let alone of different hamlets or towns separated by only a few
miles. Perhaps we have traded cultural diversity for a more varied personal life—
certainly for a more varied and fast-paced technological life.

 Manning celebrates the inventiveness and initiative of the computer business with
book covers based on the rich diversity of regional life of two centuries ago, brought
back to life by illustrations from old books and collections like this one.
xxix

Licensed to Bruno Lowagie <bruno@lowagie.com>

Licensed to Bruno Lowagie <bruno@lowagie.com>

Part 1

Creating PDF
 documents from scratch

Part 1 shows you how to create a document from scratch. Concepts such as
iText’s basic building blocks and direct content will be introduced, and important
objects for adding columns and tables to a document are discussed in great detail.
These first five chapters also explain how to add finishing touches to your docu-
ment, using page events for headers, footers, page numbers, and watermarks.

Licensed to Bruno Lowagie <bruno@lowagie.com>

Licensed to Bruno Lowagie <bruno@lowagie.com>

Introducing
 PDF and iText
Call me Bruno. About ten years ago—never mind how long precisely—I thought
I’d create a small PDF library in Java and publish it as free and open source software
(F/OSS). Little did I know that this would lead to my writing a whale of a book
about the extensive functionality that has been added over the years.

 That library was iText, and the book was titled iText in Action: Creating and Manip-
ulating PDF (2007). Today, iText is the world’s leading F/OSS PDF library. It’s
released under the Affero General Public License (AGPL) and is available in two
versions: the original Java version, and the C# port, iTextSharp. These libraries
make it possible for you to enhance applications with dynamic PDF solutions. You
can use iText to create invoices for your customers if you have a web shop, to pro-
duce tickets if you work for an airline or railway company, and so on. You can inte-
grate iText into an application to generate PDF documents as an alternative to

This chapter covers
■ A summary of what will be presented in this book
■ Compiling and executing your first example
■ Learning the five steps in iText’s PDF creation process
3

Licensed to Bruno Lowagie <bruno@lowagie.com>

4 CHAPTER 1 Introducing PDF and iText
printing on paper, to add digital signatures to a document, to split or concatenate dif-
ferent documents, and so forth.

 In the first edition of iText in Action, readers learned why things work the way they
do in iText, complemented with simple examples. This second edition takes you fur-
ther with more real-life examples, skipping a bit on the whys, but presenting compre-
hensive code samples that you can use to solve everyday problems.

 In this chapter, I’ll give you a quick overview of the things you can do with PDF—
you’ll compile and execute a first “Hello World” example—and you’ll learn the basics
of creating PDFs with iText.

1.1 Things you can do with PDF
Let’s start with six quick facts about PDF:

■ PDF is the Portable Document Format.
■ It’s an open file format (ISO-32000-1), originally created by Adobe.
■ It’s used for documents that are independent of system software and hardware.
■ PDF documents are an essential part of the web.
■ Adobe Reader is the most widely used PDF viewer.
■ There are a lot of free and proprietary, open and closed source, desktop and web-

based software products for creating, viewing, and manipulating PDF documents.

Figure 1.1 offers an overview of the things you can do with PDF. There are tools to cre-
ate PDF documents, there are applications to consume PDF documents, and there are
utilities to manipulate existing PDF documents.

 If you look at PDF creation, you’ll find that graphical designers use desktop appli-
cations such as Adobe Acrobat or Adobe InDesign to create a document in a manual
or semimanual process. In another context, PDF documents are created programmat-
ically, using an API to produce PDFs directly from software applications, without—or
with minimal—human intervention. Sometimes the document is created in an inter-
mediary format first, then converted to PDF. These different approaches demand dif-
ferent software products. The same goes for PDF manipulation. You can update a PDF
manually in Adobe Acrobat, but there are also tools that allow forms to be filled out
automatically based on information from a database.

Figure 1.1 Overview of
PDF-related functionality.
The functionality covered
by iText is marked with
the iText logo.
Licensed to Bruno Lowagie <bruno@lowagie.com>

5Things you can do with PDF
This book will focus on the automation side of things: we’ll create and manipulate
PDF documents in an automated process using iText. The functionality covered by
iText in figure 1.1 is marked with the iText logo. A smaller logo indicates that the
functionality is only partly supported.

 Typically, iText is used in projects that have one of the following requirements:

■ The content isn’t available in advance: it’s calculated based on user input or
real-time database information.

■ The PDF files can’t be produced manually due to the massive volume of con-
tent: a large number of pages or documents.

■ Documents need to be created in unattended mode, in a batch process.
■ The content needs to be customized or personalized; for instance, the name of

the end user has to be stamped on a number of pages.

Often you’ll encounter these requirements in web applications, where content needs
to be served dynamically to a browser. Normally, you’d serve this information in the
form of HTML, but for some documents, PDF is preferred over HTML for better print-
ing quality, for identical presentation on a variety of platforms, for security reasons, or
to reduce the file size. In this case, you can serve PDF on the fly.

 As you read this book, you’ll create and manipulate hundreds of PDF documents
that demonstrate how to use a specific feature, how to solve common and less com-
mon issues, and how to build an application that involves PDF technology. We’ll use
iText because it’s an API that was developed to allow developers to do the following
(and much more):

■ Generate documents and reports based on data from an XML file or a database
■ Create maps and books, exploiting numerous interactive features available

in PDF
■ Add bookmarks, page numbers, watermarks, and other features to existing PDF

documents
■ Split or concatenate pages from existing PDF files
■ Fill out interactive forms
■ Serve dynamically generated or manipulated PDF documents to a web browser

For first-time users, this book is indispensable. Although the basic functionality of
iText is easy to grasp, the first parts of this book significantly lower the learning curve
and gradually offer more advanced functionality.

 It’s also a must-have for the many developers who are already familiar with iText.
In the final chapters, many PDF secrets hidden in ISO-32000-1, the open standard
that defines the Portable Document Format, will be unveiled. Even experienced
iText developers will learn new ways to master the PDF specification using their favor-
ite PDF library.

 Without further ado, let’s start with a simple example that explains how to compile
and run the many examples that come with this book.
Licensed to Bruno Lowagie <bruno@lowagie.com>

6 CHAPTER 1 Introducing PDF and iText
1.2 Working with the examples in this book
All the source files, as well as the resources and extra libraries necessary to run the
book’s examples, were uploaded to a Subversion (SVN) repository on SourceForge. If
you have an SVN client, you can check out of the complete working environment at
once. This way, you’ll be able to get the latest updates and new examples, even after
the book has been released. Please consult appendix B for the URL of this repository.

 You can find more info about this on the examples page of the itextpdf.com site.
That’s also the place where you’ll find zipped archives, in case you don’t have an SVN
client. You can download these archives and unzip them on your local system.

 Before you start experimenting, make sure that you have a recent version of the
Java Development Kit (JDK) installed. The examples won’t work for versions of iText
that are older than iText 5, and iText 5 is compiled with Java 5, so the minimum
requirement for your JVM is Sun’s JDK 1.5. You can use other JDKs, but only the JDK
from Sun is supported.

 Figure 1.2 shows how I compiled and executed the first example, HelloWorld, on
Ubuntu Linux using OpenJDK 6. As you can see, you first change the directory to the
examples folder (or whichever folder contains your copy of the project). Then you
run this command:

javac -d bin -cp lib/iText.jar src/part1/chapter01/HelloWorld.java

HelloWorld.java is the source file; we’ll take a close look at it in the next section. The
option -d says that the compiled code should be written to the bin folder. With option
-cp you define the classpath. For this simple example, you only need the iText.jar file.
For other examples, you might need to add more JARs, such as a JAR with the database
driver, encryption JARs, and so forth.

 Once you’ve compiled the code, you can execute it:

java -cp "bin:lib/iText.jar" part1.chapter01.HelloWorld

If you’re working on Windows, you’ll need to replace the colon separating the differ-
ent parts of the classpath with a semicolon:

java -cp "bin;lib/iText.jar" part1.chapter01.HelloWorld

Congratulations! You have created your first PDF file using iText. Figure 1.3 shows how
everything is organized.

 The source code of the examples can be found in the src folder; see, for instance,
the file HelloWorld.java. The package names of the examples correspond to the part
and chapter numbers of the book. In the lib directory, you’ll find all the JARs you

Figure 1.2 Compiling and running from the command line
Licensed to Bruno Lowagie <bruno@lowagie.com>

7Working with the examples in this book
need to compile the examples. There’s also a resources folder containing all the
resources you might need to run the examples: database scripts, images, special fonts,
and existing PDF files, such as interactive forms.

 The examples are compiled to the bin folder. The HelloWorld.class file will appear
as soon as you run the javac command. When you execute the java command, you’ll
see the hello.pdf file appear in the results directory. Figure 1.4 shows the end result: a
PDF file containing the text “Hello World!”

 It’s certainly possible to compile and execute all the examples from the command
line, but it’s more likely that you’ll prefer using an integrated development environ-
ment (IDE). Figure 1.5 shows what the project looks like in Eclipse—you’ll recognize
the same folders. Observe that Eclipse puts the src folder on top. The bin directory is
hidden; you’ll find the JARs under Referenced Libraries. You can view and update the
list of registered JARs by selecting Project > Properties > Java Build Path > Libraries.

Figure 1.3 Organization of the sample files

Figure 1.4
A “Hello World” PDF
Licensed to Bruno Lowagie <bruno@lowagie.com>

8 CHAPTER 1 Introducing PDF and iText
Figure 1.5 already gives you a peek at the source code. The hello.pdf file is created in
five steps. The next section discusses every step in detail.

1.3 Creating a PDF document in five steps with iText
Let’s copy the content of the main method of figure 1.5, and remove the comments.
The numbers to the side in this listing indicate the different steps in the PDF-creation
process.

public static void main(String[] args)
 throws DocumentException, IOException {
 Document document = new Document();
 PdfWriter.getInstance(document, new FileOutputStream(RESULT));
 document.open();
 document.add(new Paragraph("Hello World!"));
 document.close();
}

We’ll devote a separate subsection to each of these five steps:

■ Step B—Create a Document.
■ Step C—Get a PdfWriter instance.
■ Step D—Open the Document.
■ Step E—Add content.
■ Step F—Close the Document.

Listing 1.1 HelloWorld.java

Figure 1.5 The project opened in Eclipse

Step 1B

Step 2C

Step 3DStep 4E
Step 5F
Licensed to Bruno Lowagie <bruno@lowagie.com>

9Creating a PDF document in five steps with iText
In each of the following subsections, we’ll focus on one specific step. You’ll apply
small changes to step B in the first subsection, to step C in the second, and so on.
This way, you’ll create several new documents that are slightly different from the one
in figure 1.4. You can hold these variations on the original hello.pdf against a strong
light (literally or not) and discover the differences and similarities caused by the small
code changes.

1.3.1 Creating a new Document object

Document is the object to which you’ll add content in the form of Chunk, Phrase,
Paragraph, and other high-level objects. These objects are often referred to as iText’s
basic building blocks, and they’ll be discussed in chapter 2. For now, we’ll only work
with Paragraph objects.

MEASUREMENTS

Upon creating the Document object, you’ll define the page size and the page margins
of the first page. Either this happens implicitly, as is the case in step B of listing 1.1; or
you can define the size and margins explicitly using a com.itextpdf.text.Rectangle
object and four float values for the margins as shown here.

Rectangle pagesize = new Rectangle(216f, 720f);
Document document = new Document(pagesize, 36f, 72f, 108f, 180f);

In this example, a rectangle measuring 216 x 720 user units is created. This rectangle
is used as the page size in the Document constructor, along with a left margin of 36 user
units, a right margin of 72 user units, a top margin of 108 user units, and a bottom
margin of 180 user units.

FAQ What is the measurement unit in PDF documents? Most of the measurements
in PDFs are expressed in user space units. ISO-32000-1 (section 8.3.2.3) tells us
“the default for the size of the unit in default user space (1/72 inch) is
approximately the same as a point (pt), a unit widely used in the printing
industry. It is not exactly the same; there is no universal definition of a point.”
In short, 1 in. = 25.4 mm = 72 user units (which roughly corresponds to 72 pt).

If you open the document created by listing 1.2 in Adobe Reader and look at the
Description tab in the Document properties dialog box (opened via File > Properties),
you’ll find that the document measures 3 in. x 10 in.

 iText also created a left margin of 0.5 in. (36/72), a right margin of 1 in. (72/72),
a top margin of 1.5 in. (108/72), and a bottom margin of 2.5 in. (180/72).

 If you don’t like doing all that math, there’s a Utilities class in iText with static
methods that help you switch among points, inches, and millimeters: millimeters-
ToPoints(), millimetersToInches(), pointsToMillimeters(), pointsToInches(),
inchesToMillimeters(), and inchesToPoints(). All these methods expect a float
as their value.

Listing 1.2 HelloWorldNarrow.java
Licensed to Bruno Lowagie <bruno@lowagie.com>

10 CHAPTER 1 Introducing PDF and iText
 Note that these methods refer to points, not to user units. That’s because the
default value of the user unit corresponds with a point, but it’s possible to change this
default.

Document document = new Document(new Rectangle(14400, 14400));
PdfWriter writer
 = PdfWriter.getInstance(document, new FileOutputStream(RESULT));
writer.setUserunit(75000f);

Looking at the first line in this code snippet, you might expect a document with a
page measuring 200 in. x 200 in., but when you look at the document properties of
the resulting file, you’ll see that it measures 15,000,000 in. x 15,000,000 in. That’s
because you’ve changed the user unit to 75,000 in the last line of listing 1.3. Now, one
user unit corresponds with 75,000 points, and you’ve created a PDF document with
the largest possible page size.

PAGE SIZE

Theoretically, you could create pages of any size, but the PDF specification imposes
limits depending on the PDF version of the document.

Changing the user unit has been possible since PDF 1.6. The minimum value of the
user unit is 1 (this is the default; 1 unit = 1/72 in.); the maximum value is 75,000
points (1 unit = 1042 in.).

 But enough about exotic page sizes; you’re probably interested in the standard paper
sizes. The default value of a page in iText, if you create a Document object without any
parameters, is A4, which is the most common paper size in Europe, Asia, and Latin
America. It’s specified by the International Standards Organization (ISO) in ISO-216. An
A4 document measures 210 mm x 297 mm, or 8.3 in. × 11.7 in., or 595 pt x 842 pt.

 If you want to create a document in another standard format, take a look at the
PageSize class. This class was written for your convenience, and it contains a list of
static final Rectangle objects, offering a wide selection of standard paper sizes,
including A0 to A10, B0 to B10, and the American standard sizes: LETTER, LEGAL, LED-
GER, and TABLOID. Listing 1.4 shows how to adapt the initial HelloWorld example so
that it produces a PDF document saying “Hello World!” on a page that’s the American
letter paper size.

Listing 1.3 HelloWorldMaximum.java

Table 1.1 Minimum and maximum size of a page depending on the PDF version

PDF version Minimum size Maximum size

PDF 1.3 or earlier 72 x 72 units (1 in. x 1 in.) 3240 x 3240 units
(45 in. x 45 in.)

PDF 1.4 and later 3 x 3 units (approximately
0.04 in. x 0.04 in.)

14,400 x 14,400 units
(200 in. x 200 in.)
Licensed to Bruno Lowagie <bruno@lowagie.com>

11Creating a PDF document in five steps with iText
Document document = new Document(PageSize.LETTER);

The orientation of most of the paper sizes defined in PageSize is portrait. You can
change this to landscape by invoking the rotate() method on the Rectangle.

Document document = new Document(PageSize.LETTER.rotate());

Another way to create a Document in landscape orientation is to create a Rectangle
object with a width that is greater than its height.

Document document = new Document(new Rectangle(792, 612));

The results of both landscape examples look exactly the same in Adobe Reader. The
Reader’s Description tab doesn’t show any difference in size. Both PDF documents
have a page size of 11 in. x 8.5 in. (instead of 8.5 in. x 11 in.), but there are subtle
differences internally:

■ In the first file, the page is defined with a size that has a width smaller than the
height, but with a rotation of 90 degrees.

■ The second file has the page size you defined without any rotation (a rotation
of 0 degrees).

This difference will matter when you want to manipulate the PDF. We’ll return to this
issue in chapter 6.

PAGE MARGINS

In listing 1.2, you defined margins using the constructor of the Document object, and
you added a Paragraph to it. In the next two examples, you’ll define the page size and
margins using the setPageSize() and setMargins() methods. You can use these
methods at any time in the document’s creation process, but be aware that the change
will never affect the current page, only the next page.

 In these examples, you’ll add paragraphs that are aligned on both sides—justified
text—so you can clearly see the left and right margins. You’ll add enough paragraphs
to cause a page break, so you can make sure the bottom margin is respected.

 Suppose this document consists of pages that are to be printed on both sides, and
bound into a book. Depending on the way the book is bound, you might want a larger
or smaller margin on the inner edges of the pages: the left margin of an odd-num-
bered page should correspond to the right margin of an even-numbered page. The
same goes for the opposite margins. In short, you want the margins to be mirrored.

Document document = new Document();
PdfWriter.getInstance(document, new FileOutputStream(RESULT));

Listing 1.4 HelloWorldLetter.java

Listing 1.5 HelloWorldLandscape1.java

Listing 1.6 HelloWorldLandscape2.java

Listing 1.7 HelloWorldMirroredMargins.java
Licensed to Bruno Lowagie <bruno@lowagie.com>

12 CHAPTER 1 Introducing PDF and iText
document.setPageSize(PageSize.A5);
document.setMargins(36, 72, 108, 180);
document.setMarginMirroring(true);

Listing 1.7 assumes that the spine of the book is to the left (for Western books) or to
the right (for Japanese books). But some books are bound in a completely different
way, with the spine of the book at the top or bottom of the pages. In that case, you’d
need to use this method.

document.setMarginMirroringTopBottom(true);

Now the top and bottom margins are mirrored instead of the left and right margins.
 But maybe we’re getting ahead of ourselves. We’re already adding content, but we

haven’t yet discussed step C in listing 1.1 in the PDF creation process.

1.3.2 Getting a PdfWriter instance

PdfWriter is the class responsible for writing the PDF file. You can also add contents,
such as annotations, to PdfWriter. As opposed to the high-level objects added to the
Document object, manipulations on PdfWriter are often referred to as low-level access
and writing to the direct content. You’ll find out more about these concepts in chapter 3.

 Step C in listing 1.1 in the PDF creation process combines two actions:

■ It associates a Document with the PdfWriter. This writer will “listen” to the docu-
ment. High-level objects, such as a Paragraph, will be translated into low-level
operations. For example, iText will generate the PDF syntax that draws the tex-
tual content of a paragraph at a specific position on a page, taking into account
the page size and margins.

■ It tells the PdfWriter to which OutputStream the file should be written. In the previ-
ous examples, you have written the content to a FileOutputStream, but you
could have written to any other type of OutputStream. You could even have writ-
ten the bytes of a PDF file to System.out.

In rare circumstances, creating a writer instance can cause a DocumentException.

EXCEPTIONS

DocumentException is the most general exception in iText. It can occur in step C
or step E of listing 1.1. For example, if you try adding a Paragraph before you’ve
done step D, you’ll get the following error message: “The document isn’t open yet;
you can only add metadata information.” DocumentExceptions also occur when
manipulating existing documents. For instance, “Append mode requires a document
without errors even if recovery was possible.”

 If you look at listing 1.1, you see that you can also expect an IOException. Once
you start using resources such as images, fonts, or existing PDFs, this exception can
occur if something goes wrong while reading from an InputStream.

Listing 1.8 HelloWorldMirroredMarginsTop.java
Licensed to Bruno Lowagie <bruno@lowagie.com>

13Creating a PDF document in five steps with iText
 In the examples we’ve looked at so far, the only IOException that could be thrown
is a FileNotFoundException. This happens when you’re trying to create a hello.pdf
file, but you already have a file with that name opened—and locked—in Adobe
Reader. (This happened to me all the time while writing the examples for this book.)
Or maybe you’re trying to create the file in the results/part1/chapter01 directory, but
this directory doesn’t exist on your filesystem. The empty results directories are pro-
vided with the example archives to avoid this problem.

OTHER OUTPUTSTREAMS

While you’re adding content to the Document, the PdfWriter gradually writes a PDF file
to the OutputStream. This PDF file will be written to a file on disk if you choose a File-
OutputStream. In a web application, you’ll generally prefer serving the PDF to a web
browser without saving it on the server, so you could write directly to the Servlet-
OutputStream, using response.getOutputStream() in your servlets. This will work
with some browsers, but unfortunately not with all. Chapter 9 will explain why it’s better
to write the complete file to memory before transferring the bytes to the OutputStream
of an HttpServletResponse object.

 Here’s how to write a file to memory using a ByteArrayOutputStream.

Document document = new Document();
ByteArrayOutputStream baos
 = new ByteArrayOutputStream();
PdfWriter.getInstance(document, baos);
document.open();
document.add(new Paragraph("Hello World!"));
document.close();
FileOutputStream fos = new FileOutputStream(RESULT);
fos.write(baos.toByteArray());
fos.close();

Observe that the PDF is created in memory in the first part of this snippet; nothing is
written to disk. The bytes are written to a file in the last three lines of the snippet to
prove that what was generated in memory represents a valid PDF file.

 Now that you have all the infrastructure in place, it’s time to open the Document.

1.3.3 Opening the Document

Java programmers may not be used to having to open streams before being able to
add content. When you create a new stream in Java, you can start writing bytes,
chars, and Strings to it right away. With iText, it’s mandatory to open the docu-
ment first.

 When a Document object is opened, a lot of initializations take place, and the file
header is written to the OutputStream.

THE FILE HEADER AND THE PDF VERSION

Figure 1.6 shows your first PDF file, hello.pdf, opened in the Notepad++ text editor.

Listing 1.9 HelloWorldMemory.java

Creates
ByteArrayOutputStream

Creates
PdfWriter instance

Gets
bytes
Licensed to Bruno Lowagie <bruno@lowagie.com>

14 CHAPTER 1 Introducing PDF and iText
As you can see, the first lines look like this:

%PDF-1.4
%âãÏÓ

This is the header of a PDF file. The structure of a PDF file, with its header, body, cross-
reference table, and footer, will be discussed in great detail in chapter 13. For now, it’s
sufficient to know that the first line gives you an indication of the PDF version that
is used.

 By default, iText uses version 1.4, which was introduced in 2001. If you introduce
functionality newer than what’s available in PDF 1.4 after step D in listing 1.1, it’s your
responsibility to set the correct PDF version before step D. Otherwise, the default
version—PDF-1.4—will be written to the OutputStream, and there’s no going back.

NOTE Beginning with PDF 1.4, the PDF version can also be stored elsewhere in
the PDF (in the root object of the document, aka the catalog; see chapter 13).
This implies that a file with header PDF-1.4 can be seen as a PDF 1.6 file if it’s
defined that way in the document root.

In some cases, iText changes the PDF version automatically. In listing 1.3, you changed
the user unit, and this capability was introduced in version 1.6 of the PDF specifica-
tion. Because you changed the user unit before step D, iText was able to update the
PDF version in the header to %PDF-1.6.

 It’s a better practice to set the version number with PdfWriter.setPdfVersion() if
you use PDF features that are newer than what was available in PDF 1.4. Here’s how to
change the PDF version to 1.7.

Figure 1.6 hello.pdf opened in Notepad++
Licensed to Bruno Lowagie <bruno@lowagie.com>

15Creating a PDF document in five steps with iText
PdfWriter writer
 = PdfWriter.getInstance(document, new FileOutputStream(RESULT));
writer.setPdfVersion(PdfWriter.VERSION_1_7);

It’s not forbidden for the PDF version in the header to be different from the PDF ver-
sion in the catalog, but it’s good practice to make setting the PDF version a part of
your initializations to avoid ambiguity.

INITIALIZATIONS

Document.open() also performs many initializations. For instance, you can’t access
the outline of the bookmarks before the document has been opened (see chapter 7).
If you want to create an encrypted PDF file, you must set the encryption type, strength,
and permissions before step C in listing 1.1 (see chapter 12).

FAQ I have set feature X, and it doesn’t work, or it doesn’t work for page 1, only for the
pages that follow. Why is that? Many settings, such as the page size and margins,
only go into effect on the next page. This may seem trivial, but it’s a common
question for new iText users. If you want the feature to work on page 1,
define it before opening the document.

After step D, the first page of our document is available for you to add content
(step E).

1.3.4 Adding content

In this section, we’re creating simple Hello World PDF documents, learning the ele-
mentary mechanics of iText’s PDF creation process. Once these are understood, you
can start generating real-world documents containing real-world data.

 To learn how to implement step E, you’ll copy steps B, C, D, and F from list-
ing 1.1 into an application, then focus on step E: adding content to the PDF document.

 There are different ways to add content. Up until now, you’ve been adding one or
more high-level objects of type Paragraph to the Document. In the next chapter, you’ll
learn about other objects, such as Chunk, Phrase, Anchor, and List. You can also add
content to a page using low-level methods.

DIRECT CONTENT

Listing 1.11 shows a variation on this chapter’s initial “Hello World” example.
Although this is a rather complex example for a first chapter about using iText, it will
give you an idea of iText’s internal PDF-creation process.

Document document = new Document();
PdfWriter writer = PdfWriter.getInstance(
 document, new FileOutputStream(RESULT));
document.open();
PdfContentByte canvas = writer.getDirectContentUnder();
writer.setCompressionLevel(0);

Listing 1.10 HelloWorldVersion_1_7.java

Listing 1.11 HelloWorldDirect.java

Step 1B
C Step 2

Step 3D

E Step 4
Licensed to Bruno Lowagie <bruno@lowagie.com>

16 CHAPTER 1 Introducing PDF and iText
canvas.saveState(); // q
canvas.beginText(); // BT
canvas.moveText(36, 788); // 36 788 Td
canvas.setFontAndSize(
 BaseFont.createFont(), 12); // /F1 12 Tf
canvas.showText("Hello World"); // (Hello World)Tj
canvas.endText(); // ET
canvas.restoreState(); // Q
document.close();

Steps B, D, and F are the same as they were in listing 1.1, but you need to make a
small change to step C. Instead of using an unnamed instance of PdfWriter, you now
give it a name: writer. You need this instance because you want to grab a canvas on
which you can draw lines and shapes, and, in this case, text. In listing 1.11, comment
sections were added, reflecting the PDF syntax that is written by each method.

 By using the setCompressionLevel() method with a parameter of 0, you avoid
compressing the stream. This allows you to read the PDF syntax when opening the file
in a text editor. Figure 1.7 shows the resulting PDF when opened in WordPad.

 This screenshot contains less gibberish than figure 1.6, though it’s showing the syn-
tax of a similar “Hello World” PDF. You’ll recognize the PDF header, followed by a PDF
object with number 2: 2 0 obj. After reading part 4 of this book, you’ll understand
that this object is a stream object, the content stream of the first page. In figure 1.6,
the content stream was compressed, but in figure 1.7, the compression is zero. You
can see the syntax in clear text, although you’ll need to read chapter 14 to decipher
what it means.

NOTE Setting the compression level to 0 can be interesting if you need to
debug your PDF file, but you shouldn’t change the compression level in a pro-
duction environment, because the file size of the resulting PDFs will be bigger
than files generated using the default compression level.

As you move on in this book, you’ll find out that you’ll need to add content directly to
the page on different occasions, such as when adding page numbers, or when drawing

E Step 4

Step 5F

Figure 1.7 PDF document
opened in WordPad
Licensed to Bruno Lowagie <bruno@lowagie.com>

17Creating a PDF document in five steps with iText
custom borders for tables. As you might imagine, you’ll need a sound understanding
of the PDF reference to achieve all this.

FAQ I’ve added text using low-level methods and it doesn’t respect the margins, nor
does the text wrap at the end of the line. What is wrong? That is expected behavior.
When adding content like this, you need to do all the math necessary to split
a String in different lines, and add it at the appropriate coordinates. Also,
make sure that you don’t add the text outside the visible area of the page; this
is a common mistake when adding text to an existing PDF document.

Listing 1.11 gets increasingly complex as soon as you need to add more text. Fortunately,
iText comes to the rescue: you can use convenience classes and methods that signifi-
cantly reduce the complexity and the lines of code needed to work with direct content.

CONVENIENCE CLASSES AND METHODS

Listing 1.12 is identical to listing 1.11 as far as steps B, C, D, and F are concerned,
but in step E you create a Phrase object and add this to the direct content, named
canvas, using the static method ColumnText.showTextAligned(). The phrase hello
will be added left aligned at coordinates (36, 788) with rotation 0.

Document document = new Document();
PdfWriter writer = PdfWriter.getInstance(
 document, new FileOutputStream(RESULT));
document.open();
writer.setCompressionLevel(0);
Phrase hello = new Phrase("Hello World");
PdfContentByte canvas = writer.getDirectContentUnder();
ColumnText.showTextAligned(
 canvas, Element.ALIGN_LEFT, hello, 36, 788, 0);
document.close();

If you open the resulting PDFs from listings 1.11 and 1.12 in Adobe Reader, you’ll see
that both documents look identical. If you open them in a text editor, you’ll notice
that the syntax is slightly different. There’s usually more than one way to create PDF
documents that look like identical twins when opened in a PDF viewer. And even if you
create two identical PDF documents using the exact same code, there will be small dif-
ferences between the two resulting files. That’s inherent to the PDF format.

 We’re almost finished discussing the five steps in the PDF creation process. It’s time
for step 5.

1.3.5 Closing the Document

One of the typical uses of iText is to create documents containing many pages. For
example, a financial institution uses iText to create PDFs of bank statements, consist-
ing of 100,000 or more pages. You don’t want to keep the content of that many pages
in memory, and that’s why iText will write content to the OutputStream as soon as pos-
sible. If a page is full, the content stream of that page will be written to the Output-
Stream; if you’re writing to a file, that content will be flushed from the memory.

Listing 1.12 HelloWorldColumn.java

Step 1B
C Step 2

Step 3D

E Step 4

Step 5F
Licensed to Bruno Lowagie <bruno@lowagie.com>

18 CHAPTER 1 Introducing PDF and iText
CONTENT FLUSHED TO THE OUTPUTSTREAM VERSUS CONTENT KEPT IN MEMORY

If you return to figure 1.6 or 1.7, you’ll see that object 2, the page content stream of
page 1, appears as the first object in the file. Other objects will be added at a higher
byte position, regardless of their object number. iText has to keep certain objects in
memory because there’s a chance you’ll reuse them and change them during the cre-
ation process. You’ll use this mechanism in section 5.4.2 to add the total number of
pages—a number that is only known when the final page is reached—to all the previ-
ous pages.

 Specific objects, such as the catalog and the info dictionary, will be added last by
iText. They’re written to the OutputStream upon closing the Document. There’s also
the cross-reference table, an important structure that is written immediately after the
catalog and info dictionary. It contains the byte positions of the PDF objects that
define the document. It’s followed by the trailer, containing information that enables
an application to quickly find the start of the cross-reference table, and objects such as
the info dictionary. Finally, the following byte sequence will be added, indicating that
the file has been completely written:

%EOF

You don’t need to close the OutputStream you created in step C. iText will close this
stream right after the end-of-file sequence.

KEEPING THE OUTPUTSTREAM OPEN

There may be occasions when you don’t want the stream to be closed automatically.

ZipOutputStream zip =
 new ZipOutputStream(new FileOutputStream(RESULT));
for (int i = 1; i <= 3; i++) {
 ZipEntry entry = new ZipEntry("hello_" + i + ".pdf");
 zip.putNextEntry(entry);
 Document document = new Document();
 PdfWriter writer =
 PdfWriter.getInstance(document, zip);
 writer.setCloseStream(false);
 document.open();
 document.add(new Paragraph("Hello " + i));
 document.close();
 zip.closeEntry();
}
zip.close();

In B, you create a ZipOutputStream. It will generate a zip archive named hello.zip
containing different PDF files. You use this OutputStream C to create an instance of
PdfWriter, but you immediately use the setCloseStream() method to tell the writer
that it shouldn’t close the stream. If you don’t do this, the ZipOutputStream will be
closed D, and a java.io.IOException will be thrown E, saying “Stream closed.” You

Listing 1.13 HelloZip.java

B Creates
ZipOutputStream

C Creates writer
that won’t close
stream

Closes
Document

D

Closes entry in
ZipOutputStreamE

Closes
ZipOutputStream

F

Licensed to Bruno Lowagie <bruno@lowagie.com>

19Summary
have to wait until you’ve closed the final entry added to the zip file, before you can
close the ZipOutputStream F.

 This example concludes our series of simple “Hello World” examples. You now
have a solid first impression of how to use iText to create new PDF documents.

1.4 Summary
In this first introductory chapter, you’ve had a brief introduction to PDF, learning what
is possible in PDF and what is possible with iText.

 You’ve compiled and executed a first example, generating a simple “Hello World”
PDF document. Using listings 1.1 through 1.13, you’ve created 15 similar files, of
which three were archived in a zip file. In doing so, you’ve gone through the five ele-
mentary steps in iText’s PDF-creation process: create a Document, get a PdfWriter
instance, open the Document, add content, close the Document.

 This chapter contained many forward references, and some of the examples intro-
duced functionality that was probably too complex for a first chapter, but don’t worry:
every line of code will be explained further on in the book.

 In the next chapter, you’ll create PDFs with content that is more meaningful. I’ll
introduce a simple movie database and you’ll use iText’s high-level objects to publish
the content of this database in different PDF documents.
Licensed to Bruno Lowagie <bruno@lowagie.com>

Using iText’s
 basic building blocks
This chapter describes a series of high-level objects that can be used as basic build-
ing blocks. These objects allow you to generate PDF documents without having to
bother with PDF syntax. Figure 2.1 is a UML diagram that serves as a visual table of
contents, presenting the building blocks discussed in this chapter.

 This class diagram is far from complete. All the methods, as well as a number of
member variables, were omitted for the sake of clarity. The diagram will help you to
understand in one glance how the interfaces and classes relate to each other.

 We’ll discuss a first series of objects in section 2.2: Chunk, Phrase, Paragraph, and
List. In section 2.3, we’ll cover a second series: Anchor, Chapter, Section, and Image.
But before starting to build documents using these building blocks, let’s have a look
at the database you’ll publish to different PDF files in the upcoming examples.

This chapter covers
■ An overview of the database used in the book’s

examples
■ An overview of the basic building blocks: Chunk,

Phrase, Paragraph, List, ListItem, Anchor,
Chapter, Section, and Image
20

Licensed to Bruno Lowagie <bruno@lowagie.com>

21Illustrating the examples with a real-world database
2.1 Illustrating the examples with a real-world database
The main theme of the examples in this book is movies. I’ve made a selection of 120
movies, 80 directors, and 32 countries, and I’ve put all this information in a database.
The entity relationship diagram (ERD) in figure 2.2 shows how the data is organized.
There are three main tables, consisting of movies, directors, and countries. Further-
more, there are two tables connecting these tables.

 For the examples in this book, we’ll use the HSQL database engine (http://
hsqldb.org/). This is a lightweight database that doesn’t need to be installed. Just add
hsqldb.jar to your classpath and you’re set. You’ll find this JAR in the lib directory. The

Figure 2.1 UML class diagram, presenting the building blocks that will be discussed in this chapter

Figure 2.2 Film database
entity relationship diagram
Licensed to Bruno Lowagie <bruno@lowagie.com>

http://hsqldb.org/
http://hsqldb.org/

22 CHAPTER 2 Using iText’s basic building blocks
HSQL database is in the db subdirectory of the resources folder. When you execute an
example using the movie database, the contents of the filmfestival.script file will be
loaded into memory, and you’ll see temporary files appear in the directory as soon as
you start using the database.

 I wrote a couple of convenience classes to hide the complexity of the database. The
abstract class DatabaseConnection wraps the java.sql.Connection class, and it’s
extended by the HsqldbConnection class.

PrintStream out = new PrintStream(new FileOutputStream(RESULT));
DatabaseConnection connection
 = new HsqldbConnection("filmfestival");
Statement stm = connection.createStatement();
ResultSet rs = stm.executeQuery(
 "SELECT country FROM film_country ORDER BY country");
while (rs.next()) {
 out.println(rs.getString("country"));
}
stm.close();
connection.close();

This is a small standalone example to test the database connection. It writes the 32
countries from the film_country table to a file named countries.txt.

 I’ve also created a class named PojoFactory, along with a series of plain old Java
objects (POJOs), such as Movie, Director, and Country. These classes hide most of the
database querying. In the examples that follow, you’ll find code that looks like this:

List<Movie> movies = PojoFactory.getMovies(connection);
for (Movie movie : movies) {
 document.add(new Paragraph(movie.getTitle()));
}

Each instance of the Movie class corresponds with a record in the film_movietitle table.
 In the following sections and chapters, you’ll create numerous PDF files from a

database, but you’ll hardly ever be confronted with difficult database queries or data-
base-related Java syntax. The database aspects of the examples won’t get any more
complex than in the first examples of the next section.

2.2 Adding Chunk, Phrase, Paragraph, and List objects
The general idea of step E in listing 1.1 in the PDF-creation process using docu-
ment.add() is that you add objects implementing the Element interface to a Document
object. Behind the scenes, a PdfWriter and a PdfDocument object analyze these
objects and translate them into the appropriate PDF syntax, positioning the content
on one or more pages, taking into account the page size and margins.

 In this section, we’ll explore text elements that implement the TextElementArray
interface. As the name of the interface indicates, these objects will be composed of
different pieces of text; most of the time, it will be text wrapped in Chunk objects.

Listing 2.1 DatabaseTest.java

Creates connection
to HSQL database
Licensed to Bruno Lowagie <bruno@lowagie.com>

23Adding Chunk, Phrase, Paragraph, and List objects
2.2.1 The Chunk object: a String, a Font, and some attributes

A Chunk is the smallest significant piece of text that can be added to a Document. The
Chunk object contains a StringBuffer that represents a chunk of text whose charac-
ters all have the same font, font size, font style, and font color. These properties are
defined in the Font object. Other properties of the Chunk, such as the background
color, the text rise—used to simulate subscript and superscript—and the underline
values—used to underline text or strike a line through it—are defined as attributes.
These attributes can be changed with a series of setter methods.

 Listing 2.1 wrote the names of 32 countries to a text file to test the database. Here
you’re creating a PDF document with nothing but Chunks as building blocks.

Document document = new Document();
PdfWriter.getInstance(document, new FileOutputStream(RESULT))
 .setInitialLeading(16);
document.open();
DatabaseConnection connection = new HsqldbConnection("filmfestival");
Statement stm = connection.createStatement();
ResultSet rs = stm.executeQuery(
 "SELECT country, id FROM film_country ORDER BY country");
while (rs.next()) {
 document.add(new Chunk(rs.getString("country")));
 document.add(new Chunk(" "));
 Font font = new Font(
 FontFamily.HELVETICA, 6, Font.BOLD, BaseColor.WHITE);
 Chunk id = new Chunk(rs.getString("id"), font);
 id.setBackground(BaseColor.BLACK, 1f, 0.5f, 1f, 1.5f);
 id.setTextRise(6);
 document.add(id);
 document.add(Chunk.NEWLINE);
}
stm.close();
connection.close();
document.close();

This example is rather unusual: in normal circumstances you’ll use Chunk objects to
compose other text objects, such as Phrases and Paragraphs. Typically, you won’t add
Chunk objects directly to a Document, except for some special Chunks, such as
Chunk.NEWLINE.

THE SPACE BETWEEN TWO LINES: LEADING

A Chunk isn’t aware of the space that is needed between two lines. That’s why you set
the leading in B. The word leading is pronounced as ledding, and it’s derived from
the word lead (the metal). When type was set by hand for printing presses, strips of
lead were placed between lines of type to add space—the word originally referred to
the thickness of these strips of lead that were placed between the lines. The PDF Ref-
erence redefined the leading as “the vertical distance between the baselines of adja-
cent lines of text” (IS0-32000-1, section 9.3.5). As an exercise, you could remove

Listing 2.2 CountryChunks.java

Sets initial
leading

B

C Adds Chunks
using default Font

D Creates
Chunk using
custom Font

Sets
background
color of ChunkE

Defines text
rise for ChunkF
Licensed to Bruno Lowagie <bruno@lowagie.com>

24 CHAPTER 2 Using iText’s basic building blocks
setInitialLeading(16) from line B.
If you compile and execute the altered
example, you’ll find that all the text is
written on the same line.

THE FONT OBJECT

Figure 2.3 shows the PDF created by list-
ing 2.2. You can see all the fonts that are
present in the document by choosing
File > Properties > Fonts.

 The document properties reveal
that two fonts were used: Helvetica and
Helvetica-Bold. These fonts weren’t
embedded. When I open the file on
Windows, Adobe Reader replaces Hel-
vetica with ArialMT and Helvetica-Bold
with ArialBoldMT. These fonts look
very similar, but nevertheless, there’s
a difference!

 The first font in the list in figure 2.3
is the default font used for the Chunks
created in listing 2.2 C.

FAQ What is the default font used in iText, and can I change it? The default font
in iText is Helvetica with size 12 pt. There’s no way to change this. If you
need objects with another default font, just create a factory class that pro-
duces objects with the font of your choice.

In D, you specify a different font from the same family: Helvetica with style Bold. You
define a different font size (6 pt) and set the font color to white. It would be difficult
to read white text on a white page, so you also change one of the many attributes of
the Chunk object: the background color E. The setBackground() method draws a
colored rectangle behind the text contained in the Chunk. The extra parameters of
the method define extra space (expressed in user units) to the left, bottom, right, and
top of the Chunk. In this case, the ID of each country will be printed as white text on a
black background.

 You use setTextRise() F to print the country ID in superscript. The parameter is
the distance from the baseline in user units. A positive value simulates superscript; a
negative value simulates subscript. You’ll discover more Chunk attributes as you read
on in the book.

 Finally you add Chunk.NEWLINE to make sure that every country name starts on a
new line. In the next subsection, we’ll combine Chunks into a Phrase.

Figure 2.3 Country chunks, produced with listing 2.2
Licensed to Bruno Lowagie <bruno@lowagie.com>

25Adding Chunk, Phrase, Paragraph, and List objects
2.2.2 The Phrase object: a List of Chunks with leading

When I created iText, I chose the word chunk for the atomic text element because of
its first definition in my dictionary: “a solid piece.” A phrase, on the other hand, is
defined as “a string of words.” It’s a composed object. Translated to iText and Java, a
Phrase is an ArrayList of Chunk objects.

A PHRASE WITH DIFFERENT FONTS

When you create methods that compose Phrase objects using different Chunks, you’ll
usually create constants for the different Fonts you’ll use.

public static final Font BOLD_UNDERLINED =
 new Font(FontFamily.TIMES_ROMAN,
 12, Font.BOLD | Font.UNDERLINE);
public static final Font NORMAL =
 new Font(FontFamily.TIMES_ROMAN, 12);
public Phrase createDirectorPhrase(ResultSet rs)
 throws UnsupportedEncodingException, SQLException {
 Phrase director = new Phrase();
 director.add(new Chunk(
 new String(rs.getBytes("name"), "UTF-8"),
 BOLD_UNDERLINED));
 director.add(new Chunk(",", BOLD_UNDERLINED));
 director.add(new Chunk(" ", NORMAL));
 director.add(new Chunk(
 new String(rs.getBytes("given_name"), "UTF-8"),
 NORMAL));
 return director;
}

The createDirectorPhrase() method produces the Phrase exactly the way you want
it. You’ll use it 80 times to list the 80 directors from the movie database. It’s good prac-
tice to create a factory class containing different createObject() methods if you need
to create Chunk, Phrase, or other objects in a standardized way.

THE LEADING OF A PHRASE

The method createDirectorPhrase() from listing 2.3 is used in this listing in which
you’re repeating the five steps in the PDF creation process.

Document document = new Document();
PdfWriter.getInstance(
 document, new FileOutputStream(filename));
document.open();
DatabaseConnection connection = new HsqldbConnection("filmfestival");
Statement stm = connection.createStatement();
ResultSet rs = stm.executeQuery("SELECT name, given_name"
 + "FROM film_director ORDER BY name, given_name");
while (rs.next()) {
 document.add(createDirectorPhrase(rs));

Listing 2.3 DirectorPhrases1.java

Listing 2.4 DirectorPhrases1.java

Creates different
Font objects

Creates Phrase
object

Adds Chunks
to Phrase

Step 1: Create
DocumentB

C Step 2: Get
instance of
PdfWriter

Step 3: Open
Document D

E Step 4:
Add content
Licensed to Bruno Lowagie <bruno@lowagie.com>

26 CHAPTER 2 Using iText’s basic building blocks
 document.add(Chunk.NEWLINE);
}
stm.close();
connection.close();
document.close();

Observe that you no longer need to set the initial leading in step C. Instead, the
default leading is used.

FAQ What is the default leading in iText? If you don’t define a leading, iText looks
at the font size of the Phrase or Paragraph that is added to the document, and
multiplies it by 1.5. For instance, if you have a Phrase with a font of size 10, the
default leading is 15. For the default font—with a default size of 12—the default
leading is 18.

In the next example, you’ll change the leading with the setLeading() method.

DATABASE ENCODING VERSUS THE DEFAULT CHARSET USED BY THE JVM

In listing 2.3, some Strings were created using the UTF-8 encoding explicitly:

new String(rs.getBytes("given_name"), "UTF-8")

That’s because the database contains different names with special characters. If you
look at the HSQL script filmfestival.script, you’ll find INSERT statements like this:

INSERT INTO FILM_DIRECTOR VALUES(
 41,'I\u00c3\u00b1\u00c3\u00a1rritu','Alejandro Gonz\u00c3\u00a1lez')

That’s the record for the director Alejandro González Iñárritu. The characters á—
(char) 226—and ñ—(char) 241—can be stored as one byte each, using the ANSI char-
acter encoding, which is a superset of ISO-8859-1, aka Latin-1. HSQL stores them in Uni-
code using multiple bytes per character. To make sure that the String is created
correctly, listing 2.3 uses ResultSet.getBytes() instead of ResultSet.getString().

 This isn’t always necessary. In most database systems, you can define the encoding
for each table or for the whole database. The JVM uses the platform’s default charset,
for instance, in the new String(byte[] bytes) constructor.

FAQ Why is the data I retrieve from my database rendered as gibberish? This can be
caused by an encoding mismatch. The records in your database are encoded
using encoding X; but the String objects obtained from your ResultSet
assume that they are encoded using your platform’s charset Y. For instance,
the name González could be rendered as GonzÃ¡lez if the Unicode charac-
ters are interpreted as ANSI characters.

Once you’ve created the PDF document correctly, you no longer have to worry about
encodings. One of the main reasons why people prefer PDF over any other document
format is because PDF, as the name tells us, is a portable document format. A PDF docu-
ment can be viewed and printed on any platform: UNIX, Macintosh, Windows, Linux,
and others, regardless of the encoding or the character set that is used.

E Step 4:
Add content

Step 5: Close
Document

F

Licensed to Bruno Lowagie <bruno@lowagie.com>

27Adding Chunk, Phrase, Paragraph, and List objects
 In theory, a PDF document should look the same on any of these platforms, using
any viewer available on that platform, but there’s a caveat! If you take a close look at
figure 2.4, you can see that this isn’t always true.

FONT SUBSTITUTION FOR NONEMBEDDED FONTS

In figure 2.3, you could see that Helvetica was replaced by ArialMT. Figure 2.4 shows
that the choice of the replacement font is completely up to the document viewer.

 Adobe Reader on Ubuntu (see the left window in figure 2.4) replaces Helvetica
with Adobe Sans MM and Times-Roman with Adobe Serif MM. The MM refers to the
fact that these are Multiple Master fonts. Wikipedia tells us that MM fonts are “an exten-
sion to Adobe Systems’ Type 1 PostScript fonts ... From one MM font, it is conceivable
to create a wide gamut of typeface styles of different widths, weights and proportions,
without losing the integrity or readability of the character glyphs.”

 Adobe Reader for Linux uses a generic font when it encounters a nonembedded
font for which it can’t find an exact match. Looking at the output of File > Properties
> Fonts in Evince (Ubuntu’s default document viewer; see the right window in fig-
ure 2.4), you might have the impression that the actual Times-Bold, Times-Roman,
and Helvetica fonts are used, but that’s just Evince fooling you. Helvetica and Times-
Roman aren’t present on my Linux distribution; Evince is using other fonts instead.
On Ubuntu Linux, you can consult the configuration files in the /etc/fonts direc-
tory. I did, and I discovered that on my Linux installation, Times and Helvetica are
mapped to Nimbus Roman No9 L and Nimbus Sans—free fonts that can be found in
the /usr/share/fonts/type1/gsfonts directory.

 Note that we are looking at the same document, on the same OS (Ubuntu Linux),
yet the names of the directors in the document look slightly different because differ-
ent fonts were used. We were very lucky that the names were legible.

Figure 2.4 A PDF file
opened in Adobe Reader
and Evince on Ubuntu
Licensed to Bruno Lowagie <bruno@lowagie.com>

28 CHAPTER 2 Using iText’s basic building blocks
FAQ Why are the special characters missing in my PDF document? This isn’t an
iText problem. You could be using a character that has a description for the
corresponding glyph on your system, but if you don’t embed the font, that
glyph can be missing on an end user’s system. If the PDF viewer on that sys-
tem can’t find a substitution font, it won’t be able to display the glyph. The
solution is to embed the font. But even if you embed the font, some glyphs
can be missing because they weren’t present in the font you tried to embed.
The solution here is to use a different font that does have the appropriate
glyph descriptions. This will be discussed in great detail in chapter 11.

Not embedding fonts is always a risk, especially if you need special glyphs in your doc-
ument. Not every font has the descriptions for every possible glyph.

NOTE Characters in a file are rendered on screen or on paper as glyphs.
ISO-32000-1, section 9.2.1, states: “A character is an abstract symbol, whereas
a glyph is a specific graphical rendering of a character. For example: The
glyphs A, A, and A are renderings of the abstract ‘A’ character. Glyphs are
organized into fonts. A font defines glyphs for a particular character set.”

In the next example, you’ll see how to avoid possible problems caused by font substi-
tution by embedding the font.

EMBEDDING FONTS

Up until now, you’ve created font objects using nothing but the Font class. The fonts
available in this class are often referred to as the standard Type 1 fonts. These fonts
aren’t embedded by iText.

NOTE The standard Type 1 fonts used to be called built-in fonts or Base 14 fonts.
The font programs for fourteen fonts—four styles of Helvetica, Times-Roman,
and Courier, plus Symbol and ZapfDingbats—used to be shipped with the PDF
viewer. This is no longer the case; most viewers replace these fonts. It’s impor-
tant to understand that these fonts have no support for anything other than
American/Western-European character sets. As soon as you want to add text
with foreign characters, you’ll need to use another font program.

The next example is a variation on the previous one. You don’t have to change list-
ing 2.4; you only have to replace listing 2.3 with this one.

public static final Font BOLD;
public static final Font NORMAL;

static {
 BaseFont timesbd = null;
 BaseFont times = null;
 try {
 timesbd = BaseFont.createFont(
 "c:/windows/fonts/timesbd.ttf",
 BaseFont.WINANSI, BaseFont.EMBEDDED);

Listing 2.5 DirectorPhrases2.java

Declares Font objects

Creates BaseFont
objects
Licensed to Bruno Lowagie <bruno@lowagie.com>

29Adding Chunk, Phrase, Paragraph, and List objects
 times = BaseFont.createFont(
 "c:/windows/fonts/times.ttf",
 BaseFont.WINANSI, BaseFont.EMBEDDED);
 } catch (DocumentException e) {
 e.printStackTrace();
 System.exit(1);
 } catch (IOException e) {
 e.printStackTrace();
 System.exit(1);
 }
 BOLD = new Font(timesbd, 12);
 NORMAL = new Font(times, 12);
 }

 public Phrase createDirectorPhrase(ResultSet rs)
 throws UnsupportedEncodingException, SQLException {
 Phrase director = new Phrase();
 Chunk name =
 new Chunk(new String(rs.getBytes("name"), "UTF-8"), BOLD);
 name.setUnderline(0.2f, -2f);
 director.add(name);
 director.add(new Chunk(",", BOLD));
 director.add(new Chunk(" ", NORMAL));
 director.add(new Chunk(new String(
 rs.getBytes("given_name"), "UTF-8"), NORMAL));
 director.setLeading(24);
 return director;
 }

You tell iText where to find the font programs for Times New Roman (times.ttf) and
Times New Roman Bold (timesbd.ttf) by creating a BaseFont object. You ask iText to
embed the characters (BaseFont.EMBEDDED versus BaseFont.NOT_EMBEDDED) using
the ANSI character set (BaseFont.WINANSI). You’ll learn more about the BaseFont
object in chapter 11. For now, it’s sufficient to know that you can create a Font
instance using a BaseFont object and a float value for the font size.

 Figure 2.5 looks very similar to figure 2.4; only now the PDF file is rendered the
same way in both viewers.

Creates BaseFont
objects

Creates Font using
BaseFont and size

Underlines
Chunk

Defines custom
leading

Figure 2.5 A PDF file
opened in Adobe Reader
and Evince on Ubuntu
Licensed to Bruno Lowagie <bruno@lowagie.com>

30 CHAPTER 2 Using iText’s basic building blocks
Observe that there’s more space between the names in this version because listing 2.5
used setLeading() to change the leading. The names of the directors are also under-
lined differently compared to the previous example, because you don’t define the
underlining as a property of the Font, but as an attribute of the Chunk.

 With the Chunk.setUnderline() method, you can set the line thickness (in the
example, 0.2 pt) and a Y position (in the example, 2 pt below the baseline). The
parameter that sets the Y position allows you to use the same method to strike a line
through a Chunk. There’s also a variant of the method that accepts six parameters:

■ A BaseColor, which makes the line a different color than the text.
■ The absolute thickness.
■ A thickness multiplication factor that will adapt the line width based on the font

size.
■ An absolute Y position.
■ A position multiplication factor that will adapt the Y position based on the font

size.
■ The end line cap, defining what the extremities of the line should look like.

Allowed values are PdfContentByte.LINE_CAP_BUTT (the default value), Pdf-
ContentByte.LINE_CAP_ROUND, and PdfContentByte.LINE_CAP_PROJECTING_
SQUARE. The meaning of these options will be explained in table 14.6.

One thing may look peculiar when you look at figure 2.5. Why do both viewers still list
Helvetica? You won’t find any explicit reference to it in listings 2.4 and 2.5, but it’s
added implicitly in this line:

document.add(Chunk.NEWLINE);

Chunk.NEWLINE contains a newline character in the default font; and the default font
is Helvetica. You could have avoided this by replacing that line with this one:

document.add(new Chunk("\n", NORMAL));

But an even better solution would be to use a Paragraph object instead of a Phrase.

2.2.3 Paragraph object: a Phrase with extra properties and a newline

Although the analogy isn’t entirely correct, I often compare the difference between a
Phrase and a Paragraph in iText with the difference between and <div> in
HTML. If you had used a Paragraph instead of a Phrase in the previous examples, it
wouldn’t have been necessary to add a newline.

List<Movie> movies = PojoFactory.getMovies(connection);
for (Movie movie : movies) {
 document.add(new Paragraph(movie.getTitle()));
}

Listing 2.6 MovieTitles.java
Licensed to Bruno Lowagie <bruno@lowagie.com>

31Adding Chunk, Phrase, Paragraph, and List objects
The Paragraph class is derived from the Phrase class. You can create instances of
Paragraph exactly the same way as you’ve been creating Phrase objects, but there’s
more: you can also define the alignment of the text, different indentations, and the
spacing before and after the paragraph.

EXPERIMENTING WITH PARAGRAPHS

Let’s experiment with these Paragraph features in some examples. Listing 2.7 shows
two helper methods that create Paragraphs:

■ createYearAndDuration() creates a Paragraph that is composed of Chunk
objects.

■ createMovieInformation() does the same using Phrase objects and one Para-
graph object that is treated as if it were a Phrase.

These methods are convenience methods that will be reused in different examples.

public Paragraph createYearAndDuration(Movie movie) {
 Paragraph info = new Paragraph();
 info.setFont(FilmFonts.NORMAL);
 info.add(new Chunk("Year: ", FilmFonts.BOLDITALIC));
 info.add(new Chunk(String.valueOf(movie.getYear()),
 FilmFonts.NORMAL));
 info.add(new Chunk(" Duration: ", FilmFonts.BOLDITALIC));
 info.add(new Chunk(String.valueOf(movie.getDuration()),
 FilmFonts.NORMAL));
 info.add(new Chunk(" minutes", FilmFonts.NORMAL));
 return info;
}

public Paragraph createMovieInformation(Movie movie) {
 Paragraph p = new Paragraph();
 p.setFont(FilmFonts.NORMAL);
 p.add(new Phrase("Title: ", FilmFonts.BOLDITALIC));
 p.add(
 PojoToElementFactory.getMovieTitlePhrase(movie));
 p.add(" ");
 if (movie.getOriginalTitle() != null) {
 p.add(new Phrase(
 "Original title: ", FilmFonts.BOLDITALIC));
 p.add(PojoToElementFactory
 .getOriginalTitlePhrase(movie));
 p.add(" ");
 }
 p.add(new Phrase("Country: ", FilmFonts.BOLDITALIC));
 for (Country country : movie.getCountries()) {
 p.add(
 PojoToElementFactory.getCountryPhrase(country));
 p.add(" ");
 }
 p.add(new Phrase("Director: ", FilmFonts.BOLDITALIC));
 for (Director director : movie.getDirectors()) {

Listing 2.7 MovieParagraphs1

Fonts grouped in
FilmFonts class

get() methods
grouped in Pojo-

ToElementFactory
Licensed to Bruno Lowagie <bruno@lowagie.com>

32 CHAPTER 2 Using iText’s basic building blocks
 p.add(
 PojoToElementFactory.getDirectorPhrase(director));
 p.add(" ");
 }
 p.add(createYearAndDuration(movie));
 return p;
}

Note that you’re already introducing rationalizations that will keep your code main-
tainable as the application grows.

RATIONALIZATIONS

You’re using Font objects that are grouped in the FilmFonts class. Generic names
NORMAL, BOLD, ITALIC, and BOLDITALIC are chosen, so that you don’t need to refactor
the names if your employer doesn’t like the font family you’ve chosen. If he wants you
to switch from Helvetica to Times, you have to change your code in only one place.

 The createMovieInformation() method from listing 2.7 is used here.

List<Movie> movies = PojoFactory.getMovies(connection);
for (Movie movie : movies) {
 Paragraph p = createMovieInformation(movie);
 p.setAlignment(Element.ALIGN_JUSTIFIED);
 p.setIndentationLeft(18);
 p.setFirstLineIndent(-18);
 document.add(p);
}

Next, you’ll convert POJOs into Phrase objects using a PojoToElementFactory. As
your application grows, you’ll benefit from reusing methods such as getMovieTitle-
Phrase() and getDirectorPhrase() that are grouped in such a separate factory.

List<Movie> movies = PojoFactory.getMovies(connection);
for (Movie movie : movies) {
 Paragraph title = new

Paragraph(PojoToElementFactory.getMovieTitlePhrase(movie));
 title.setAlignment(Element.ALIGN_LEFT);
 document.add(title);
 if (movie.getOriginalTitle() != null) {
 Paragraph dummy = new Paragraph("\u00a0", FilmFonts.NORMAL);
 dummy.setLeading(-18);
 document.add(dummy);
 Paragraph originalTitle = new Paragraph(
 PojoToElementFactory.getOriginalTitlePhrase(movie));
 originalTitle.setAlignment(Element.ALIGN_RIGHT);
 document.add(originalTitle);
 }
 Paragraph director;
 float indent = 20;
 for (Director pojo : movie.getDirectors()) {
 director = new Paragraph(PojoToElementFactory.getDirectorPhrase(pojo));

Listing 2.8 MovieParagraphs1

Listing 2.9 MovieParagraphs2

get() methods grouped
in PojoToElementFactory
Licensed to Bruno Lowagie <bruno@lowagie.com>

33Adding Chunk, Phrase, Paragraph, and List objects
 director.setIndentationLeft(indent);
 document.add(director);
 indent += 20;
 }
 Paragraph country;
 indent = 20;
 for (Country pojo : movie.getCountries()) {
 country = new Paragraph(PojoToElementFactory.getCountryPhrase(pojo));
 country.setAlignment(Element.ALIGN_RIGHT);
 country.setIndentationRight(indent);
 document.add(country);
 indent += 20;
 }
 Paragraph info = createYearAndDuration(movie);
 info.setAlignment(Element.ALIGN_CENTER);
 info.setSpacingAfter(36);
 document.add(info);
}

The resulting PDFs list all the movie titles in the database, including their original title
(if any), director, countries where they were produced, production year, and run
length. These documents probably won’t win an Oscar for best layout, but the exam-
ples illustrate a series of interesting Paragraph methods.

 You can tune the layout by changing several Paragraph properties.

CHANGING THE ALIGNMENT

In listing 2.8, the alignment was set to Element.ALIGN_JUSTIFIED with the setAlign-
ment() method. This causes iText to change the spaces between words and characters—
depending on the space/character ratio—in order to make the text align with both the
left and right margins. Listing 2.9 shows the alternative alignments: Element.LEFT, Ele-
ment.ALIGN_CENTER, and Element.RIGHT. Element.ALIGN_JUSTIFIED_ALL is similar to
Element.ALIGN_JUSTIFIED; the difference is that the last line is aligned too. If you don’t
define an alignment, the text is left aligned.

CHANGING THE INDENTATION

There are three methods for changing the indentation:

■ setIndentationLeft()—Changes the indentation to the left. A positive value
will be added to the left margin of the document; a negative value will be
subtracted.

■ setIndentationRight()—Does the same as setIndentationLeft(), but with
the right margin.

■ setFirstLineIndent()—Changes the left indentation of the first line, which is
interesting if you want to provide an extra visual hint to the reader that a new
Paragraph has started.

In listing 2.8, a positive indentation of 18 pt (valid for the whole paragraph) was
defined. The negative indentation of 18 pt for the first line will be subtracted from the
left indentation, causing the first line of each paragraph to start at the left margin.
Every extra line in the same Paragraph will be indented a quarter of an inch.
Licensed to Bruno Lowagie <bruno@lowagie.com>

34 CHAPTER 2 Using iText’s basic building blocks
SPACING BETWEEN PARAGRAPHS

Another way to distinguish different paragraphs is to add extra spacing before or after
the paragraph. In listing 2.9, you used setSpacingAfter() to separate the details of
two different movies with a blank line that is half an inch high. There’s also a set-
SpacingBefore() method that can produce similar results.

 Finally, listing 2.9 does something it shouldn’t: it uses a workaround to write the Eng-
lish and the original title on the same line, with the English title aligned to the left and
the original title aligned to the right. It achieves this by introducing a dummy Para-
graph with a negative leading, causing the current position on the page to move one
line up. While this works out more or less fine in this example, it will fail in other exam-
ples. For instance, if the previous line causes a page break, you won’t be able to move
back to the previous page. Also, if the English and the original title don’t fit on one line,
the text will overlap. You’ll learn how to fix these layout problems in section 2.2.6.

 In the next section, we’ll have a look at what happens when the end of a line is
reached.

2.2.4 Distributing text over different lines

In the movie_paragraphs_1.pdf document (listing 2.8), all the information about a
movie is in one Paragraph. For most of the movies, the content of this Paragraph
doesn’t fit on one line, and iText splits the string, distributing the content over differ-
ent lines. The default behavior of iText is to put as many complete words to a line as
possible. iText splits sentences when a space or a hyphen is encountered, but you can
change this behavior by redefining the split character.

THE SPLIT CHARACTER

If you want to keep two words separated by a space character on the same line, you
shouldn’t use the normal space character, (char)32; you should use the nonbreaking
space character (char)160.

 Next you’ll create a StringBuffer containing all the movies by Stanley Kubrick,
and you’ll concatenate them into one long String, separated with pipe symbols (|).
In the movie titles, you’ll replace the ordinary space character with a nonbreaking
space character.

StringBuffer buf1 = new StringBuffer();
for (Movie movie : kubrick) {
 buf1.append(movie.getMovieTitle()
 .replace(' ', '\u00a0'));
 buf1.append('|');
}
Chunk chunk1 = new Chunk(buf1.toString());

Paragraph paragraph = new Paragraph("A:\u00a0");
paragraph.add(chunk1);
paragraph.setAlignment(Element.ALIGN_JUSTIFIED);
document.add(paragraph);

Listing 2.10 MovieChain.java

Adds content without
SplitCharacter
Licensed to Bruno Lowagie <bruno@lowagie.com>

35Adding Chunk, Phrase, Paragraph, and List objects
document.add(Chunk.NEWLINE);

chunk1.setSplitCharacter(new PipeSplitCharacter());
paragraph = new Paragraph("B:\u00a0");
paragraph.add(chunk1);
paragraph.setAlignment(Element.ALIGN_JUSTIFIED);
document.add(paragraph);
document.add(Chunk.NEWLINE);

Because you’ve replaced the space characters, iText can’t find any of the default split
characters in chunk1. The text will be split into different lines, cutting words in two
just before the first character that no longer fits on the line. Then you add the same
content a second time, but you define the pipe symbol (|) as a split character.

 Next is a possible implementation of the SplitCharacter interface. You can add an
instance of this custom-made class to a Chunk with the method setSplitCharacter().

import com.lowagie.text.SplitCharacter;
import com.lowagie.text.pdf.PdfChunk;

public class PipeSplitCharacter implements SplitCharacter {

 @Override
 public boolean isSplitCharacter(
 int start, int current, int end, char[] cc,
 PdfChunk[] ck) {
 char c;
 if (ck == null)
 c = cc[current];
 else
 c = (char)ck[Math.min(current, ck.length - 1)]
 .getUnicodeEquivalent(cc[current]);
 return (c == '|' || c <= ' ' || c == '-');
 }
}

The method that needs to be implemented looks complicated, but in most cases it’s
sufficient to copy the method shown in the previous listing and change the return
line. If you’re working with Asian glyphs, you may also add these ranges of Unicode
characters:

(c >= 0x2e80 && c < 0xd7a0) || (c >= 0xf900 && c < 0xfb00)
|| (c >= 0xfe30 && c < 0xfe50) || (c >= 0xff61 && c < 0xffa0)

The result is shown in the upper part of figure 2.6.
 In Paragraph A, the content is split at unusual places. The word “Love” is split

into “Lo” and “ve,” and the final “s” in the word “Paths” is orphaned. For the Chunks
in Paragraph B, a split character was defined: the pipe character (|). Paragraph C
shows what the content looks like if you don’t replace the normal spaces with non-
breaking spaces.

Listing 2.11 PipeSplitCharacter.java

Adds content with
SplitCharacter '|'
Licensed to Bruno Lowagie <bruno@lowagie.com>

36 CHAPTER 2 Using iText’s basic building blocks
HYPHENATION

This listing is similar to listing 2.10, except it doesn’t replace the ordinary space char-
acters. Another Chunk attribute is introduced: hyphenation.

StringBuffer buf2 = new StringBuffer();
for (Movie movie : kubrick) {
 buf2.append(movie.getMovieTitle());
 buf2.append('|');
}
Chunk chunk2 = new Chunk(buf2.toString());

paragraph = new Paragraph("C:\u00a0");
paragraph.add(chunk2);
paragraph.setAlignment(Element.ALIGN_JUSTIFIED);
document.add(paragraph);
document.newPage();

chunk2.setHyphenation(
 new HyphenationAuto("en", "US", 2, 2));
paragraph = new Paragraph("D:\u00a0");
paragraph.add(chunk2);
paragraph.setAlignment(Element.ALIGN_JUSTIFIED);
document.add(paragraph);
document.newPage();

Listing 2.12 MovieChain.java (continued)

Figure 2.6 Splitting paragraphs

Adds content that
will split on a space

Adds content using
hyphenation
(American English)
Licensed to Bruno Lowagie <bruno@lowagie.com>

37Adding Chunk, Phrase, Paragraph, and List objects
writer.setSpaceCharRatio(PdfWriter.NO_SPACE_CHAR_RATIO);
paragraph = new Paragraph("E:\u00a0");
paragraph.add(chunk2);
paragraph.setAlignment(Element.ALIGN_JUSTIFIED);
document.add(paragraph);

In this listing, you create a HyphenationAuto object using four parameters. iText uses
hyphenation rules found in XML files named en_US.xml, en_GB.xml, and so on. The
first two parameters refer to these filenames. The third and fourth parameters specify
how many characters may be orphaned at the start or at the end of a word. For
instance, you wouldn’t want to split the word elephant like this: e-lephant. It doesn’t look
right if a single letter gets cut off from the rest of the word.

FAQ I use setHyphenation(), but my text isn’t hyphenated. Where do I find the
XML file I need? If you try the example in listing 2.12, and not one word is
hyphenated, you’ve probably forgotten to add the itext-hyph-xml.jar to your
classpath. In this JAR, you’ll find files such as es.xml, fr.xml, de_DR.xml, and
so on. These XML files weren’t written by iText developers; they were cre-
ated for Apache’s Formatting Objects Processor (FOP). The XML files bun-
dled in itext-hyph-xml.jar are a limited set, and your code won’t work if
you’re using a language for which no XML file was provided in this JAR. In
that case, you’ll have to find the appropriate file on the internet and add it
to a JAR in your classpath. Don’t forget to read the license before you start
using a hyphenation file; some of those files can’t be used for free.

The hyphenated text is added twice: once with the default space/character ratio, and
once with a custom space/character ratio.

THE SPACE/CHARACTER RATIO

The Paragraph objects D and E from listing 2.12, have a justified alignment. This
alignment is achieved by adding extra space between the words and between the char-
acters. In Paragraph D, you see the default spacing. The ratio is 2.5, meaning that
iText has been adding 2.5 times more space between the words than between the char-
acters to match the exact length of each line.

 You can change this ratio with the PdfWriter.setSpaceCharRatio() method. This
is done for Paragraph E. On the lower-right side of figure 2.6, you can see that no extra
space is added between the characters, only between the words, because the ratio was
changed to NO_SPACE_CHAR_RATIO (which is in reality a very high float value).

2.2.5 The List object: a sequence of Paragraphs called ListItem

In the previous examples, you’ve listed movies, directors, and countries. In the next
example you’ll repeat this exercise, but instead of presenting the data as an alphabeti-
cally sorted series of movie titles, you’ll create a list of countries, along with the num-
ber of movies in the database that were produced in that country. You’ll list those
movies, and for every movie you’ll list its director(s).

Adds content
without extra
spacing
between glyphs
Licensed to Bruno Lowagie <bruno@lowagie.com>

38 CHAPTER 2 Using iText’s basic building blocks
ORDERED AND UNORDERED LISTS

To achieve this, you’ll use the List object and a number of ListItem objects. As you
can see in the UML diagram (figure 2.1), ListItem extends Paragraph. The main dif-
ference is that every ListItem has an extra Chunk variable that acts as a list symbol.

 A first version of this report was created using ordered and unordered lists. The list
symbol for ordered lists can be numbers—which is the default—or letters. The letters
can be lowercase or uppercase—uppercase is the default. The default list symbol for
unordered lists is a hyphen.

List list = new List(List.ORDERED);
while (rs.next()) {
 ListItem item = new ListItem(
 String.format(
 "%s: %d movies",
 rs.getString("country"), rs.getInt("c")),
 FilmFonts.BOLDITALIC);
 List movielist
 = new List(List.ORDERED, List.ALPHABETICAL);
 movielist.setLowercase(List.LOWERCASE);
 for(Movie movie :
 PojoFactory.getMovies(connection, rs.getString("country_id"))) {
 ListItem movieitem
 = new ListItem(movie.getMovieTitle());
 List directorlist = new List(List.UNORDERED);
 for (Director director : movie.getDirectors()) {
 directorlist.add(String.format("%s, %s",
 director.getName(), director.getGivenName()));
 }
 movieitem.add(directorlist);
 movielist.add(movieitem);
 }
 item.add(movielist);
 list.add(item);
}
document.add(list);

Note that it’s not always necessary to create a ListItem instance. You can also add
String items directly to a List; a ListItem will be created internally for you.

CHANGING THE LIST SYMBOL

Next is a variation on the same theme.

List list = new List();
list.setAutoindent(false);
list.setSymbolIndent(36);
while (rs.next()) {
 ListItem item = new ListItem(String.format(
 "%s: %d movies",
 rs.getString("country"), rs.getInt("c")));

Listing 2.13 MovieLists1.java

Listing 2.14 MovieLists2.java

Creates ordered
List (numbers)

Creates
ListItem

Creates ordered List
(lowercase letters)

Creates ListItem

Adds String
directly to List

Creates
unordered List

Unordered List,
fixed indentation

ListItem with
custom list symbol
Licensed to Bruno Lowagie <bruno@lowagie.com>

39Adding Chunk, Phrase, Paragraph, and List objects
 item.setListSymbol(
 new Chunk(rs.getString("country_id")));
 List movielist
 = new List(List.ORDERED, List.ALPHABETICAL);
 movielist.setAlignindent(false);
 for(Movie movie :
 PojoFactory.getMovies(connection, rs.getString("country_id"))) {
 ListItem movieitem = new ListItem(movie.getMovieTitle());
 List directorlist = new List(List.ORDERED);
 directorlist.setPreSymbol("Director ");
 directorlist.setPostSymbol(": ");
 for (Director director : movie.getDirectors()) {
 directorlist.add(String.format("%s, %s",
 director.getName(), director.getGivenName()));
 }
 movieitem.add(directorlist);
 movielist.add(movieitem);
 }
 item.add(movielist);
 list.add(item);
}
document.add(list);

For the list with countries, you now define an indentation of half an inch for the list
symbol. You also define a different list symbol for every item, namely the database ID
of the country. The difference for the movie list is subtler: you tell iText that it
shouldn’t realign the list items. In listing 2.13, iText looks at all the items in the List
and uses the maximum indentation for all the items. By adding the line mov-
ielist.setAlignindent(false) in listing 2.14, every list item now has its own list
indentation based on the space taken by the list symbol. That is, unless you’ve added
the line list.setAutoindent(false), in which case the indentation specified with
setSymbolIndent() is used.

 As you can see in figure 2.7, a period (.) symbol is added to each list symbol for
ordered lists. You can override this behavior with the methods setPreSymbol() and
setPostSymbol(). In listing 2.14, the pre- and postsymbols are defined in such a way
that you get “Director 1:”, “Director 2:”, and so on, as list symbols (shown at the top-
right in figure 2.7).

SPECIAL TYPES OF LISTS

Four more variations are shown in figure 2.7. First, in listing 2.15, you’ll create List
objects of type RomanList, GreekList, and ZapfDingbatsNumberList. In listing 2.16,
you’ll create a ZapfDingbatsList.

List list = new RomanList();
...
List movielist = new GreekList();
movielist.setLowercase(List.LOWERCASE);
..
List directorlist = new ZapfDingbatsNumberList(0);

Listing 2.15 MovieLists3.java

ListItem with
custom list symbol

Ordered List (lowercase
letters), no realignment

Ordered List
with special
list symbol

String added
directly to List
Licensed to Bruno Lowagie <bruno@lowagie.com>

40 CHAPTER 2 Using iText’s basic building blocks
Be careful not to use ZapfDingbatsNumberList for long lists. This list variation comes
in four different types defined with a parameter in the constructor that can be 0, 1, 2,
or 3, corresponding to specific types of numbered bullets. Note that the output will
only be correct for items 1 to 10, because there are no bullets for numbers 11 and
higher in the font that is used to draw the bullets.

 ZapfDingbats is one of the 14 standard Type 1 fonts. It contains a number of spe-
cial symbols, such as a hand with the index finger pointing to the right: (char)42.
This symbol is used in listing 2.16 for the director list. The special list class for this type
of list is called ZapfDingbatsList. This is the superclass of ZapfDingbatsNumberList.

 Listing 2.16 also shows how to change the first index of an ordered list using set-
First(), and how to set a custom list symbol for the entire list with setListSymbol().

List list = new List(List.ORDERED);
list.setFirst(9);
..
List movielist = new List();
movielist.setListSymbol(new Chunk("Movie: ", FilmFonts.BOLD));
..
List directorlist = new ZapfDingbatsList(42);

Listing 2.16 MovieLists4.java

Figure 2.7 List and ListItem variations
Licensed to Bruno Lowagie <bruno@lowagie.com>

41Adding Chunk, Phrase, Paragraph, and List objects
We’ll conclude this section with a number of objects that aren’t shown on the class
diagram in figure 2.1: vertical position marks and separator Chunks.

2.2.6 The DrawInterface: vertical position marks, separators, and tabs

In section 1.3.4, you learned that there are different ways to add content to a page
using iText. In this chapter, you’ve been using document.add(), trusting iText to put
the content at the correct position in a page. But in some cases, you might want to add
something extra. For instance, you might want to add a mark at the current position
in the page (for example, an arrow); or you might want to draw a line from the left
margin to the right margin (which is different from underlining a Chunk).

 This can be achieved using DrawInterface. If you want to benefit from all the pos-
sibilities of this interface and its VerticalPositionMark implementation, you’ll need
some techniques that will be explained in the next chapter. For now, figure 2.8 shows
classes that can be used without any further programming work.

VERTICAL POSITION MARKS

Suppose that you want to create an alphabetical list of directors, and to list the movies
directed by these filmmakers that are present in the database. To this list, you want to
add an arrow that indicates which directors have more than two movies in the data-
base. You also want to indicate all the movies that were made in the year 2000 or later.
See figure 2.9 for an example.

Figure 2.8 Class diagram of DrawInterface implementations

Figure 2.9 Vertical position marks
Licensed to Bruno Lowagie <bruno@lowagie.com>

42 CHAPTER 2 Using iText’s basic building blocks
You can achieve this by subclassing VerticalPositionMark.

public class PositionedArrow extends VerticalPositionMark {

 protected boolean left;
 ...
 public static final PositionedArrow LEFT =
 new PositionedArrow(true);
 public static final PositionedArrow RIGHT =
 new PositionedArrow(false);
 ...
 public void draw(PdfContentByte canvas,
 float llx, float lly, float urx, float ury,
 float y) {
 canvas.beginText();
 canvas.setFontAndSize(zapfdingbats, 12);
 if (left) {
 canvas.showTextAligned(Element.ALIGN_CENTER,
 String.valueOf((char)220), llx - 10, y, 0);
 }
 else {
 canvas.showTextAligned(Element.ALIGN_CENTER,
 String.valueOf((char)220), urx + 10, y + 8,
 180);
 }
 canvas.endText();
 }
}

You could use Document.add() to add instances of this PositionedArrow class to the
Document because it extends VerticalPositionMark, which means it also implements
the Element interface. When this Element is encountered, the custom draw() method
will be invoked, and this method has access to the canvas to which content is added. It
also knows the coordinates defining the margins of the page, (llx, lly) and (urx,
ury), as well as the current y position on the page. In the draw() method of the Posi-
tionedArrow class, listing 2.17 uses llx and urx to draw an arrow in the left or right
margin of the page, and it uses the y value to position the arrow.

 Observe that in this example PositionedArrow is not added directly to the Document.

LineSeparator line = new LineSeparator(
 1, 100, null, Element.ALIGN_CENTER, -2);
Paragraph stars = new Paragraph(20);
stars.add(new Chunk(StarSeparator.LINE));
stars.setSpacingAfter(30);

while (rs.next()) {
 director = PojoFactory.getDirector(rs);
 Paragraph p = new Paragraph(
 PojoToElementFactory.getDirectorPhrase(director));

Listing 2.17 PositionedArrow.java

Listing 2.18 DirectorOverview1.java

Instance to draw
arrow to the left

Instance to draw
arrow to the right

Custom
implementation
of draw() method

B Creates
LineSeparator
Licensed to Bruno Lowagie <bruno@lowagie.com>

43Adding Chunk, Phrase, Paragraph, and List objects
 if (rs.getInt("c") > 2)
 p.add(PositionedArrow.LEFT);
 p.add(line);
 document.add(p);

 TreeSet<Movie> movies = new TreeSet<Movie>(
 new MovieComparator(MovieComparator.BY_YEAR));
 movies.addAll(
 PojoFactory.getMovies(connection, rs.getInt("id")));
 for (Movie movie : movies) {
 p = new Paragraph(movie.getMovieTitle());
 p.add(": ");
 p.add(new Chunk(String.valueOf(movie.getYear())));
 if (movie.getYear() > 1999)
 p.add(PositionedArrow.RIGHT);
 document.add(p);
 }
 document.add(stars);
}

The arrow refers to the content of a Paragraph, and it’s better to add it to the corre-
sponding object, as is done in C and D. Otherwise a page break could cause the text
to be on one page and the arrow on the next; that could be your intention in some sit-
uations, but that’s not the case here.

LINE SEPARATORS

When you need to draw a line, you want to know the current vertical position of the
text of a page. In that situation, you can get a long way using the LineSeparator class.
In B of listing 2.18, you create a line separator with the following parameters:

■ The line width—In this case, a line with a thickness of 1 pt.
■ The percentage that needs to be covered—In this case, 100 percent of the available

width.
■ A color—In this case, null, meaning that the default color will be used.
■ The alignment—This only makes sense if the percentage isn’t 100 percent.
■ The offset—In this case, 2 pt below the baseline.

If this object isn’t sufficient for your needs, you can write your own subclass of Verti-
calPositionMark, or your own (custom) implementation of the DrawInterface.

public class StarSeparator implements DrawInterface {
 ...
 public void draw(PdfContentByte canvas,
 float llx, float lly, float urx, float ury, float y) {
 float middle = (llx + urx) / 2;
 canvas.beginText();
 canvas.setFontAndSize(bf, 10);
 canvas.showTextAligned(Element.ALIGN_CENTER,
 "*", middle, y, 0);
 canvas.showTextAligned(Element.ALIGN_CENTER,
 "* *", middle, y -10, 0);

Listing 2.19 StarSeparator.java

C Adds left-positioned arrow
next to director name

D Adds right-
positioned arrow
next to movie title
Licensed to Bruno Lowagie <bruno@lowagie.com>

44 CHAPTER 2 Using iText’s basic building blocks
 canvas.endText();
 }
}

Observe that the StarSeparator object doesn’t implement the Element interface.
This means you can’t add it directly to the Document. You need to wrap it in a Chunk
object first.

SEPARATOR CHUNKS

Listing 2.9 applied a dirty hack using negative leading to create a line layout with a
Paragraph to the left (the English movie title) and a Paragraph to the right (the orig-
inal movie title). I told you that’s not the way it’s should be done. Now let’s have a look
at the proper way to achieve this.

director = PojoFactory.getDirector(rs);
Paragraph p = new Paragraph(
 PojoToElementFactory.getDirectorPhrase(director));
p.add(new Chunk(new DottedLineSeparator()));
p.add(String.format("movies: %d", rs.getInt("c")));
document.add(p);

List list = new List(List.ORDERED);
list.setIndentationLeft(36);
list.setIndentationRight(36);
TreeSet<Movie> movies = new TreeSet<Movie>(
 new MovieComparator(MovieComparator.BY_YEAR));
movies.addAll(
 PojoFactory.getMovies(connection, rs.getInt("id")));
ListItem movieitem;
for (Movie movie : movies) {
 movieitem = new ListItem(movie.getMovieTitle());
 movieitem.add(new Chunk(new VerticalPositionMark()));
 movieitem.add(
 new Chunk(String.valueOf(movie.getYear())));
 if (movie.getYear() > 1999) {
 movieitem.add(PositionedArrow.RIGHT);
 }
 list.add(movieitem);
}
document.add(list);

Listing 2.20 wraps a DottedLineSeparator in a Chunk and uses it to separate the name
of a filmmaker from the number of movies they have directed. The DottedLineSepa-
rator is a subclass of the LineSeparator, with the main difference being that it draws
a dotted line instead of a solid line. You can also set the gap between the dots using
the setGap() method.

 Some of the VerticalPositionMarks in figure 2.10 act as separators to distribute
content over a line. The name of the class no longer applies—you aren’t adding
a mark at a vertical position anymore. Instead you’re using the object to separate the
movie title from the year when the movie was produced. You could use multiple

Listing 2.20 DirectorOverview2.java

DottedLineSeparator
wrapped in Chunk

VerticalPositionMark
wrapped in Chunk
Licensed to Bruno Lowagie <bruno@lowagie.com>

45Adding Chunk, Phrase, Paragraph, and List objects
separators to distribute the title, the run length, and the production year: iText will
look at the remaining white space for every line and distribute it equally over the
number of separator Chunks.

 Another way to distribute the content of a line is to use tabs.

TAB CHUNKS

Figure 2.11 shows how you can distribute the English movie title, the original title, the
run length, and the year the movie was produced over one or more lines using tabs. If
ordinary separator Chunks were used, the content wouldn’t have been aligned in
columns.

 One English movie title and its corresponding original title don’t fit in the avail-
able space. A new line is used because of the way you’ve defined the tab Chunk. If you

Figure 2.10 Dotted line and other separators

Figure 2.11 Chunks acting as tab positions
Licensed to Bruno Lowagie <bruno@lowagie.com>

46 CHAPTER 2 Using iText’s basic building blocks
change true into false in the tab Chunk constructors, no line break will occur; the
text will overlap instead.

Chunk CONNECT = new Chunk(new LineSeparator(
 0.5f, 95, BaseColor.BLUE, Element.ALIGN_CENTER, 3.5f));
LineSeparator UNDERLINE = new LineSeparator(
 1, 100, null, Element.ALIGN_CENTER, -2);
Chunk tab1 =
 new Chunk(new VerticalPositionMark(), 200, true);
Chunk tab2 =
 new Chunk(new VerticalPositionMark(), 350, true);
Chunk tab3 =
 new Chunk(new DottedLineSeparator(), 450, true);
...
director = PojoFactory.getDirector(rs);
Paragraph p = new Paragraph(
 PojoToElementFactory.getDirectorPhrase(director));
p.add(CONNECT);
p.add(String.format("movies: %d", rs.getInt("c")));
p.add(UNDERLINE);
document.add(p);
TreeSet<Movie> movies = new TreeSet<Movie>(
 new MovieComparator(MovieComparator.BY_YEAR));
movies.addAll(
 PojoFactory.getMovies(connection, rs.getInt("id")));
for (Movie movie : movies) {
 p = new Paragraph(movie.getMovieTitle());
 p.add(new Chunk(tab1));
 if (movie.getOriginalTitle() != null)
 p.add(new Chunk(movie.getOriginalTitle()));
 p.add(new Chunk(tab2));
 p.add(new Chunk(
 String.valueOf(movie.getDuration()) + " minutes"));
 p.add(new Chunk(tab3));
 p.add(new Chunk(String.valueOf(movie.getYear())));
 document.add(p);
}
document.add(Chunk.NEWLINE);

You can use any DrawInterface to create a separator or tab Chunk, and you can use
these Chunks to separate content horizontally (within a paragraph) or vertically (lines
between paragraphs). Now it’s time to discuss the other building blocks shown in the
class diagram in figure 2.1.

2.3 Adding Anchor, Image, Chapter, and Section objects
In the previous examples, you’ve used every field shown in the ERD in figure 2.2,
except for one: the field named imdb. This field contains the ID for the movie on
imdb.com, which is the Internet Movie Database (IMDB).

 Wouldn’t it be nice to link to this external site from your documents? And what
kind of internal links could you add to a document? If you browse the resources that

Listing 2.21 DirectorOverview3.java

Tab at
position
350 for

duration

Tab at
position
450 for

year

Tab at
position
200 for
original

title
Licensed to Bruno Lowagie <bruno@lowagie.com>

47Adding Anchor, Image, Chapter, and Section objects
come with the book, you’ll see that the imdb field is also used as part of the filename
for the movie poster of each movie. The movie Superman Returns has the ID 0348150 at
IMDB. This means that you’ll find a 0348150.jpg file in the posters directory, which is a
subdirectory of the resources folder.

 In this section, you’ll work with different types of links: internal and external.
You’ll create a table of contents automatically and get bookmarks for free, using the
Chapter and Section objects. Finally, you’ll learn how to add images.

2.3.1 The Anchor object: internal and external links

What would the internet be without hypertext? How would you browse the web with-
out hyperlinks? It’s almost impossible to imagine a web page without <a> tags. But
what about PDF documents?

 There are different ways to add a link to a PDF file using iText. In this section,
you’ll add references and destinations using the Anchor object, as well as by setting
the reference and anchor attributes of a Chunk. You’ll discover more alternatives in
chapter 7.

ADDING ANCHOR OBJECTS

In listing 2.22, three Anchor objects are created. The first Anchor, with a country name
as its text, will act as a destination. It’s the equivalent of in HTML,
where US is the id of a country in the database. The third anchor, with the text “Go
back to the first page.” will be an internal link acting as . It will allow
the reader to jump to the destination with name “US” (located on the first page). iText
recognizes this reference as a local destination because you’re adding a number sign
(#) to the name, just as you would do in HTML.

Paragraph country = new Paragraph();
Anchor dest =
 new Anchor(rs.getString("country"), FilmFonts.BOLD);
dest.setName(rs.getString("country_id"));
country.add(dest);
country.add(String.format(": %d movies", rs.getInt("c")));
document.add(country);
for(Movie movie : PojoFactory.getMovies(
 connection, rs.getString("country_id"))) {
 imdb = new Anchor(movie.getMovieTitle());
 imdb.setReference(String.format(
 "http://www.imdb.com/title/tt%s/", movie.getImdb()));
 document.add(imdb);
 document.add(Chunk.NEWLINE);
}
document.newPage();
...
Anchor toUS = new Anchor("Go to first page.");
toUS.setReference("#US");
document.add(toUS);

Listing 2.22 MovieLinks1.java

Creates named
Anchor

Creates external
reference

Creates Anchor with
internal reference
Licensed to Bruno Lowagie <bruno@lowagie.com>

48 CHAPTER 2 Using iText’s basic building blocks
The second Anchor is a link to an external resource. In this case, to a specific page on
the IMDB website. http://www.imdb.com/title/tt0348150/ refers to a page with infor-
mation about the movie Superman Returns.

 There’s also another way to achieve the same result.

REMOTE GOTO, LOCAL DESTINATION, AND LOCAL GOTO CHUNKS

Listing 2.23 creates a PDF document with an opening paragraph, a list of countries,
and a closing paragraph. The closing paragraph contains a link to jump to the top of
the page. The other links are external.

Paragraph p = new Paragraph();
Chunk top = new Chunk("Country List", FilmFonts.BOLD);
top.setLocalDestination("top");
p.add(top);
document.add(p);

Chunk imdb =
 new Chunk("Internet Movie Database", FilmFonts.ITALIC);
imdb.setAnchor(new URL("http://www.imdb.com/"));
p = new Paragraph("Click on a country, and you'll get a list of movies,"
 + " containing links to the ");
p.add(imdb);
p.add(".");
document.add(p);

p = new Paragraph("This list can be found in a ");
Chunk page1 = new Chunk("separate document");
page1.setRemoteGoto("movie_links_1.pdf", 1);
p.add(page1);
p.add(".");
document.add(p);
...
Paragraph country = new Paragraph(rs.getString("country"));
country.add(": ");
 Chunk link = new Chunk(
 String.format("%d movies", rs.getInt("c")));
link.setRemoteGoto(
 "movie_links_1.pdf", rs.getString("country_id"));
country.add(link);
document.add(country);
...
p = new Paragraph("Go to ");
top = new Chunk("top");
top.setLocalGoto("top");
p.add(top);
p.add(".");
document.add(p);

In previous examples, you’ve set attributes of the Chunk object to underline text, to
change the background color, and so on. You can also set attributes that provide even
more functionality than the Anchor class:

Listing 2.23 MovieLinks2.java

Creates
destination

Creates
external link

Creates link to page
in another PDF

Creates link to
destination in
another PDF

Creates link to
destination in this PDF
Licensed to Bruno Lowagie <bruno@lowagie.com>

http://www.imdb.com/title/tt0348150/

49Adding Anchor, Image, Chapter, and Section objects
■ Chunk.setLocalDestination()—Corresponds to Anchor.setName(). You can
use it to create a destination that can be referenced from within the document,
or from another document.

■ Chunk.setLocalGoto()—Corresponds to Anchor.setReference(), where the
reference is a local destination. You don’t need to add a # sign when using this
method.

■ Chunk.setRemoteGoto()—Can refer to any of the following:
– An external URL—Defined by a String or a java.net.URL object; this corre-

sponds to Anchor.setReference().
– A page in another PDF document—The document created in the MovieLinks2

example refers to page 1 in the file movie_links_1.pdf, a file generated by
MovieLinks1.

– A destination in another PDF document—Listing 2.23 refers to the country code
in movie_links_1.pdf.

You can use the movie_links_2.pdf file, which lists 32 countries, as a clickable table of
contents (TOC) for the movie_links_1.pdf file, which lists the movies that were pro-
duced in these countries.

 The next example will explain how to create a different type of TOC: the book-
marks panel in Adobe Reader. Note that bookmarks are often referred to as outlines in
the context of PDF.

2.3.2 Chapter and Section: get bookmarks for free

If you scroll in the bookmarks panel shown in figure 2.12, you’ll see entries numbered
from 1 to 7: Forties, Fifties, Sixties, Seventies, Eighties, Nineties, and Twenty-first cen-
tury. You can create these entries by organizing the content in chapters. Every Chap-
ter in this PDF document contains one or more Section objects. In this case, years
that belong to the forties, fifties, and so on. In figure 2.12, there are also subsections
with titles of movies.

 Let’s compare listing 2.24 and figure 2.12. The chapter number is passed as a param-
eter when constructing the Chapter object. By default, a dot is added to the number, but
you can change this with the setNumberStyle() method. Sections are created using the
addSection() method. The title passed as a parameter when constructing a Chapter or
Section is shown on the page and is used as the title for the bookmark. If you want to
use a different title in the outline tree, you can use setBookmarkTitle(). You can
change the indentation of a Chapter or Section by using different methods: setInden-
tation() changes the indentation of the content but doesn’t affect the title; setInden-
tationLeft() and setIndentationRight() apply to the content and the title. Observe
that the subsections aren’t numbered 5.4.1., 5.4.2, 5.4.3 ... but 1., 2., 3. ... because the
number depth has been reduced to 1 with setNumberDepth().

Licensed to Bruno Lowagie <bruno@lowagie.com>

50 CHAPTER 2 Using iText’s basic building blocks
title = new Paragraph(EPOCH[epoch], FONT[0]);
chapter = new Chapter(title, epoch + 1);
...
title = new Paragraph(String.format(
 "The year %d", movie.getYear()), FONT[1]);
section = chapter.addSection(title);
section.setBookmarkTitle(String.valueOf(movie.getYear()));
section.setIndentation(30);
section.setBookmarkOpen(false);
section.setNumberStyle(
 Section.NUMBERSTYLE_DOTTED_WITHOUT_FINAL_DOT);
section.add(...);
...
title = new Paragraph(movie.getMovieTitle(), FONT[2]);
subsection = section.addSection(title);
subsection.setIndentationLeft(20
subsection.setNumberDepth(1);
subsection.add(...);

As shown in the class diagram in figure 2.1, Section also implements an interface
named LargeElement. In chapter 1, you learned that iText tries to write PDF syntax to
the OutputStream, freeing memory as soon as possible. But with objects such as Chap-
ter, you’re creating content in memory that can only be rendered to PDF when you
add them to the Document object. This means that the content of several pages can be
kept in memory until iText gets the chance to generate the PDF syntax.

 There are two ways to work around this:

Listing 2.24 MovieHistory.java

Figure 2.12
A PDF with bookmarks

Creates
Chapter object

Creates
Section object

Creates
Section object
Licensed to Bruno Lowagie <bruno@lowagie.com>

51Adding Anchor, Image, Chapter, and Section objects
■ Define the Chapter as incomplete, and add it to the Document in different pieces;
you’ll see how to do this in chapter 4, after we discuss another LargeElement,
PdfPTable.

■ Create the outline tree using PdfOutline instead of putting content in Chapter
or Section objects. This will be discussed in chapter 7, where you’ll discover
that PdfOutline offers much more flexibility.

We’ve covered almost all the objects in the class diagram. Only two objects remain:
Rectangle and Image.

2.3.3 The Image object: adding raster format illustrations

You created Rectangle objects in chapter 1 to define the page size, but there’s very lit-
tle chance you’ll ever need to add a Rectangle object with Document.add(). We’ll find
better ways to draw shapes in chapter 3, but let’s take a look at a simple example for
the sake of completeness.

Rectangle rect = new Rectangle(0, 806, 36, 842);
rect.setBackgroundColor(BaseColor.RED);
document.add(rect);

The code draws a small red square in the upper-left corner of the first page.

ADDING AN IMAGE

To add an Image to a PDF document, do this:

document.add(new Paragraph(movie.getMovieTitle()));
document.add(
 Image.getInstance(String.format(RESOURCE, movie.getImdb())));

iText comes with different classes for different image types: Jpeg, PngImage, GifImage,
TiffImage, and so on. All these classes are discussed in detail in chapter 10. They
either extend the Image class, or they are able to create an instance of the Image class.

 You could use these separate classes to create a new Image, but it’s easier to let the
Image class inspect the binary image and decide which class should be used, based on
the contents of the file. That’s one thing less to worry about.

THE IMAGE SEQUENCE

The result of the code in listing 2.26 is shown to the left in figure 2.13. Observe that
the poster of the movie Betty Blue didn’t fit on page 3. As a result, the title of the next
movie, The Breakfast Club, is added on page 3, and the poster is added on page 4.
This is the default behavior: iText tries to add as much information as possible on
each page.

 This may be considered undesired behavior in some projects. If that’s the case, you
can use this method:

Listing 2.25 MoviePosters1.java

Listing 2.26 MoviePosters1.java (continued)
Licensed to Bruno Lowagie <bruno@lowagie.com>

52 CHAPTER 2 Using iText’s basic building blocks
PdfWriter.getInstance(document,
 new FileOutputStream(filename)).setStrictImageSequence(true);

The resulting PDF is shown on the right in figure 2.13. The method setStrictImage-
Sequence() allows you to force iText to respect the order in which content is added.

CHANGING THE IMAGE POSITION

In figure 2.14, the alignment of the image is changed so that the film information is
put next to the movie poster.

 This is done with the setAlignment() method. Possible values for this method are:

■ Image.LEFT, Image.CENTER, or Image.RIGHT—These define the position on the
page.

■ Image.TEXTWRAP or Image.UNDERLYING—By default, iText doesn’t wrap images.
When you add an Image followed by text to a Document, the text will be added
under the image, as shown in figure 2.13. With TEXTWRAP, you can add text next
to the Image, except when you’re using Image.CENTER. With UNDERLYING, the
text will be added on top of the Image (text and image will overlap).

All of this doesn’t apply if you use the method setAbsolutePosition(). With this
method, you can define coordinates (X, Y) that will be used to position the lower-left
corner of the image. The image will not follow the flow of the other objects.

Listing 2.27 MoviePosters2.java

Figure 2.13
Adding images to
a PDF document
Licensed to Bruno Lowagie <bruno@lowagie.com>

53Adding Anchor, Image, Chapter, and Section objects
CHANGING THE BORDER

The PDF shown in figure 2.14 was generated using methods that are inherited from
the Rectangle object. Listing 2.28 shows how to define a border, and how to change
its width and color.

Image img = Image.getInstance(
 String.format(RESOURCE, movie.getImdb()));
img.setAlignment(Image.LEFT | Image.TEXTWRAP);
img.setBorder(Image.BOX);
img.setBorderWidth(10);
img.setBorderColor(BaseColor.WHITE);
img.scaleToFit(1000, 72);
document.add(img);

The Image.BOX value is shorthand for Rectangle.LEFT | Rectangle.RIGHT | Rectan-
gle.TOP | Rectangle.BOTTOM, meaning that the image should have a border on all
sides. You’ll learn more about drawing Rectangle objects in chapters 3 and 14.

RESIZING IMAGES

In listing 2.28, you’re also using scaleToFit(). You’re passing an unusually high
width value (1000 pt) compared to the height value (72 pt). This ensures that all the
images will have a height of one inch. The width will vary depending on the aspect
ratio of the image.

FAQ What is the relationship between the size and the resolution of an image in iText?
Suppose you have a paper image that measures 5 in. x 5 in. You scan this image
at 300 dpi. The resulting image is 1500 pixels x 1500 pixels, so if you get an iText
Image instance, the width and the height will be 1500 user units. Taking into
account that 1 in. equals 72 user units, the image will be about 20.83 in. x 20.83
in. when added to the PDF document. If you want to display the object as
an image of 5 in. x 5 in., you’ll need to scale it. The best way to do this is with
scalePercent(100 * 72 / 300).

Listing 2.28 MoviePosters3.java

Figure 2.14
Resized images

Sets
alignment

Sets
border

Scales
image
Licensed to Bruno Lowagie <bruno@lowagie.com>

54 CHAPTER 2 Using iText’s basic building blocks
There are different ways to change the dimensions of an image:

■ The width and height parameters of scaleToFit() define the maximum
dimensions of the image. If the width/height ratio differs from the aspect ratio
of the image, either the width, or the height, will be smaller than the corre-
sponding parameter of this method.

■ The width and height parameters will be respected when using scaleAbso-
lute(). The resulting image risks being stretched in the X or Y direction if you
don’t choose the parameters wisely. You can also use scaleAbsoluteWidth()
and scaleAbsoluteHeight().

■ scalePercent() comes in two versions: one with two parameters, a percentage
for the width and a percentage for the height; and another with only one param-
eter, a percentage that will be applied equally to the width and the height.

It’s a common misconception that resizing images in iText also changes the quality of
the image. It’s important to understand that iText takes the image as is: iText doesn’t
change the number of pixels in the image.

FAQ IText is adding the same image more than once to the same document. How can I
avoid this? Suppose that you have an image.jpg file with a size of 100 KB. If you
create ten different Image objects from this file, and add these objects to your
Document, these different instances referring to image.jpg will consume at
least 1000 KB, because the image bytes will be added 10 times to the PDF file. If
you create only one Image instance referring to image.jpg, and you add this sin-
gle object 10 times to your Document, the image bytes will be added to the PDF
file only once. In short, you can save plenty of disk space if you reuse Image
objects for images that need to be repeated multiple times in your document.
For example, a logo that needs to be added to the header of each page.

When creating an Image instance from a file, you won’t always know its dimensions
before or even after scaling it. You can get the width and height of the image with
these methods:

■ getWidth() and getHeight() are inherited from the Rectangle object. They
return the original height and width of the image.

■ getPlainWidth() and getPlainHeight() return the width and height after
scaling. These are the dimensions of the image used to print it on a page.

■ getScaledWidth() and getScaledHeight() return the width and height
needed to print the image. These dimensions are equal to the plain width and
height, except in cases where the image is rotated.

The difference between scaled width/height and plain width/height is shown in the
next example.

CHANGING THE ROTATION

The rotation for images is defined counterclockwise. Listing 2.29 uses the setRota-
tionDegrees() method to rotate an image –30 degrees; that’s 30 degrees to the right.
Licensed to Bruno Lowagie <bruno@lowagie.com>

55Adding Anchor, Image, Chapter, and Section objects
Using setRotation() with a rotation value of (float) -Math.PI / 6 would have had
the same effect.

Paragraph p = new Paragraph(text);
Image img = Image.getInstance(
 String.format("resources/posters/%s.jpg", imdb));
img.scaleToFit(1000, 72);
img.setRotationDegrees(-30);
p.add(new Chunk(img, 0, -15, true));

If you look at the poster for the movie Stand by Me, you’ll find out that it’s made up
of 100 pixels x 140 pixels. These values are returned by getWidth() and get-
Height(). When scaled to fit a rectangle of 1000 pixels x 72 pixels, the dimensions
are changed into 51.42857 x 72—those are the values returned by getPlainWidth()
and getPlainHeight().

 In figure 2.15, you can see that the image needs more space. Due to the rotation,
the horizontal distance between the lower-right corner and the upper-left corner of
the image is 80.53845. The vertical distance between the upper-right corner and the
lower-left corner is 88.068115. These values are returned by getScaledWidth() and
getScaledHeight().

 Something else is different in figure 2.15: each Image has been added to a Para-
graph object, wrapped in a Chunk.

Listing 2.29 RiverPhoenix.java

Figure 2.15 Rotated images, wrapped in Chunk objects
Licensed to Bruno Lowagie <bruno@lowagie.com>

56 CHAPTER 2 Using iText’s basic building blocks
WRAPPING IMAGES IN CHUNKS

This is yet another example of setting attributes for a Chunk. By creating a Chunk using
an Image as the parameter, you can add the Image to other building blocks as if it were
an ordinary chunk of text. The extra parameters in this Chunk constructor define an
offset in the X and Y directions. The negative value in listing 2.29 causes the image to
be added 15 pt below the baseline. You can also indicate whether the leading should
be adapted to accommodate the image. If you don’t set the final parameter to true,
the image risks overlapping with the other text (if the height of the image is greater
than the leading).

 This isn’t a definitive overview of what you can do with images. You’ve learned
enough to change the properties of an image, but there’s more to learn about the bits
and bytes of specific image types (TIFF, animated GIF, and so on), about using
java.awt.Image, and about using image masks. All of this will be covered in chapter 10;
now it’s time to round up what we’ve covered in chapter 2.

2.3.4 Summary

We’ve covered a lot of ground in this chapter. You learned about Chunk objects and
several—not all—of a Chunk’s attributes; you’ll discover more attributes as you read on
in part 1 of this book. You’ve worked with Phrases and Paragraphs, and you’ve been
introduced to the Font and BaseFont classes. You’ve made Lists containing List-
Items, and you’ve discovered different ways to use separator Chunks.

 With the Anchor object and its alternatives, you’ve created internal and external
links and destinations. The Chapter and Section classes were used to create book-
marks, but you’ll learn more about the outline tree and the LargeElement object in
the chapters that follow. That’s also true for the Image object: you’ve learned how to
use the most common methods, but you’ll learn more about the bits and bytes of
images in chapter 10.

 Up until now, you’ve worked with the building blocks of iText, which are often
referred to as high-level objects. In the next chapter, you’ll discover the world of low-
level PDF creation.

Licensed to Bruno Lowagie <bruno@lowagie.com>

Adding content
 at absolute positions
In chapter 1, you learned that there are different ways to add content to a document
when generating a PDF file from scratch. In chapter 2, you learned to add high-level
objects to a Document. Now you’re going to learn an approach that’s totally different:
you’ll add content to a page using methods that are referred to as low-level operations
because they write PDF syntax directly to the content stream of the page.

 A complete overview of the PDF operators and operands will follow in chap-
ter 14. This chapter will cover the basics, but will quickly move on to convenience
methods that hide some of the complexity of PDF. We’ll also unleash the power of
the ColumnText object, an object that allows you to add basic building blocks at
absolute positions.

This chapter covers
■ Low-level access to page content, aka direct content
■ Convenience methods for writing direct content
■ Using the ColumnText object
■ Reusing content with the PdfTemplate object
57

Licensed to Bruno Lowagie <bruno@lowagie.com>

58 CHAPTER 3 Adding content at absolute positions
 We’ll start with an example that mixes the high-level and low-level approaches.

3.1 Introducing the concept of direct content
As a first example, you’ll use high-level objects to create a postcard inviting people to
the movie that will open the Foobar Film Festival; then you’ll add extra content at
absolute positions in the document using low-level methods.

 The page to the left in figure 3.1 is created by adding a Paragraph with the text
“Foobar Film Festival” and an Image of the poster of Lawrence of Arabia. The Image was
positioned using the setAbsolutePositions() method. The order in which these
Elements were added doesn’t matter; document.add() always adds images to the
image layer under the text layer.

 To the right is another page with the same Paragraph and Image, but now with a
colored rectangle added under the image layer, and the text “SOLD OUT” added over
the text layer. This can be achieved by writing to the direct content.

3.1.1 Direct content layers

Here is the source code used to create the PDF shown in figure 3.1.

Figure 3.1 Adding content using low-level methods to a page created with high-level objects
Licensed to Bruno Lowagie <bruno@lowagie.com>

59Introducing the concept of direct content
Paragraph p = new Paragraph("Foobar Film Festival",
 new Font(FontFamily.HELVETICA, 24));
p.setAlignment(Element.ALIGN_CENTER);
document.add(p);
Image img = Image.getInstance(RESOURCE);
img.setAbsolutePosition(
 (PageSize.POSTCARD.getWidth()
 - img.getScaledWidth()) / 2,
 (PageSize.POSTCARD.getHeight()
 - img.getScaledHeight()) / 2);
document.add(img);
document.newPage();
document.add(p);
document.add(img);
PdfContentByte over = writer.getDirectContent();
over.saveState();
float sinus = (float)Math.sin(Math.PI / 60);
float cosinus = (float)Math.cos(Math.PI / 60);
BaseFont bf = BaseFont.createFont();
over.beginText();
over.setTextRenderingMode(
 PdfContentByte.TEXT_RENDER_MODE_FILL_STROKE);
over.setLineWidth(1.5f);
over.setRGBColorStroke(0xFF, 0x00, 0x00);
over.setRGBColorFill(0xFF, 0xFF, 0xFF);
over.setFontAndSize(bf, 36);
over.setTextMatrix(
 cosinus, sinus, -sinus, cosinus, 50, 324);
over.showText("SOLD OUT");
over.endText();
over.restoreState();
PdfContentByte under = writer.getDirectContentUnder();
under.saveState();
under.setRGBColorFill(0xFF, 0xD7, 0x00);
under.rectangle(5, 5, PageSize.POSTCARD.getWidth() - 10,
 PageSize.POSTCARD.getHeight() - 10);
under.fill();
under.restoreState();

How does this work? When you add content to a page—be it with Document.add() or
otherwise—iText writes PDF syntax to a ByteBuffer that is wrapped in a PdfContent-
Byte object. When a page is full, these buffers are added to the PDF file in a specific
order. Each buffer can be seen as a separate layer, and iText draws these layers in the
sequence indicated in figure 3.2.

 When a page is initialized, two PdfContentByte objects are created for the basic
building blocks:

A PdfContentByte object for text—The content of Chunks, Phrases, Paragraphs,
and so on
A PdfContentByte for graphics—The background of a Chunk, Images, the bor-
ders of a PdfPCell, and so forth

Listing 3.1 FestivalOpening.java

Adds
Paragraph with

Document.add()

Adds Image with
Document.add()

Adds text on top
of other content

Adds rectangle
under other
content

D

C

Licensed to Bruno Lowagie <bruno@lowagie.com>

60 CHAPTER 3 Adding content at absolute positions
You can’t access the PdfContentByte objects of layers C and D directly—these layers
are managed by iText internally. But there are two extra PdfContentByte objects: lay-
ers E and B.

A layer that goes on top of the text and graphics—You can get an instance of this
upper layer with the method PdfWriter.getDirectContent().
A layer that goes under the text and graphics—You can get access to this lower layer
with the method PdfWriter.getDirectContentUnder().

In iText terminology, adding content to these extra layers is called writing to the direct
content, or low-level access because you’re performing low-level operations on a PdfCon-
tentByte object, as shown in listing 3.1. You’re also going to change the state, draw
lines and shapes, and add text at absolute positions. But before you can do any of that,
you need to know what the PDF reference says about the graphics state.

3.1.2 Graphics state and text state

The graphics state stack is defined in ISO-32000-1, section 8.4.2, as follows:

A PDF document typically contains many graphical elements that are independent of
each other and nested to multiple levels. The graphics state stack allows these elements to
make local changes to the graphics state without disturbing the graphics state of the
surrounding environment. The stack is a LIFO (last in, first out) data structure in
which the contents of the graphics state may be saved and later restored.

Let’s analyze this by means of a simple example.

GRAPHICS STATE

In listing 3.1 you constructed a rectangle to be drawn under the existing content using
the rectangle() method. This rectangle is a graphical element, and you’ll add five of
them in the next example. See figure 3.3 and the next listing.

 Here you’ll change the way the graphical objects are rendered by changing the
graphics state. In between, you’ll also save or restore the previous state.

Figure 3.2
The four content layers: 2 and 3
for the high-level objects; 1 and 4
for direct content

E

B

Licensed to Bruno Lowagie <bruno@lowagie.com>

61Introducing the concept of direct content
canvas.setRGBColorFill(0xFF, 0x45, 0x00);
canvas.rectangle(10, 10, 60, 60);
canvas.fill();
canvas.saveState();
canvas.setLineWidth(3);
canvas.setRGBColorFill(0x8B, 0x00, 0x00);
canvas.rectangle(40, 20, 60, 60);
canvas.fillStroke();
canvas.saveState();
canvas.concatCTM(1, 0, 0.1f, 1, 0, 0);
canvas.setRGBColorStroke(0xFF, 0x45, 0x00);
canvas.setRGBColorFill(0xFF, 0xD7, 0x00);
canvas.rectangle(70, 30, 60, 60);
canvas.fillStroke();
canvas.restoreState();
canvas.rectangle(100, 40, 60, 60);
canvas.stroke();
canvas.restoreState();
canvas.rectangle(130, 50, 60, 60);
canvas.fillStroke();

This is how the code should be interpreted:
The first element is a rectangle measuring 60 by 60 user units—a square with sides
of 60 pt. The square doesn’t have a border; it’s filled with the color orange, because
you use the fill() method after changing the fill color to orange (#FF4500).
The second square is colored dark red (#8B0000). It has a border in the default line
color—black—because you use the fillStroke() method. Note that the border is 3
pt thick because you change the line width with the setLineWidth() method.

Listing 3.2 GraphicsStateStack.java

Figure 3.3 Repeating the same rectangle using different graphics states

B Original state 0

C New state 1

D New state 2

E Restored state 1

F Restored state 0

B

C

Licensed to Bruno Lowagie <bruno@lowagie.com>

62 CHAPTER 3 Adding content at absolute positions
This line width is kept for the third element, but the stroke color is changed to orange
(#FF4500). The fill color is gold (#FFD700), but the shape is no longer a square. You
use the same rectangle() method with the same width and height as before, but you
change the current transformation matrix (CTM) in such a way that the square is skewed.
The CTM will be discussed in detail in section 14.3.3.
All the changes made to the graphics state to draw the third element are now dis-
carded, and the graphics state used for the second element is restored. You might
expect a square that is identical to the second element, but because you use stroke()
instead of fillStroke() only the border is drawn, and the shape isn’t filled.
For the final element, the original graphics state is restored. You use the fill-
Stroke() method, so a border is drawn in the default line color, with the default line
width: 1 user unit.
It’s important that the saveState() and restoreState() methods are balanced in your
code. You can’t invoke restoreState() if you haven’t performed a saveState() first;
for every saveState(), you need a restoreState(). If they aren’t balanced, an Illegal-
PdfSyntaxException will be thrown by the PdfContentByte.sanityCheck() method .

NOTE In this chapter, you’re adding content at absolute positions. These
absolute positions are defined with (x,y) coordinates with the lower-left cor-
ner of the page as the origin of the coordinate system.

The graphics state stack also applies to text.

TEXT STATE

Text state is a subset of graphics state. In section 2.2, you learned that a computer font
is a program that knows how to draw glyphs. These glyphs are shapes that are filled
with a fill color. No borders are drawn unless you change the text-rendering mode
with setTextRenderingMode(). You used this text state operator in listing 3.1 to draw
the words “SOLD OUT” in white letters with a red border. You also used setFontAnd-
Size() to choose a font and a font size, setTextMatrix() to change the text matrix,
and showText() to draw the glyphs. You’ll find an overview of all the possible graphics
state and text state operators in section 14.4.

 In the next section, you’ll add three tables to the film database and use the content
of those tables to create a real-world example involving direct content.

3.1.3 A real-world database: three more tables

Figure 3.4 shows the ERD diagram of a film festival database. You’ll recognize one
table: film_movietitle. That’s the same table you used in chapter 2. It is now connected
to three new tables with a “festival_” prefix. These tables contain extra information
about a movie in the Foobar Film Festival.

 The festival_entry table will help you find the movies that are shown at a certain
edition of the film festival. Currently, the database only contains entries for the 2011
edition of the Foobar Film Festival, but you could easily add entries for other years.
Every festival entry also refers to a category.

D

E

F

Licensed to Bruno Lowagie <bruno@lowagie.com>

63Introducing the concept of direct content
All the categories are described in the festival_category table. Categories have a name,
a short keyword, possibly a parent—because there’s a hierarchy in the categories—
and a color code that will be used when drawing movies on a timetable.

 Every movie can have multiple screenings, listed in the festival_screening table. A
screening is defined by a day, a time, and a place. Some screenings are reserved for
the press only.

CREATING A TIMETABLE

The Foobar Film Festival involves three movie theaters: Cinema Paradiso, Googolplex,
and The Majestic. Any resemblance to theaters in movies, or to the favorite multiplex
cinema in The Simpsons, is purely coincidental.

 In the examples that follow, you’ll create a timetable that looks like figure 3.5.

Figure 3.4 Festival database entity relationship diagram

Figure 3.5 Film festival timetable
Licensed to Bruno Lowagie <bruno@lowagie.com>

64 CHAPTER 3 Adding content at absolute positions
Observe that three screens are reserved for the festival at Cinema Paradiso: CP.1, CP.2,
and CP.3; four screens at the Googolplex: GP.3, GP.4, GP.7, and GP.8; and two at The
Majestic: MA.2 and MA.3. During the film festival, different movies will be projected on
these screens between 9:30 a.m. and 1:30 a.m. the next day.

 You’ll start by drawing the grid with the different locations and time slots, using a
series of graphics state operators and operands.

DRAWING THE GRID

In listing 3.2, you drew rectangles using the rectangle() method. Now you’ll use a
sequence of moveTo(), lineTo(), and closePath() operators to construct a path that
will be drawn with the stroke() method.

protected void drawTimeTable(PdfContentByte directcontent) {
 directcontent.saveState();
 directcontent.setLineWidth(1.2f);
 float llx, lly, urx, ury;
 llx = OFFSET_LEFT;
 lly = OFFSET_BOTTOM;
 urx = OFFSET_LEFT + WIDTH;
 ury = OFFSET_BOTTOM + HEIGHT;
 directcontent.moveTo(llx, lly);
 directcontent.lineTo(urx, lly);
 directcontent.lineTo(urx, ury);
 directcontent.lineTo(llx, ury);
 directcontent.closePath();
 directcontent.stroke();
 llx = OFFSET_LOCATION;
 lly = OFFSET_BOTTOM;
 urx = OFFSET_LOCATION + WIDTH_LOCATION;
 ury = OFFSET_BOTTOM + HEIGHT;
 directcontent.moveTo(llx, lly);
 directcontent.lineTo(urx, lly);
 directcontent.lineTo(urx, ury);
 directcontent.lineTo(llx, ury);
 directcontent.closePathStroke();
 ...
}

In this case, it would have been simpler to use the rectangle() method, but as soon
as you need to draw other shapes, you’ll use these methods to draw straight lines.
You’ll use the different curveTo() methods to draw curves.

 Listing 3.3 also shows that you can combine closePath() and stroke() in one close-
PathStroke() method. Or, in PDF syntax, the h and the S operators can be replaced by
s. This is an example of a shorthand notation inherent to the PDF specification.

 iText also offers convenience methods that combine operators to compensate for
operations that can’t be done with only one PDF operator. For instance, there’s no
operator to draw an arc or a circle in the PDF syntax. In iText, you can use the meth-
ods arc(), ellipse(), and circle(), which will invoke a sequence of curveTo()
methods to draw the desired shape.

Listing 3.3 MovieTimeTable.java

Closes
path

Draws
path

Creates variables for
defining rectangle

Creates path for
three rectangle
sides

Closes and
draws path
Licensed to Bruno Lowagie <bruno@lowagie.com>

65Introducing the concept of direct content
 Next you need to draw the dashed lines for the time slots. The width of each time
slot, defined in the constant WIDTH_TIMESLOT, corresponds to half an hour.

protected void drawTimeSlots(PdfContentByte directcontent) {
 directcontent.saveState();
 float x;
 for (int i = 1; i < TIMESLOTS; i++) {
 x = OFFSET_LEFT + (i * WIDTH_TIMESLOT);
 directcontent.moveTo(x, OFFSET_BOTTOM);
 directcontent.lineTo(x, OFFSET_BOTTOM + HEIGHT);
 }
 directcontent.setLineWidth(0.3f);
 directcontent.setColorStroke(BaseColor.GRAY);
 directcontent.setLineDash(3, 1);
 directcontent.stroke();
 directcontent.restoreState();
}

In listing 3.3, you used stroke() or closePathStroke() after drawing every shape, but
that wasn’t really necessary. You can postpone changing the state until after you’ve con-
structed all the paths. When you call stroke() in listing 3.4, the lines are drawn as 0.3
pt thick, gray dashed lines.

 You’ve constructed the grid using the methods drawTimeTable() and draw-
TimeSlots(); now it’s time to add screenings to the grid.

DRAWING TIME BLOCKS

Just like you did on many occasions in chapter 2, you can let the PojoFactory query the
database for you. Besides Movie, Director, and Country objects, the PojoFactory can
create collections of Category, Entry, and Screening POJOs. Here you’ll use a method
that returns a List of locations (String objects) and festival days (java.sql.Date).

PdfContentByte over = writer.getDirectContent();
PdfContentByte under = writer.getDirectContentUnder();
try {
 DatabaseConnection connection =
 new HsqldbConnection("filmfestival");
 locations = PojoFactory.getLocations(connection);
 List<Date> days = PojoFactory.getDays(connection);
 List<Screening> screenings;
 for (Date day : days) {
 drawTimeTable(under);
 drawTimeSlots(over);
 screenings = PojoFactory.getScreenings(connection, day);
 for (Screening screening : screenings) {
 drawBlock(screening, under, over);
 }
 document.newPage();
 }
 connection.close();
}

Listing 3.4 MovieTimeTable.java (continued)

Listing 3.5 MovieTimeBlocks.java

Constructs
path for line

Changes
state

Draws all
lines at once

Gets locations/dates
from database

Adds
background
grid and
screenings

Starts new page
for new day
Licensed to Bruno Lowagie <bruno@lowagie.com>

66 CHAPTER 3 Adding content at absolute positions
You reuse the drawTimeTable() method from listing 3.3 to draw the table to the low-
est direct content layer, and the drawTimeSlots() method to draw dashed lines to the
upper direct content layer.

 The drawBlock() method that is called for every screening shouldn’t hold too many
secrets for you.

protected void drawBlock(Screening screening,
 PdfContentByte under, PdfContentByte over) {
 under.saveState();
 BaseColor color = WebColors.getRGBColor(
 "#" + screening.getMovie().getEntry()
 .getCategory().getColor());
 under.setColorFill(color);
 Rectangle rect = getPosition(screening);
 under.rectangle(rect.getLeft(), rect.getBottom(),
 rect.getWidth(), rect.getHeight());
 under.fill();
 over.rectangle(rect.getLeft(), rect.getBottom(),
 rect.getWidth(), rect.getHeight());
 over.stroke();
 under.restoreState();
}

The fill color will correspond to the color of the category; see the color field in the
festival_category table. The position, a Rectangle object, will be calculated based on
the location and time stored in the festival_screening table. The “paint” of the rectan-
gle will be added to the lower direct content layer. The border will be drawn in the
default state (black, 1 pt thick) to the upper direct content layer. This means that the
border will cover some of the dashed lines of the time slots, but the dashed lines will
cover the colored rectangle. That way, you’ll be able to estimate the run length of each
movie, based on the number of time slots intersecting with the rectangle. Figure 3.6
shows the results so far.

Listing 3.6 MovieTimeBlocks.java (continued)

Translates color
code to BaseColor

Fills rectangle under
existing content

Strokes rectangle on
top of existing content

Figure 3.6
Timetable with movie time blocks
Licensed to Bruno Lowagie <bruno@lowagie.com>

67Adding text at absolute positions
This timetable isn’t very useful because you haven’t yet added any text. You’ll do this
in the next section, using the convenience methods available to add text to the direct
content.

3.2 Adding text at absolute positions
In listing 3.1, you wrote “SOLD OUT” on top of a poster of the movie that is opening
the film festival. You used methods such as setTextRenderingMode(), setTextMa-
trix(), and so on, but it’s not easy to create a complete document using these low-
level methods. It’s easier to use convenience methods that do part of the work for you.
They’ll demand fewer lines and reduce the complexity of your code.

3.2.1 Convenience method: PdfContentByte.showTextAligned()

There was a lot of math involved when you added the words “SOLD OUT” in listing 3.1.
You had to calculate the sine and the cosine of the rotation angle. You had to measure
the length of the String “SOLD OUT” to determine the (x,y) coordinates so that the
text was more or less centered. This length doesn’t depend solely on the characters in
the String; you also needed to know which font was used to render it. The words
“SOLD OUT” will have a different length in Helvetica than the same String in Times-
Roman, even if the same font size is used.

MEASURING A STRING

You can calculate the length of a String if you have an instance of the BaseFont class
that will be used to draw the glyphs. In listing 3.7, you’ll measure the length of the
String “Foobar Film Festival” using the getWidthPoint() method. This will return a
width in points. For example, when you use the getWidthPoint() method with the
font Helvetica and a font size of 12 pt, the resulting length is 108.684 pt. When you
use the font program times.ttf with the same font size, the result is 100.572 pt. That’s a
difference of 0.11 in.

Chunk c;
String foobar = "Foobar Film Festival";

Font helvetica = new Font(FontFamily.HELVETICA, 12);
BaseFont bf_helv
 = helvetica.getCalculatedBaseFont(false);
float width_helv = bf_helv.getWidthPoint(foobar, 12);
c = new Chunk(foobar + ": " + width_helv, helvetica);
document.add(new Paragraph(c));
document.add(new Paragraph(String.format(
 "Chunk width: %f", c.getWidthPoint())));

BaseFont bf_times = BaseFont.createFont(
 "c:/windows/fonts/times.ttf",
 BaseFont.WINANSI, BaseFont.EMBEDDED);
Font times = new Font(bf_times, 12);
float width_times = bf_times.getWidthPoint(foobar, 12);
c = new Chunk(foobar + ": " + width_times, times);

Listing 3.7 FoobarFilmFestival.java

Creates BaseFont
from Font object

Creates BaseFont
object directly

Creates
corresponding
Font object
Licensed to Bruno Lowagie <bruno@lowagie.com>

68 CHAPTER 3 Adding content at absolute positions
document.add(new Paragraph(c));
document.add(new Paragraph(String.format(
 "Chunk width: %f", c.getWidthPoint())));

Note that the Chunk object also has a getWidthPoint() method. You could use it to
measure the width of a Chunk in points. While you’re at it, you could also measure the
ascent and descent of the String.

ASCENT AND DESCENT OF THE STRING

The ascent is the space needed by a glyph above the baseline, and the descent is the
space below the baseline. In listing 3.8, you’ll calculate the ascent and descent of the
font Helvetica using the getAscentPoint() and getDescentPoint() methods.

document.add(new Paragraph("Ascent Helvetica: "
 + bf_helv.getAscentPoint(foobar, 12)));
document.add(new Paragraph("Descent Helvetica: "
 + bf_helv.getDescentPoint(foobar, 12)));

You can calculate the height of a String by subtracting the descent from the ascent.

NOTE The font size isn’t the height of any specific glyph; it’s an indication of
the vertical space used by a line of text.

Looking at figure 3.7, you might assume that the font size is about 9 pt, but you would
be wrong. The ascent for the String in Helvetica is 8.328. You need to add the

Listing 3.8 FoobarFilmFestival.java (continued)

Figure 3.7 Measuring and positioning text: width, ascent, and descent of a String
Licensed to Bruno Lowagie <bruno@lowagie.com>

69Adding text at absolute positions
descent to the ascent, but the value of the descent is unusually low in this example
because it doesn’t include glyphs like “g”, “j”, “p”, “q”, or “y”, which have a descent
that exceeds –0.18.

 The word “Foobar” is magnified so you can see the descent caused by the rounding
of the glyphs “o”, “b”, and “a”. In the same screenshot, you can see that the same String
was added a couple of times more, at absolute positions relative to a grid of lines.

POSITIONING A STRING

Now that you know how to measure the length of a String, you can compute the (x,y)
coordinates and use them to change the text matrix so that the text is right aligned or
centered (listing 3.9). Fortunately, there’s an easier way to achieve this. You can use the
setTextAligned() method, which will act as a shorthand notation for two types of trans-
formations: a translation and a rotation. You’ve already seen the result in figure 3.7.

canvas.beginText();
canvas.setFontAndSize(bf_helv, 12);
canvas.showTextAligned(Element.ALIGN_LEFT, foobar, 400, 788, 0);
canvas.showTextAligned(Element.ALIGN_RIGHT, foobar, 400, 752, 0);
canvas.showTextAligned(Element.ALIGN_CENTER, foobar, 400, 716, 0);
canvas.showTextAligned(Element.ALIGN_CENTER, foobar, 400, 680, 30);
canvas.showTextAlignedKerned(Element.ALIGN_LEFT, foobar, 400, 644, 0);
canvas.endText();

The text starts at position x = 400; the baseline y = 788.

The text ends at position x = 400; the baseline y = 752.

The text is centered at position x = 400, y = 716.

The text is centered at position x = 400, y = 680, and rotated 30 degrees.

The showTextAlignedKerned() method in listing 3.9 shows the same String, but it
takes into account the kerning of the glyphs that were used.

KERNING

Kerning is the process of adjusting the space between the glyphs in a proportional
font. When taking advantage of kerning, you can save some space between a series of
specific glyph combinations. For instance, you can move the glyphs of the word
“AWAY” closer to each other, due to the shapes of the A and the W. In listing 3.9, the
kerned version of the String “Foobar Film Festival” is only slightly shorter than the
nonkerned version. Here you compute the width of this String measured in points.

width_helv = bf_helv.getWidthPointKerned(foobar, 12);
c = new Chunk(foobar + ": " + width_helv, helvetica);
document.add(new Paragraph(c));

The result indicates that the kerned version measures 107.664 pt; the String without
kerning measures 108.684 pt.

Listing 3.9 FoobarFilmFestival.java (continued)

Listing 3.10 FoobarFilmFestival.java (continued)

B
C
D
E

B

C

D

E

Licensed to Bruno Lowagie <bruno@lowagie.com>

70 CHAPTER 3 Adding content at absolute positions
ADDING TEXT TO THE TIMETABLE

Returning to the film festival timetable, you can now add the names of the movie the-
aters and the screens, the time slot information, and the information about the day and
date. For instance, you can add the text “Day 5” and “2011-10-16” shown in figure 3.5.

protected void drawDateInfo(Date day, int d,
 PdfContentByte directcontent) {
 directcontent.beginText();
 directcontent.setFontAndSize(bf, 18);
 float x, y;
 x = OFFSET_LOCATION;
 y = OFFSET_BOTTOM + HEIGHT + 24;
 directcontent.showTextAligned(Element.ALIGN_LEFT,
 "Day " + d, x, y, 0);
 x = OFFSET_LEFT + WIDTH;
 directcontent.showTextAligned(Element.ALIGN_RIGHT,
 day.toString(), x, y, 0);
 directcontent.endText();
}

Note that the sanityCheck() method mentioned in section 3.1.2 that checks for
unbalanced saveState() and restoreState() sequences also looks for possible prob-
lems related to text state:

■ Unbalanced beginText() and endText() combinations
■ Text state operators outside a beginText() and endText() sequence
■ Text for which you forgot to set a font and size

The showTextAligned() examples you’ve worked with so far have been very straight-
forward, but wouldn’t it be nice if you could create a Phrase object, and add that
object at an absolute position? That’s what you’ll do in the next section with the show-
TextAligned() method of the ColumnText object.

3.2.2 Convenience method: ColumnText.showTextAligned()

Next, instead of adding a String after selecting a BaseFont object and a font size, as
you did in listing 3.9, you create a Phrase containing text in a certain Font.

Phrase phrase = new Phrase(foobar, times);
ColumnText.showTextAligned(canvas,
 Element.ALIGN_LEFT, phrase, 200, 572, 0);
ColumnText.showTextAligned(canvas,
 Element.ALIGN_RIGHT, phrase, 200, 536, 0);
ColumnText.showTextAligned(canvas,
 Element.ALIGN_CENTER, phrase, 200, 500, 0);
ColumnText.showTextAligned(canvas,
 Element.ALIGN_CENTER, phrase, 200, 464, 30);
ColumnText.showTextAligned(canvas,
 Element.ALIGN_CENTER, phrase, 200, 428, -30);

Listing 3.11 MovieTextInfo.java

Listing 3.12 FoobarFilmFestival.java (continued)
Licensed to Bruno Lowagie <bruno@lowagie.com>

71Adding text at absolute positions
Apart from the fact that you no longer need beginText() and endText() sequences,
there seems to be little difference, but you’ll need fewer lines of code and less math
for more complex Phrases.

POSITIONING A PHRASE

A Phrase can be composed of a series of Chunk objects. By adding a Phrase at an absolute
position, you can easily switch fonts, font sizes, and font colors. iText will calculate the
offset of every Chunk inside the Phrase, and change the text state accordingly for you.

 In the next step, you draw a big “P” with a white font color on top of all the colored
rectangles that represent preview screenings that are reserved for the press.

Font f = new Font(bf, HEIGHT_LOCATION / 2);
f.setColor(BaseColor.white);
press = new Phrase("P", f);
...
protected void drawMovieInfo(Screening screening,
 PdfContentByte directcontent)
 throws DocumentException {
 if (screening.isPress()) {
 Rectangle rect = getPosition(screening);
 ColumnText.showTextAligned(directcontent,
 Element.ALIGN_CENTER, press,
 (rect.getLeft() + rect.getRight()) / 2,
 rect.getBottom() + rect.getHeight() / 4, 0);
 }
}

Although you’re working with high-level objects here, it’s possible to change their text
state by setting Chunk attributes that we haven’t discussed yet.

CHUNKS: SCALING, SKEWING, RENDERING MODE

On the left side in figure 3.8, you can see the result of listing 3.12: the String “Foobar
Film Festival” is added at an absolute position using different alignment options and
different angles.

Listing 3.13 MovieTextInfo.java (continued)

Figure 3.8 Adding text with ColumnText.showTextAligned()
Licensed to Bruno Lowagie <bruno@lowagie.com>

72 CHAPTER 3 Adding content at absolute positions
On the right side of figure 3.8, the same String is added left aligned, but the text is
scaled or skewed, or the rendering mode was changed.

c = new Chunk(foobar, times);
c.setHorizontalScaling(0.5f);
phrase = new Phrase(c);
ColumnText.showTextAligned(canvas,
 Element.ALIGN_LEFT, phrase, 400, 572, 0);
c = new Chunk(foobar, times);
c.setSkew(15, 15);
phrase = new Phrase(c);
ColumnText.showTextAligned(canvas,
 Element.ALIGN_LEFT, phrase, 400, 536, 0);
c = new Chunk(foobar, times);
c.setSkew(0, 25);
phrase = new Phrase(c);
ColumnText.showTextAligned(canvas,
 Element.ALIGN_LEFT, phrase, 400, 500, 0);
c = new Chunk(foobar, times);
c.setTextRenderMode(
 PdfContentByte.TEXT_RENDER_MODE_STROKE,
 0.1f, BaseColor.RED);
phrase = new Phrase(c);
ColumnText.showTextAligned(canvas,
 Element.ALIGN_LEFT, phrase, 400, 464, 0);
c = new Chunk(foobar, times);
c.setTextRenderMode(
 PdfContentByte.TEXT_RENDER_MODE_FILL_STROKE, 1, null);
phrase = new Phrase(c);
ColumnText.showTextAligned(canvas,
 Element.ALIGN_LEFT, phrase, 400, 428, -0);

You can change the width of a Chunk with the setScaling() method. In the top right
of figure 3.8, the words “Foobar Film Festival” are scaled to 50 percent of their width,
but the height of the glyphs is preserved. This means that the aspect ratio of the let-
ters is changed. You have to be careful not to exaggerate the scaling. At some point,
your text will become almost illegible.

 The setSkew() method expects two parameters. With the first parameter, you
change the angle of the baseline. That’s what happened in the second line on the
right side of figure 3.8: the angle of the baseline is changed to 15 degrees. The second
parameter can be used to define the angle between the characters and the baseline.
The third line on the right in figure 3.8 looks as if an italic font were used. In reality,
the glyphs were skewed 25 degrees.

NOTE If you have to use a font for which you can’t find the corresponding font
with italic or oblique style, you can use setSkew(0, 25) to simulate italics.

Finally, there’s the setTextRenderMode() method. These are possible values for the
first parameter:

Listing 3.14 FoobarFilmFestival.java (continued)

Scales
text 50%

Skews
text

Simulates
italic text

Draws text
using red
outlines

Simulates
bold text
Licensed to Bruno Lowagie <bruno@lowagie.com>

73Adding text at absolute positions
■ PdfContentByte.TEXT_RENDER_MODE_FILL—This is the default rendering
mode; the glyph shapes are filled, not stroked.

■ PdfContentByte.TEXT_RENDER_MODE_STROKE—This causes the glyphs to be
stroked, not filled. This is shown in figure 3.8: the letters are hollow.

■ PdfContentByte.TEXT_RENDER_MODE_FILL_STROKE—This changes the text state
so that the glyphs are filled and stroked. This state was used in figure 3.1 to cover
existing content with the words “SOLD OUT” in white letters with red contours.

■ PdfContentByte.TEXT_RENDER_MODE_INVISIBLE—This will make all the text
that is added invisible. The text will be there, but it won’t be visible.

Two extra parameters define the line width and the color that will be used to stroke
the glyph. If you pass a null value for the stroke color, the fill color (defined in the
Chunk’s Font object) will be used. The final line in figure 3.8 looks as if a bold font
were used.

TIP If you have to use a font for which you can’t find the corresponding font
with bold style, you could use setTextRenderMode(PdfContentByte .TEXT_
RENDER_MODE_FILL_STROKE, 0.5f, null) to simulate bold.

These attributes also work if you’re adding Chunks with document.add().
 The timetable for the film festival is almost finished, as you can see in figure 3.9.

Figure 3.9 Timetable without movie titles
Licensed to Bruno Lowagie <bruno@lowagie.com>

74 CHAPTER 3 Adding content at absolute positions
The only bits of information missing in the figure are the movie titles. It would be nice
if you could add the text to the rectangles without having to scale the text or downsize
the font size if the title is too long to fit the width of the rectangle. This can’t be done
with the showTextAligned() method, to which you only pass a single set of (x,y) coor-
dinates; you need an instance of the ColumnText object instead.

3.3 Working with the ColumnText object
In this section, you’ll learn about the different ways to use the ColumnText object: text
mode if you only use Chunks and Phrases, composite mode if you want to use other types
of high-level objects as well.

 In listing 3.13, you wrote a showMovieInfo() method. If a screening was reserved
for the press, you marked the corresponding time block of the movie with a white,
uppercase “P”. You could try adding the movie title the same way, but the showText-
Aligned() method isn’t able to wrap text. You also can’t use newlines in Strings or
Chunks using any version of this method.

 Let’s extend the previous example and reuse almost all of its methods. The only
change involves the drawMovieInfo() method.

protected void drawMovieInfo(
 Screening screening, PdfContentByte directcontent)
 throws DocumentException {
 super.drawMovieInfo(screening, directcontent);
 Rectangle rect = getPosition(screening);
 ColumnText column = new ColumnText(directcontent);
 column.setSimpleColumn(
 new Phrase(screening.getMovie().getMovieTitle()),
 rect.getLeft(), rect.getBottom(),
 rect.getRight(), rect.getTop(),
 18, Element.ALIGN_CENTER);
 column.go();
}

The result is shown in figure 3.10. Now you’re ready to go to the film festival!
 We aren’t finished discussing the ColumnText object yet. This example worked out

fine because you were able to fit the content inside the rectangles reserved for the
screenings. But what would have happened if the text didn’t fit? Also, you’ve been
adding a Phrase object to the column to display its contents at an absolute position.
Can you add other objects such as Paragraphs, Lists, and Images with the ColumnText
object? The answer to the first question will be explained in section 3.3.1; the answer
to the second question is “yes,” but not in text mode, only in composite mode.

Listing 3.15 MovieCalendar.java

Calls method
from listing 3.13

Creates ColumnText
object and adds
content

Draws content
of column
Licensed to Bruno Lowagie <bruno@lowagie.com>

75Working with the ColumnText object
3.3.1 Using ColumnText in text mode

In section 2.3.3, you created PDF documents with movie information that was orga-
nized in Paragraphs. Suppose you want to repeat this exercise, but now you want to
organize the same information in columns, as is shown in figure 3.11.

Figure 3.10 The finished timetable, now with the movie titles

Figure 3.11
Movie information,
organized in columns
Licensed to Bruno Lowagie <bruno@lowagie.com>

76 CHAPTER 3 Adding content at absolute positions
Instead of the setSimpleColumn() method from listing 3.15, which can be used for a
single Phrase, you’ll use addText() to add a series of Phrases and Chunks.

ADDING CONTENT WITH ADDTEXT()

Take a look at the code used to produce the columns shown in figure 3.11.

List movies = PojoFactory.getMovies(connection);
ColumnText ct = new ColumnText(writer.getDirectContent());
for (Movie movie : movies) {
 ct.addText(createMovieInformation(movie));
 ct.addText(Chunk.NEWLINE);
}
ct.setAlignment(Element.ALIGN_JUSTIFIED);
ct.setExtraParagraphSpace(6);
ct.setLeading(0, 1.2f);
ct.setFollowingIndent(27);
int linesWritten = 0;
int column = 0;
int status = ColumnText.START_COLUMN;
while (ColumnText.hasMoreText(status)) {
 ct.setSimpleColumn(
 COLUMNS[column][0], COLUMNS[column][1],
 COLUMNS[column][2], COLUMNS[column][3]);
 ct.setYLine(COLUMNS[column][3]);
 status = ct.go();
 linesWritten += ct.getLinesWritten();
 column = Math.abs(column - 1);
 if (column == 0)
 document.newPage();
}

ct.addText(new Phrase("Lines written: " + linesWritten));
ct.go();

Just as in listing 3.15, you create a ColumnText object, passing a PdfContentByte
object as a parameter.

You add content (Phrase and/or Chunk objects) to this column with the addText()
method.
You set the properties for the text that will be rendered, such as the alignment, the
leading, extra space between paragraphs, and special indentations.
You perform some initializations. The linesWritten parameter informs you about
the number of lines that have been written. The column variable (keeping track of the
column number) and the status of the ColumnText object are more important.
You want all the content added to the ColumnText object to be rendered, so you
invoke the go() method in a loop as long as the ColumnText.NO_MORE_TEXT bit isn’t
set in the status value.
You define the dimensions of the column where the next block of text will be added.
In this case, COLUMNS is a two-dimensional array, containing two sets of four values
(one rectangle for each column). You also define the Y position; that’s the vertical
start position of the text in the column.

Listing 3.16 MovieColumns1.java

Creates columnB

C Adds content

D Defines column
properties

E Initializes status

Loops until column is emptyF

G Defines position
on page

H Writes content

I Switches columns

B

C

D

E

F

G

Licensed to Bruno Lowagie <bruno@lowagie.com>

77Working with the ColumnText object
Lines of text are written as soon as you invoke the go() method. Text that didn’t fit
the current column remains in the ColumnText object. The content that was rendered
is consumed; it’s no longer present in the ColumnText object.

Each time a column is written, you have to switch to the next column. If there are no
more columns on the current page, you have to go to a newPage().

In this example, you’re changing the properties of the text. The setAlignment()
method is similar to the Paragraph method with the same name. It takes the same
parameters: Element.ALIGN_LEFT, Element.ALIGN_RIGHT, Element.ALIGN_JUSTIFIED,
and Element.ALIGN_JUSTIFIED_ALL. The setLeading() method comes in two flavors:
in listing 3.16, you define an absolute leading of 0 pt and a relative leading of 1.2. The
resulting leading will be 0 + 1.2 x 12 pt (the font size) = 14.4 pt. In listing 3.17, you’ll
use the other setLeading() method to define a leading of 14 pt.

 Let’s examine the properties that can be set for the text that has to be rendered.

COLUMNTEXT PROPERTIES

Although you aren’t using Paragraph objects here (when in text mode, Paragraphs are
treated as Phrase objects) the setExtraParagraphSpace() method gives you a means
to help the reader distinguish different paragraphs in a visual way. In listing 3.16, you
tell iText to add 6 pt whenever a new portion of text is started on a new line. Another
visual aid can be provided with the setFollowingIndent() method—this sets the left
indentation of the lines that follow the first line. Listing 3.17 shows its counterpart: set-
Indent() can be used to change the indentation of the first line. There’s also a set-
RightIndent() method.

 In section 2.2.4, you learned how to change the character/space ratio at the Pdf-
Writer level for all the basic building blocks at once. With ColumnText, it’s possible to
change the character/space ratio in a more fine-grained way. See the setSpaceChar-
Ratio() method in listing 3.17.

ADDING CONTENT IN SMALL PORTIONS

In listing 3.16, you filled a ColumnText object with all the movie information that is
present in the movie database. Then you rendered all that content until the Column-
Text object had no more data.

 There are 120 movies in the database, so at some point you have a ColumnText
object that contains 120 Phrase objects. Maybe it’s better to invoke go() more fre-
quently to avoid the memory building up in the ColumnText object.

List movies = PojoFactory.getMovies(connection);
ColumnText ct = new ColumnText(writer.getDirectContent());
ct.setAlignment(Element.ALIGN_JUSTIFIED);
ct.setExtraParagraphSpace(6);
ct.setLeading(14);
ct.setIndent(10);
ct.setRightIndent(3);
ct.setSpaceCharRatio(PdfWriter.NO_SPACE_CHAR_RATIO);
int column = 0;

Listing 3.17 MovieColumns2.java

H

I

Sets column
properties
Licensed to Bruno Lowagie <bruno@lowagie.com>

78 CHAPTER 3 Adding content at absolute positions
int status = ColumnText.START_COLUMN;
ct.setSimpleColumn(
 COLUMNS[column][0], COLUMNS[column][1],
 COLUMNS[column][2], COLUMNS[column][3]);
for (Movie movie : movies) {
 ct.addText(createMovieInformation(movie));
 status = ct.go();
 if (ColumnText.hasMoreText(status)) {
 column = Math.abs(column - 1);
 if (column == 0)
 document.newPage();
 ct.setSimpleColumn(
 COLUMNS[column][0], COLUMNS[column][1],
 COLUMNS[column][2], COLUMNS[column][3]);
 ct.setYLine(COLUMNS[column][3]);
 status = ct.go();
 }
}

You now invoke the go() method in the same loop that is used to add movies to the
ColumnText object. The content is consumed immediately; if it doesn’t fit the current
column, it’s added to the next one.

 This brings us to the next question: what if you want to keep all the information
about a specific movie together in one column? What if you don’t want the informa-
tion to be split into two parts?

ADDING CONTENT IN SIMULATION MODE

To answer the previous questions, you use a special go() method introduced here.

List movies = PojoFactory.getMovies(connection);
ColumnText ct = new ColumnText(writer.getDirectContent());
int column = 0;
ct.setSimpleColumn(
 COLUMNS[column][0], COLUMNS[column][1],
 COLUMNS[column][2], COLUMNS[column][3]);
int status = ColumnText.START_COLUMN;
Phrase p;
float y;
for (Movie movie : movies) {
 y = ct.getYLine();
 p = createMovieInformation(movie);
 ct.addText(p);
 status = ct.go(true);
 if (ColumnText.hasMoreText(status)) {
 column = Math.abs(column - 1);
 if (column == 0)
 document.newPage();
 ct.setSimpleColumn(
 COLUMNS[column][0], COLUMNS[column][1],
 COLUMNS[column][2], COLUMNS[column][3]);
 y = COLUMNS[column][3];

Listing 3.18 MovieColumns3.java

Invokes go() after
adding movie

Adds text to
next column

Keeps track of
vertical position

Pretends to
add content

Goes to next column
if content didn’t fit
Licensed to Bruno Lowagie <bruno@lowagie.com>

79Working with the ColumnText object
 }
 ct.setYLine(y);
 ct.setText(p);
 status = ct.go(false);
}

Listing 3.18 is almost identical to listing 3.17, except that you now invoke the go()
method twice. The first time go() is simulated: nothing is added for real, but the
content is consumed. If all the content of the column is gone, you need to go back to
the initial Y position obtained with the getYLine() method, fill the column a second
time, and then perform go() for real. If the content wasn’t entirely consumed,
you have to switch to the next column and add the entire portion of movie informa-
tion there.

NOTE The getYLine() method returns the Y position on the page after
the last line was written, either for real or in simulation mode. You can use
this method to find out the height that is needed to show the content,
given a certain column width. If you want to center text vertically inside a
column, you can add the text in simulation mode first to determine the
height that is needed; then you can compute the offset like this: (available
height – needed height) / 2. You can use this offset when adding the column
for real.

It’s important to notice that you don’t use addText() just before the second go().
Instead you use setText(). The setText() method removes all the unconsumed text
that may still be present in the column; otherwise you’d add portions of the movie
information twice.

NOTE The basic building blocks discussed in chapter 2 can be reused. They
can be added more than once to the same, or to a different, document. This
isn’t true for the ColumnText object. Each ColumnText object belongs to a spe-
cific PdfWriter, and it can’t be used more than once; the go() method con-
sumes its content.

This technique is also used in the PDF shown in figure 3.12. There was space available
in the first column of the page to the right, but the content was added to the second
column to keep it together.

 This screenshot also demonstrates another feature that is available when in text
mode: irregular columns. As you can see, the columns in figure 3.12 are no longer
rectangular. The border of each column is defined as a polygon, resulting in an irreg-
ular shape, so the text flows around the boxes.

IRREGULAR COLUMNS

Setting irregular columns is possible by using a variation on the original example in
listing 3.16.

Resets vertical
position

Adds content
for real
Licensed to Bruno Lowagie <bruno@lowagie.com>

80 CHAPTER 3 Adding content at absolute positions
PdfContentByte canvas = writer.getDirectContent();
drawRectangles(canvas);
List movies = PojoFactory.getMovies(connection);
ColumnText ct = new ColumnText(canvas);
ct.setAlignment(Element.ALIGN_JUSTIFIED);
ct.setLeading(14);
int column = 0;
ct.setColumns(LEFT[column], RIGHT[column]);
int status = ColumnText.START_COLUMN;
Phrase p;
float y;
for (Movie movie : movies) {
 y = ct.getYLine();
 p = createMovieInformation(movie);
 ct.addText(p);
 status = ct.go(true);
 if (ColumnText.hasMoreText(status)) {
 column = Math.abs(column - 1);
 if (column == 0) {
 document.newPage();
 drawRectangles(canvas);
 }
 ct.setColumns(LEFT[column], RIGHT[column]);
 y = 806;

Listing 3.19 MovieColumns4.java

Figure 3.12 Irregular columns

Draws three
rectangles

Defines right and
left borders of
irregular column

Draws three
rectangles Defines right and

left borders of
irregular column
Licensed to Bruno Lowagie <bruno@lowagie.com>

81Working with the ColumnText object
 }
 ct.setYLine(y);
 ct.setText(p);
 status = ct.go();
}

The drawRectangles() method draws the squares that are shown in figure 3.12. This
example is almost identical to the previous one, except that you no longer use the
setSimpleColumn() method, but setColumns(). The parameters RIGHT and LEFT look
like this:

public static final float[][] LEFT =
 { { 36,806, 36,670, 108,670, 108,596, 36,596, 36,36 },
 { 299,806, 299,484, 336,484, 336,410, 299,410, 299,36 } };
public static final float[][] RIGHT =
 { { 296,806, 296,484, 259,484, 259,410, 296,410, 296,36 },
 { 559,806, 559,246, 487,246, 487,172, 559,172, 559,36 } };

LEFT contains the coordinates of the line that is used for the left border of the two col-
umns. RIGHT defines the right borders.

 Using irregular columns isn’t allowed in composite mode.

3.3.2 Using ColumnText in composite mode

So far, you’ve only used Phrase and Chunk objects and added them to a ColumnText object
using the methods addText() and setText(). In this section, you’ll add other building
blocks using the addElement() method. Invoking the addElement() method on the
ColumnText object automatically switches you from text mode to composite mode.

ADDING CONTENT WITH ADDELEMENT()

Figure 3.13 shows a page in landscape format with four columns defined. Image,
Paragraph, List, and Chunk objects have been added to it.

Figure 3.13 Columns
in composite mode
Licensed to Bruno Lowagie <bruno@lowagie.com>

82 CHAPTER 3 Adding content at absolute positions
Listing 3.20 shows how the content was added to the ColumnText object.

public void addContent(ColumnText ct, Movie movie, Image img) {
 ct.addElement(img);
 ct.addElement(new Paragraph(movie.getTitle(), FilmFonts.BOLD));
 if (movie.getOriginalTitle() != null) {
 ct.addElement(
 new Paragraph(movie.getOriginalTitle(), FilmFonts.ITALIC));
 }
 ct.addElement(PojoToElementFactory.getDirectorList(movie));
 ct.addElement(PojoToElementFactory.getYearPhrase(movie));
 ct.addElement(PojoToElementFactory.getDurationPhrase(movie));
 ct.addElement(PojoToElementFactory.getCountryList(movie));
 ct.addElement(Chunk.NEWLINE);
}

This addContent() method is used in this bit of code B which doesn’t differ that
much from the listings in the previous section demonstrating text mode.

List movies = PojoFactory.getMovies(connection);
ColumnText ct = new ColumnText(writer.getDirectContent());
int column = 0;
ct.setSimpleColumn(
 COLUMNS[column][0], COLUMNS[column][1],
 COLUMNS[column][2], COLUMNS[column][3]);
int status = ColumnText.START_COLUMN;
float y;
Image img;
for (Movie movie : movies) {
 y = ct.getYLine();
 img = Image.getInstance(String.format(RESOURCE, movie.getImdb()));
 img.scaleToFit(80, 1000);
 addContent(ct, movie, img);
 status = ct.go(true);
 if (ColumnText.hasMoreText(status)) {
 column = (column + 1) % 4;
 if (column == 0)
 document.newPage();
 ct.setSimpleColumn(
 COLUMNS[column][0], COLUMNS[column][1],
 COLUMNS[column][2], COLUMNS[column][3]);
 y = COLUMNS[column][3];
 }
 ct.setYLine(y);
 ct.setText(null);
 addContent(ct, movie, img);
 status = ct.go();
}

Again, you’re using the go() method twice—once in simulation mode, and once for
real—to keep the information about a movie together in the same column. Line C is
important because it makes sure the content is added only once! Omit this line, and
you’ll notice that part of the content is added twice.

Listing 3.20 ColumnsMovies1.java

Listing 3.21 ColumnsMovies1.java (continued)

Adds content to
ColumnTextB

Creates and
scales movie

poster

Clears
content!

C

Adds content
to ColumnTextB
Licensed to Bruno Lowagie <bruno@lowagie.com>

83Working with the ColumnText object
PROPERTIES OF THE COLUMNTEXT OBJECT VERSUS ELEMENT PROPERTIES

As soon as you start using addElement(), all the content that was added in text mode
previously and that hasn’t been rendered yet will be cleared. ColumnText properties,
such as the leading and the alignment, will be ignored. Instead, the properties of the
Elements that were added will be used.

 Figure 3.14 shows four columns with Paragraphs that are centered, right-aligned,
and justified.

You can reuse listing 3.21 to create the result in figure 3.14 by just changing the add-
Content() method from listing 3.20 to what is shown next.

public void addContent(ColumnText ct, Movie movie) {
 Paragraph p;
 p = new Paragraph(new Paragraph(movie.getTitle(), FilmFonts.BOLD));
 p.setAlignment(Element.ALIGN_CENTER);
 p.setSpacingBefore(16);
 ct.addElement(p);
 if (movie.getOriginalTitle() != null) {
 p = new Paragraph(movie.getOriginalTitle(), FilmFonts.ITALIC);
 p.setAlignment(Element.ALIGN_RIGHT);
 ct.addElement(p);
 }
 p = new Paragraph();
 p.add(PojoToElementFactory.getYearPhrase(movie));
 p.add(" ");
 p.add(PojoToElementFactory.getDurationPhrase(movie));
 p.setAlignment(Element.ALIGN_JUSTIFIED_ALL);
 ct.addElement(p);

Listing 3.22 ColumnsMovies2.java

Figure 3.14 Alignment in composite mode
Licensed to Bruno Lowagie <bruno@lowagie.com>

84 CHAPTER 3 Adding content at absolute positions
 p = new Paragraph(new Chunk(new StarSeparator()));
 p.setSpacingAfter(12);
 ct.addElement(p);
}

It’s not possible to create irregular columns in composite mode, but you could work
around this by adding the content in small portions, changing the column definition
after every go().

 The difference between text mode and composite mode will also matter in the
next chapter when you create PdfPCell objects, but first we’ll return to the movie
timetable. We won’t change the content. The result will look identical to the PDF
shown in figures 3.5 and 3.10, but you’ll learn how to reduce the file size by reusing
data that is added multiple times.

3.4 Creating reusable content
In this section, we’ll discuss two types of reusable content: Images and PdfTemplate
objects.

 Do you remember section 2.3.3 about the Image object? In an FAQ, I explained
that you can add the same image to a document more than once, but that you should
reuse the same Image instance if you want to avoid the image bytes being added more
than once. In normal circumstances, the bits and bytes of an image are stored in sepa-
rate stream objects in the PDF file. Pages that contain such an image refer to this exter-
nal object. Such an object is also known as an XObject.

An external object (XObject) is an object defined (in ISO-32000-1, section 8.2) outside the
content stream and referenced as a named resource. The interpretation of an XObject
depends on its type. An image XObject defines a rectangular array of color samples to be
painted; a form XObject is an entire content stream to be treated as a single graphics object.

There are other types of XObjects, but image and form XObjects are the most impor-
tant ones.

3.4.1 Image XObjects

You’ve already worked with image XObjects when you added Images to a Document. In
figure 3.2, you saw that iText adds these images under the text objects for which
you’ve used document.add(). But what if you want to add an image on top of the text?

ADDING AN IMAGE TO THE TOP LAYER

Figure 3.15 shows a PDF document that resembles the one shown in figure 3.1. The
code to create it is in listing 3.23. The Paragraph “Foobar Film Festival” was added to
the Document, but the text is covered by an Image. Note that the text is present in the
content stream: if you look closely at figure 3.15, you can see that I was able to select
the text. If I copied the content to the clipboard, it would read: “Foobar Film Festival”.
Adobe Reader also offers to look up the word “Foobar”.

Licensed to Bruno Lowagie <bruno@lowagie.com>

85Creating reusable content
Image img = Image.getInstance(RESOURCE);
img.setAbsolutePosition(
 (PageSize.POSTCARD.getWidth()
 - img.getScaledWidth()) / 2,
 (PageSize.POSTCARD.getHeight()
 - img.getScaledHeight()) / 2);
writer.getDirectContent().addImage(img);
Paragraph p = new Paragraph("Foobar Film Festival",
 new Font(FontFamily.HELVETICA, 22));
p.setAlignment(Element.ALIGN_CENTER);
document.add(p);

If you look inside the PDF, you’ll see the following PDF syntax:

q
BT
30 386 Td
11.87 -33 Td
/F1 22 Tf
(Foobar Film Festival)Tj
-11.87 0 Td
ET
Q
q 232 0 0 362 25.5 27 cm /img0 Do Q

Listing 3.23 ImageDirect.java

Figure 3.15
Image covering text

Adds Image
to top layer

Adds Paragraph
to text layer
Licensed to Bruno Lowagie <bruno@lowagie.com>

86 CHAPTER 3 Adding content at absolute positions
The part between the first q/Q sequence is responsible for drawing the words “Foobar
Film Festival”. The part between the second q/Q changes the current transformation
matrix (CTM). Using the Do operator, you add an image of 232 by 362 user space units
at position x = 25.5 and y = 27. The content of the image (the bits and bytes) are kept
outside the content stream.

 Each page has a page dictionary with numerous key-value pairs. The value corre-
sponding to the /Resources key will tell you where to find the resources that are used
in the page:

/Resources<</XObject<</img0 1 0 R>> ... >>

As you can see, there’s an entry for XObjects, and it tells you that /img0 can be found
in object 1: the stream containing the image bytes. Note that I omitted some of the
other types of resources, such as references to the fonts that were used.

 In the previous chapter, you learned how to translate, scale, and rotate Image
objects, but adding an image to the direct content gives you more power: using the
CTM, you can create any two-dimensional transformation you want.

SKEWING IMAGES

If you want to know how I created figure 3.2, you should take a look at the code used
to create figure 3.16, shown in listing 3.24.

There’s plenty of algebra involved in this skewing transformation. The details will be
explained in section 14.3.3.

Image img = Image.getInstance(RESOURCE);
writer.getDirectContent().addImage(img,
 img.getWidth(), 0,
 0.35f * img.getHeight(), 0.65f * img.getHeight(), 30, 30);

The extra parameters passed to the addImage() method in listing 3.24 are reflected in
the PDF syntax.

q 232 0 126.7 235.3 30 30 cm /img0 Do Q

Listing 3.24 ImageSkew.java

Figure 3.16 Skewing an image
Licensed to Bruno Lowagie <bruno@lowagie.com>

87Creating reusable content
If you want to prevent the creation of an image XObject, you can add the image as an
inline object.

INLINE IMAGES

An image is considered inline when its bits and bytes are part of the content stream.

Image img = Image.getInstance(RESOURCE);
img.setAbsolutePosition(
 (PageSize.POSTCARD.getWidth() - img.getScaledWidth()) / 2,
 (PageSize.POSTCARD.getHeight() - img.getScaledHeight()) / 2);
writer.getDirectContent().addImage(img, true);

Now if you look at the PDF syntax in the content stream of the page, you’ll see infor-
mation about the image between the operators BI—begin image—and EI—end
image. To keep this code to a reasonable length, I replaced the bits and bytes of the
image with an ellipsis.

q 232 0 0 362 25.5 27 cm
BI
/CS /DeviceRGB
/BPC 8
/W 232
/H 362
/F /DCTDecode
ID
...
EI
Q

It should be evident that inline image data can’t be reused, so this is probably not the
best way for you to add images. It’s better to use an image XObject.

 Another important type of XObject is a form XObject. This is an entire content
stream that is treated as a single graphics object.

3.4.2 The PdfTemplate object

The use of the word form may be confusing in this context: we aren’t talking about
forms that can be filled in. To avoid confusion with AcroForm and XFA forms, the
iText object corresponding to a form XObject is called PdfTemplate.

PDFTEMPLATE: ANOTHER NAME FOR FORM XOBJECT

A PdfTemplate is a PDF content stream that is a self-contained description of any
sequence of graphics objects. PdfTemplate extends PdfContentByte and inherits all
its methods. A PdfTemplate is a kind of extra template layer with custom dimensions
that can be used for different purposes.

 Suppose that you would like to present all the posters of the movies in your film
database on one page. As an extra visual element, you’d like to draw different strips of
film, so that it looks as if the posters were photographed or filmed. See figure 3.17 for
an example.

Listing 3.25 ImageInline.java

Bits and bytes
of image
Licensed to Bruno Lowagie <bruno@lowagie.com>

88 CHAPTER 3 Adding content at absolute positions
There are 120 movie titles in the movie database, so if you put 12 movies on one strip,
you’d need a page with 10 strips. You only need to create the strip once.

PdfContentByte canvas = writer.getDirectContent();
PdfTemplate celluloid = canvas.createTemplate(595, 84.2f);
celluloid.rectangle(8, 8, 579, 68);
for (float f = 8.25f; f < 581; f+= 6.5f) {
 celluloid.roundRectangle(f, 8.5f, 6, 3, 1.5f);
 celluloid.roundRectangle(f, 72.5f, 6, 3, 1.5f);
}
celluloid.setGrayFill(0.1f);
celluloid.eoFill();
writer.releaseTemplate(celluloid);

You create a PdfTemplate for a specific content layer, passing its dimensions. In B, you
create a layer that will have the same width as the page, and one tenth of the height of
the page. You draw one large rectangle and a series of small rounded rectangles repre-
senting the perforations. Line C is special. You probably expected celluloid.fill(),
but that would also fill the perforations using the fill color. By using eoFill(), the shape
is filled using the even odd rule; fill() uses the nonzero winding number rule. If you’re not
familiar with these rules, they’ll be explained in detail in section 14.2.2.

 The most important thing to know is that the XObject stream is stored in a sepa-
rate object:

Listing 3.26 MoviePosters.java

Figure 3.17 Mimicking strips of film using a PdfTemplate

Construct path
for strip of filmB

Draws strip of film
and perforations

Draws stripC Releases
PdfTemplate object

D

Licensed to Bruno Lowagie <bruno@lowagie.com>

89Creating reusable content
1 0 obj
<</Length 153/Filter/FlateDecode>>stream
8 8 579 68 re
...
581.75 72.5 m
584.75 72.5 l
585.58 72.5 586.25 73.17 586.25 74 c
586.25 74 l
586.25 74.83 585.58 75.5 584.75 75.5 c
581.75 75.5 l
580.92 75.5 580.25 74.83 580.25 74 c
580.25 74 l
580.25 73.17 580.92 72.5 581.75 72.5 c
0.1 g
f*
endstream

The complete stream is much longer than the snippet. If you look at the complete
file, you’ll see that the XObject is the first object in the file, both logically—the object
number is 1—and physically—the object starts on the 15th byte. This isn’t standard
behavior in iText. Normally PdfTemplate objects are kept in memory until you invoke
Document.close(), unless you explicitly use writer.releaseTemplate() as is done in
line D. This is done on purpose—you’ll find out the benefits of keeping form XOb-
jects in memory in chapter 5.

ADDING PDFTEMPLATE OBJECTS

Instead of adding this long sequence of PDF syntax 10 times to the content stream of
the page, you refer to it like this:

q 1 0 0 1 0 0 cm /Xf1 Do Q
q 1 0 0 1 0 84.2 cm /Xf1 Do Q
q 1 0 0 1 0 168.4 cm /Xf1 Do Q
q 1 0 0 1 0 252.6 cm /Xf1 Do Q
q 1 0 0 1 0 336.8 cm /Xf1 Do Q
q 1 0 0 1 0 421 cm /Xf1 Do Q
q 1 0 0 1 0 505.2 cm /Xf1 Do Q
q 1 0 0 1 0 589.4 cm /Xf1 Do Q
q 1 0 0 1 0 673.6 cm /Xf1 Do Q
q 1 0 0 1 0 757.8 cm /Xf1 Do Q

This snippet of PDF syntax is easy to interpret: the form XObject /Xf1 is added in its orig-
inal size at position (0,Y) with Y being a value going from 0 to 757.8 in steps of 84.2 user
units.

 Here’s how you first add the strips of film, followed by the images. The method
addTemplate() is used to add the PdfTemplate object celluloid at a specific x,y position.

for (int i = 0; i < 10; i++) {
 canvas.addTemplate(celluloid, 0, i * 84.2f);
}

Listing 3.27 MoviePosters.java (continued)

Omits 1593 lines
of PDF syntax
Licensed to Bruno Lowagie <bruno@lowagie.com>

90 CHAPTER 3 Adding content at absolute positions
List movies = PojoFactory.getMovies(connection);
Image img;
float x = 11.5f;
float y = 769.7f;
for (Movie movie : movies) {
 img = Image.getInstance(String.format(RESOURCE, movie.getImdb()));
 img.scaleToFit(1000, 60);
 img.setAbsolutePosition(x + (45 - img.getScaledWidth()) / 2, y);
 canvas.addImage(img);
 x += 48;
 if (x > 578) {
 x = 11.5f;
 y -= 84.2f;
 }
}

Figure 3.18 demonstrates the use of another version of the addTemplate() method.

In figure 3.18, the strip of film is added four times, but it’s translated, scaled, skewed,
and rotated.

canvas.addTemplate(celluloid,
 0.8f, 0, 0.35f, 0.65f, 0, 600);
Image tmpImage = Image.getInstance(celluloid);
tmpImage.setAbsolutePosition(0, 480);
document.add(tmpImage);
tmpImage.setRotationDegrees(30);
tmpImage.scalePercent(80);
tmpImage.setAbsolutePosition(30, 500);
document.add(tmpImage);
tmpImage.setRotation((float)Math.PI / 2);
tmpImage.setAbsolutePosition(200, 300);
document.add(tmpImage)

Listing 3.28 MoviePosters.java (continued)

Figure 3.18 Adding
the same PdfTemplate
object using different
transformations

B Adds template directly

Wraps template in ImageC

Translates, scales,
and rotates 30°

Translates, scales,
and rotates 90°
Licensed to Bruno Lowagie <bruno@lowagie.com>

91Creating reusable content
The extra parameters of the addTemplate() method B are elements of the current
transformation matrix, as discussed briefly in the previous subsection. You can use this
method to compose complex transformations.

 If you only need to move, scale, or rotate the template, you can improve the read-
ability of your code by wrapping the PdfTemplate in an Image object C.

WRAPPING A PDFTEMPLATE INSIDE AN IMAGE

The syntax generated using addTemplate() looks like this:

q 0.8 0 0.35 0.65 0 600 cm /Xf1 Do Q

You’ll recognize the elements from the transformation matrix.
 The syntax generated for the templates wrapped in an Image object looks like this:

q 1 0 0 1 0 480 cm /Xf1 Do Q
q 0.69282 0.4 -0.4 0.69282 63.68 500 cm /Xf1 Do Q
q 0 0.8 -0.8 0 267.36 300 cm /Xf1 Do Q

As you can see, the object is still treated as a form XObject; it’s not converted into an
image XObject, nor is it rasterized. Wrapping a PdfTemplate inside an Image is an ele-
gant way to avoid having to calculate the transformation matrix yourself.

 To conclude this chapter, we’ll reduce the file size of the film festival’s timetable—
as promised.

ADAPTING THE TIMETABLE EXAMPLE

In section 3.1.3, you added a grid with locations and time slots to every page of your
timetable document. It would have been a better idea to draw the grid with the loca-
tions to one PdfTemplate object, and the grid with the time slots to another.

PdfContentByte over = writer.getDirectContent();
PdfContentByte under = writer.getDirectContentUnder();
...
PdfTemplate t_under = under.createTemplate(
 PageSize.A4.getHeight(), PageSize.A4.getWidth());
drawTimeTable(t_under);
PdfTemplate t_over = over.createTemplate(
 PageSize.A4.getHeight(), PageSize.A4.getWidth());
drawTimeSlots(t_over);
drawInfo(t_over);
List days = PojoFactory.getDays(connection);
List screenings;
int d = 1;
for (Date day : days) {
 over.addTemplate(t_over, 0, 0);
 under.addTemplate(t_under, 0, 0);
 drawDateInfo(day, d++, over);
 screenings
 = PojoFactory.getScreenings(connection, day);
 for (Screening screening : screenings) {
 drawBlock(screening, under, over);

Listing 3.29 MovieTemplates.java

Creates XObject
for lower layer

Creates XObject
for upper layer

Adds locations XObject
to lower layer

Adds timeslot XObject
to upper layer

Adds content
that varies
from page to
page
Licensed to Bruno Lowagie <bruno@lowagie.com>

92 CHAPTER 3 Adding content at absolute positions
 drawMovieInfo(screening, over);
 }
 document.newPage();
}

The MovieTemplates example (listing 3.29) extends MovieCalendar (listing 3.15) so
that methods such as drawTimeTable() and drawTimeSlots() can be reused. If you
open both PDFs in Adobe Reader, you’ll see no difference at all between them, except
when you go to File > Properties > Description. The PDF generated with MovieCalen-
dar has a size of 18.82 KB; the one generated with MovieTemplates has a size of 14.29
KB. This means we’ve saved almost 25 percent in file size by using form XObjects in
this example. Isn’t that a nice way to conclude chapter 3?

3.5 Summary
In the first section of this chapter, you learned how iText adds content to a page.
High-level objects are written to two layers in the middle. You have low-level access to
an extra level on top of these layers and an extra level below. Low-level access means
that you can change the graphics state to fill and stroke lines and shapes; you change
the text state to draw glyphs.

 You used this knowledge to make a visual representation of the data in the film fes-
tival database. You drew a grid with locations and time slots, on which you added blocks
representing movie screenings. Movie titles were added with the ColumnText object.
This object forms a bridge between the high-level objects and low-level access. You
added content in columns, and you experienced the difference between text mode
(Chunk and Phrase objects added with addText()) and composite mode (implementa-
tions of the Element interface added with addElement()). You also used ColumnText in
simulation mode to keep content that belongs together in the same column.

 Finally, the PdfTemplate object was introduced, allowing you to create extra layers
that can be reused on the same page or on different pages.

 In the next chapter, you’ll learn how to organize the information about the film fes-
tival movies in tabular form using PdfPTable and PdfPCell. You’ll learn that each Pdf-
PCell uses a ColumnText internally to draw the content of a cell at the correct position.

Adds content that varies
from page to page
Licensed to Bruno Lowagie <bruno@lowagie.com>

Organizing
 content in tables
iText has existed for more than ten years now. If you were to ask me which objects
have been the most important in the iText-related projects I’ve done in all those
years, I wouldn’t have to think twice about the answer. Most of my assignments have
consisted of creating reports that render the content of a database to a PDF docu-
ment. This content had to be organized in tabular form. This can be achieved
using two classes that are important enough to be the focus of an entire chapter:
PdfPTable and PdfPCell.

 We’ll start with simple examples, then move on to more complex tables using
the data from the movie database.

This chapter covers
■ Constructing a PdfPTable object
■ Exploring the properties of a PdfPCell object
■ Adding tables to the Document object
93

Licensed to Bruno Lowagie <bruno@lowagie.com>

94 CHAPTER 4 Organizing content in tables
4.1 Constructing tables
iText’s table functionality has evolved from a very low-level class in the early versions of
iText to the twin classes Table and PdfTable in iText 0.30 (2000). These classes were use-
ful, but they had some flaws. It was hard to fine-tune them due to design decisions made
by the iText developers; that is, by me. Developers wanted to define how to split the table
upon a page break, to control the way borders are drawn, and so on. The PdfPTable
class, introduced by the codeveloper of iText, Paulo Soares, solved this problem.

 The Table and PdfTable classes were removed in iText 5 (2009). So were Simple-
Table and SimpleCell, two other table classes discussed in the first edition of iText in
Action. Only PdfPTable and PdfPCell remain. They will be discussed in this chapter.

4.1.1 Your first PdfPTable

Suppose that you need to create a simple table that looks like figure 4.1. The code to
generate this kind of table is pretty simple.

PdfPTable table = new PdfPTable(3);
PdfPCell cell;
cell = new PdfPCell(new Phrase("Cell with colspan 3"));
cell.setColspan(3);
table.addCell(cell);
cell = new PdfPCell(new Phrase("Cell with rowspan 2"));
cell.setRowspan(2);
table.addCell(cell);
table.addCell("row 1; cell 1");
table.addCell("row 1; cell 2");
table.addCell("row 2; cell 1");
table.addCell("row 2; cell 2");

When you create a PdfPTable, you always need to pass the number of columns to the
constructor. Creating a table with zero columns results in a RuntimeException. You
can add different objects to a PdfPTable object using the addCell() method.

AUTOMATIC CREATION OF ROWS

There’s a PdfPRow object in the com.itextpdf.text.pdf package, but you aren’t sup-
posed to address it directly. iText uses this class internally to store the cells that belong
to the same row.

Listing 4.1 MyFirstTable.java

Figure 4.1 Your first PdfPTable

Creates table with 3 columnsB

C Adds cell with
colspan 3

D Adds cell with
rowspan 2

E Adds remaining
cells
Licensed to Bruno Lowagie <bruno@lowagie.com>

95Constructing tables
In listing 4.1, the table has three columns B. After adding the first cell with column
span 3 C, the first row is full. The next cell is added to a second row that is created
automatically by iText. This cell has to span 2 rows D, so a third row is created, of
which the first cell is reserved. Four more cells are then added E; the first pair com-
pletes the second row; the second pair completes the third row.

NOTE When you add a PdfPTable to a Document, only complete rows are
added. If you have a table with three columns and your final row has only
two cells, the row won’t be added unless you use the method PdfPTable.
completeRow().

You don’t have to worry about creating rows; iText creates them for you. Just make
sure you’re adding the correct number of cells.

4.1.2 PdfPTable properties

We’ll talk about cells and cell properties such as text alignment, spacing, and borders
in the next section. First, let’s take a look at the properties of the table: the width of
the table and its columns, the spacing before and after the table, and the alignment of
the table.

 The default width of a table is 80 percent of the available width. Let’s do the math
for the table created by listing 4.1. The width of the page is 595 pt minus the margins,
which are 36 pt. Eighty percent of this width is (595 – (2 * 36)) * 0.80, which amounts
to 418.4 pt.

TABLE WIDTH

Each PdfPTable keeps two values for the width:

■ widthPercentage—A percentage of the available width
■ totalWidth—The absolute width expressed in user space units

When you add a PdfPTable to a Document, iText looks at one of these values, ignoring
the other, depending on the value of lockedWidth. If this value is true, the table will
have a fixed width, as defined by the totalWidth variable. By default, the value is
false, and the exact width of the table will depend on the width available on the page
or the width of the ColumnText object to which it’s added. The default width of the
columns is equal to the width of the table divided by the number of columns.

FAQ Is it possible to have the column width change dynamically based on the content
of the cells? PDF isn’t HTML, and a PdfPTable is completely different from an
HTML table rendered in a browser; iText can’t calculate column widths
based on the content of the columns. The result would depend on too many
design decisions and wouldn’t always correspond to what a developer
expects. It’s better to have the developer define the widths.

You could say that each column has a relative width equal to 1. You can change this by
defining new relative widths, or by setting absolute widths for the columns.
Licensed to Bruno Lowagie <bruno@lowagie.com>

96 CHAPTER 4 Organizing content in tables
RELATIVE COLUMN WIDTHS

Figure 4.2 shows five tables that look identical, but the widths of the table and col-
umns were changed in five different ways.

 In the first three tables you define the column widths using relative values: new
int[] {2, 1, 1} or new float{2, 1, 1}. This means that you want to divide the width
of the table into four parts (2 + 1 + 1): two parts for the first column, one part for col-
umns two and three.

public static PdfPTable createTable1() throws DocumentException {
 PdfPTable table = new PdfPTable(3);
 table.setWidthPercentage(288 / 5.23f);
 table.setWidths(new int[]{2, 1, 1});
 ...
 return table;
}

public static PdfPTable createTable2() throws DocumentException {
 PdfPTable table = new PdfPTable(3);
 table.setTotalWidth(288);
 table.setLockedWidth(true);
 table.setWidths(new float[]{2, 1, 1});
 ...
 return table;
}

public static PdfPTable createTable3() throws DocumentException {
 PdfPTable table =
 new PdfPTable(new float[]{ 2, 1, 1 });
 table.setWidthPercentage(55.067f);
 ...
 return table;
}

Listing 4.2 ColumnWidths.java

Figure 4.2 Changing the widths of tables and columns

Changes width
percentageDefines relative

column widths

Changes total width

Defines relative
column widths

Defines relative column
widths in constructor
Licensed to Bruno Lowagie <bruno@lowagie.com>

97Constructing tables
Suppose you want a table with a width of 288 pt instead of 523 pt. You could compute
the width percentage like this: (288 / 523) * 100 = 55.067. Or you could use the meth-
ods setTotalWidth() and setLockedWidth() instead of setWidthPercentage(),
which is easier, because you can avoid the math. Listing 4.2 also demonstrates the use
of an alternative constructor: instead of creating a PdfPTable with an int defining the
number of columns, you pass the widths array as a parameter for the constructor.

ABSOLUTE COLUMN WIDTHS

The last two tables in figure 4.2 are created by code which defines absolute widths for
the columns instead of for the whole table. This can be done in two different ways,
both shown in this listing.

public static PdfPTable createTable4() throws DocumentException {
 PdfPTable table = new PdfPTable(3);
 Rectangle rect = new Rectangle(523, 770);
 table.setWidthPercentage(
 new float[]{ 144, 72, 72 }, rect);
 ...
 return table;
}

public static PdfPTable createTable5() throws DocumentException {
 PdfPTable table = new PdfPTable(3);
 table.setTotalWidth(new float[]{ 144, 72, 72 });
 table.setLockedWidth(true);
 ...
 return table;
}

The first method—computing the width percentages—isn’t ideal. It will only work if
you know the available width in advance. In listing 4.3, you pass a Rectangle object
that represents the page size minus the margins.

 It’s better to use setTotalWidth() with an array of float values as the parameter,
then set the locked width to true.

SPACING BEFORE AND AFTER A PDFPTABLE

The five tables from listings 4.2 and 4.3 are added to the Document using this code.

PdfPTable table = createTable1();
document.add(table);
table = createTable2();
table.setSpacingBefore(5);
table.setSpacingAfter(5);
document.add(table);
table = createTable3();
document.add(table);
table = createTable4();
table.setSpacingBefore(5);
table.setSpacingAfter(5);

Listing 4.3 ColumnWidths.java (continued)

Listing 4.4 ColumnWidths.java (continued)

Computes width
percentage

Sets locked
width

Extra space before
and after table 2

Extra space before
and after table 4
Licensed to Bruno Lowagie <bruno@lowagie.com>

98 CHAPTER 4 Organizing content in tables
document.add(table);
table = createTable5();
document.add(table);

If you don’t provide any extra spacing, it’s hard to distinguish the different tables.
This can be an advantage! You can create a structure that looks as if it’s one big table
by adding a series of smaller, separate tables that are glued to each other.

TABLE ALIGNMENT

In figure 4.3, three tables were added after each other without extra spacing, but the
alignment of the tables was changed in between.

The tables in figures 4.1 and 4.2 were centered; that’s the default alignment. You can
change the alignment with the setHorizontalAlignment() method.

PdfPTable table = createFirstTable();
table.setWidthPercentage(50);
table.setHorizontalAlignment(Element.ALIGN_LEFT);
document.add(table);
table.setHorizontalAlignment(Element.ALIGN_CENTER);
document.add(table);
table.setHorizontalAlignment(Element.ALIGN_RIGHT);
document.add(table);

You’ve now played around with your first table; it’s time to pick up the thread started
in the previous examples and return to the movie database.

4.2 Changing the properties of a cell
PdfPCell extends Rectangle, inheriting a plethora of methods to change the way bor-
ders are drawn and backgrounds are painted. We’ll discuss these methods later on.
First, we’ll focus on the content of a PdfPCell.

 Internally, PdfPCell content is kept inside a ColumnText object. The mechanics of
a PdfPCell are easy to understand if you know how the ColumnText object works. If

Listing 4.5 TableAlignment.java

Figure 4.3 Three tables with different alignments
Licensed to Bruno Lowagie <bruno@lowagie.com>

99Changing the properties of a cell
you skipped chapter 3 because you were eager to know more about tables, please
return to section 3.3 before reading about adding cells in text or composite mode.

4.2.1 PdfPCell in text mode

In this subsection, you’re going to create tables with content that can be expressed as
Chunk or Phrase objects. An example of such a table is shown in figure 4.4.

You won’t use any Paragraph, List, or Image objects here. You’ll work in text mode,
and therefore define the alignment and leading of the text using methods of the Pdf-
PCell class.

COLSPAN, ROWSPAN, AND THE ALIGNMENT OF A CELL

You can experiment with colspan, rowspan, and different alignment methods.

List movies = PojoFactory.getMovies(connection);
for (Movie movie : movies) {
 PdfPTable table = new PdfPTable(2);
 table.setWidths(new int[]{1, 4});
 PdfPCell cell;
 cell = new PdfPCell(
 new Phrase(movie.getTitle(), FilmFonts.BOLD));
 cell.setHorizontalAlignment(Element.ALIGN_CENTER);
 cell.setColspan(2);
 table.addCell(cell);
 if (movie.getOriginalTitle() != null) {

Listing 4.6 MovieTextMode.java

Figure 4.4 Cells in text mode

Adds content
with different
alignments
Licensed to Bruno Lowagie <bruno@lowagie.com>

100 CHAPTER 4 Organizing content in tables
 cell = new PdfPCell(PojoToElementFactory
 .getOriginalTitlePhrase(movie));
 cell.setColspan(2);
 cell.setHorizontalAlignment(Element.ALIGN_RIGHT);
 table.addCell(cell);
 }
 List directors = movie.getDirectors();
 cell = new PdfPCell(new Phrase("Directors:"));
 cell.setRowspan(directors.size());
 cell.setVerticalAlignment(Element.ALIGN_MIDDLE);
 table.addCell(cell);
 int count = 0;
 for (Director pojo : directors) {
 cell = new PdfPCell(
 PojoToElementFactory.getDirectorPhrase(pojo));
 cell.setIndent(10 * count++);
 table.addCell(cell);
 }
 table.getDefaultCell()
 .setHorizontalAlignment(Element.ALIGN_RIGHT);
 table.addCell("Year:");
 table.addCell(String.valueOf(movie.getYear()));
 table.addCell("Run length:");
 table.addCell(String.valueOf(movie.getDuration()));
 List countries = movie.getCountries();
 cell = new PdfPCell(new Phrase("Countries:"));
 cell.setRowspan(countries.size());
 cell.setVerticalAlignment(Element.ALIGN_BOTTOM);
 table.addCell(cell);
 table.getDefaultCell()
 .setHorizontalAlignment(Element.ALIGN_CENTER);
 for (Country country : countries) {
 table.addCell(country.getCountry());
 }
 document.add(table);
}

In listing 4.6, cells are added to the table in two ways.

■ With a PdfPCell object—You create a PdfPCell using a Phrase as a parameter,
and add it to the table with the addCell() method. Before adding the cell, you
use methods such as setHorizontalAlignment(), setVerticalAlignment(),
and so on, to change the properties of the PdfPCell.

■ Without a PdfPCell object—You add a String or a Phrase object straight to the
table with addCell(), using the properties of the default cell. The default cell is a
special PdfPCell instance owned by the PdfPTable object. It can be accessed
with the getDefaultCell() method.

The possible values for the setHorizontalAlignment() method are the same ones
you used to set the alignment of the ColumnText object in the previous chapter. The
possible values for setVerticalAlignment() are Element.ALIGN_TOP, Element.

ALIGN_MIDDLE, and Element.ALIGN_BOTTOM.

Adds content
with different
alignments

Adds director
name with
variable
indentation

Adds “Countries:”
bottom-aligned

Changes the
default cell

Adds horizontally
centered countries
Licensed to Bruno Lowagie <bruno@lowagie.com>

101Changing the properties of a cell
Just as with ColumnText, you can use the setIndent() method to define an indenta-
tion for the first line of a paragraph in the cell, setFollowingIndent() to specify the
indentation of the first line of the paragraphs following the first paragraph, and set-
RightIndent() to change the indentation to the right. Finally, there’s also a set-
SpaceCharRatio() to change the ratio of the word spacing if you set the alignment to
Element.ALIGN_JUSTIFIED.

 In the next example, you’ll experiment with the leading and the padding of a cell.

SPACING IN CELLS

The cells in the right column of the table shown in figure 4.5 have different leading or
padding. Observe that the default leading of the content of a cell in text mode is
equal to the font size. Internally, the leading is set like this:

setLeading(0, 1);

This is different from the default leading of a Phrase object outside a PdfPCell.
 You can change the leading with the same setLeading() methods you’ve used

for ColumnText; listing 4.7 is the code that produced the first five rows in figure 4.5.
Note that setting the leading to 0 isn’t advised! The text will be added outside the
cell, and if the content is split into multiple lines, they will overlap, resulting in illegi-
ble gibberish.

PdfPCell cell = new PdfPCell(p);
table.addCell("default leading / spacing");
table.addCell(cell);

Listing 4.7 Spacing.java

Figure 4.5 Different spacing in cells

Row 1 in figure 4.5
Licensed to Bruno Lowagie <bruno@lowagie.com>

102 CHAPTER 4 Organizing content in tables
table.addCell("absolute leading: 20");
cell.setLeading(20f, 0f);
table.addCell(cell);
table.addCell(
 "absolute leading: 3; relative leading: 1.2");
cell.setLeading(3f, 1.2f);
table.addCell(cell);
table.addCell(
 "absolute leading: 0; relative leading: 1.2");
cell.setLeading(0f, 1.2f);
table.addCell(cell);
table.addCell("no leading at all");
cell.setLeading(0f, 0f);
table.addCell(cell);

The default padding of a PdfPCell is 2 pt, and the setPadding() method can be used
to change the default. Rows 6-8 in figure 4.5 are produced with the code in the follow-
ing listing. Observe that you can differentiate: you can set different values for the top,
bottom, left, and right padding.

table.addCell("padding 10");
cell.setPadding(10);
table.addCell(cell);
table.addCell("padding 0");
cell.setPadding(0);
table.addCell(cell);
table.addCell(
 "different padding for left, right, top and bottom");
cell.setPaddingLeft(20);
cell.setPaddingRight(50);
cell.setPaddingTop(0);
cell.setPaddingBottom(5);
table.addCell(cell);

Note that setPadding() creates a behavior that is similar to what happens if you use the
cellpadding attribute of a <table> tag in an HTML table. There is no equivalent of the
cellspacing attribute, but in chapter 5 you’ll mimic that behavior using cell events.

 You can adjust the padding depending on the ascender of the first line in the cell.
The bottom padding can be adapted to the descender of the last line. By tweaking the
boolean values of the setUseAscender() and setUseDescender() methods, you
can create rows 9 to 12 in figure 4.5. This listing refers only to row 12.

table.getDefaultCell().setUseAscender(true);
table.getDefaultCell().setUseDescender(true);
table.addCell("padding 2; ascender and descender");
cell.setPadding(2);

Remember that you have measured text in the previous chapter: the ascender was
the space needed above the baseline; the descender was the space needed below the
baseline.

Listing 4.8 Spacing.java (continued)

Listing 4.9 Spacing.java (continued)

Row 2

Row 3

Row 4

Row 5

Row 6 in figure 4.5

Row 7

Row 8

Row 12
Licensed to Bruno Lowagie <bruno@lowagie.com>

103Changing the properties of a cell
 Changing the leading and padding and using the ascender and descender have an
impact on the height of a cell and, by extension, on the height of a row.

ROW HEIGHT

The height of a row is a value that needs to be computed, but iText doesn’t always
have sufficient data to do the math.

PdfPTable table = createFirstTable();
document.add(new Paragraph(String.format(
 "Table height before document.add(): %f",
 table.getTotalHeight())));
document.add(new Paragraph(
 String.format("Height of the first row: %f",
 table.getRowHeight(0))));
document.add(table);
document.add(new Paragraph(
 String.format("Table height after document.add(): %f",
 table.getTotalHeight())));
document.add(new Paragraph(
 String.format("Height of the first row: %f",
 table.getRowHeight(0))));
 table = createFirstTable();
document.add(new Paragraph(String.format(
 "Table height before setTotalWidth(): %f",
 table.getTotalHeight())));
document.add(new Paragraph(
 String.format("Height of the first row: %f",
 table.getRowHeight(0))));
table.setTotalWidth(50);
table.setLockedWidth(true);
document.add(new Paragraph(String.format(
 "Table height after setTotalWidth(): %f",
 table.getTotalHeight())));
document.add(new Paragraph(
 String.format("Height of the first row: %f",
 table.getRowHeight(0))));
document.add(table);

In this example, the height of the table is 0 pt before and 48 pt after you add it to the
Document. That’s normal: the height of a table can’t be computed before iText knows
its width. The same table with a fixed width of 50 pt has a height of 192 pt. Due to this
fixed width, which is much smaller than 80 percent of the available page width, the
content in the cells has to be wrapped. This results in a larger table and cell height.

 You could tell iText not to wrap the content with the setNoWrap(true) method,
but I wouldn’t advise this. Unwrapped text risks exceeding the borders of the table
and overlapping with the content of the next cell, or even, as shown in figure 4.6,
going outside the page boundaries.

 If you don’t like the calculated height, you can use setFixedHeight() to define
the height yourself. Rows 3–6 in figure 4.6 are created with listing 4.11. Paragraph p

Listing 4.10 TableHeight.java

Returns 0

Returns 0

Returns 48

Returns 16

Returns 0

Returns 0

Returns 192

Returns 40
Licensed to Bruno Lowagie <bruno@lowagie.com>

104 CHAPTER 4 Organizing content in tables
contains the String “Dr. iText or: How I Learned to Stop Worrying and Love PDF.” It
is added to the table twice: once to a cell with a fixed height of 72 pt, and once to a
cell with a fixed height of 36 pt.

 A height of 36 pt isn’t enough, and the words “and Love PDF” aren’t shown. To put
it in the terminology we used in chapter 3, the go() method of the internal Column-
Text method was invoked, and the content didn’t fit the rectangle. That content is
never added to the table! Use this method only if you know for sure the content will fit
the cell, or if it’s OK for your application to reduce the lines that are printed.

 To assure a certain cell height, without losing any content, you can use the setMin-
imumHeight() method. If the text fits the rectangle, the height will be equal to the
desired height; if the text doesn’t fit, it will be larger.

cell = new PdfPCell(p);
table.addCell("fixed height (more than sufficient)");
cell.setFixedHeight(72f);
table.addCell(cell);
table.addCell("fixed height (not sufficient)");
cell.setFixedHeight(36f);
table.addCell(cell);
table.addCell("minimum height");
cell = new PdfPCell(new Phrase("Dr. iText"));
cell.setMinimumHeight(36f);

Listing 4.11 CellHeights.java

Figure 4.6 Different row height methods for cells and tables
Licensed to Bruno Lowagie <bruno@lowagie.com>

105Changing the properties of a cell
table.addCell(cell);
table.setExtendLastRow(true);
table.addCell("extend last row");
table.addCell(cell);
document.add(table);

Note that the height of the final row is extended to the bottom margin of the page in
figure 4.6. This isn’t a cell property; it’s something that has to be defined at the table
level with the setExtendLastRow() method.

NOTE The setExtendLastRow() method exists in two versions. In listing 4.11,
you use one Boolean to tell iText whether the row should be extended (true)
or not (false). With a second Boolean, you can indicate whether the final row
of the table has to be extended if the table is split and distributed over differ-
ent pages.

So far, you’ve been working in text mode, but except for the leading, the horizontal
alignment, and the indentation, the cell properties we’ve discussed are also valid in
composite mode: cell height, padding, and so on. The same goes for the properties
that are inherited from the Rectangle class.

ROTATION, BACKGROUND COLOR, BORDERS, AND BORDER COLORS

You can rotate the content of a cell with the setRotation() method. Just like with
images, the rotation is defined counterclockwise. The answer to the questions, “What
is horizontal?” and “What is vertical?” is affected by the rotation angle. This matters
when setting the alignment. The word “GRAY” in the second row of figure 4.7 is cen-
tered horizontally, but not using the setHorizontalAlignment() method. Instead, it’s
done by using setVerticalAlignment() with the parameter Element.ALIGN_MIDDLE.

 The first thing that jumps to the eye when looking at figure 4.7 is the fact that it’s
more colorful than the previous table examples. The background color of the cells in
the first row is changed with the setBackground() method. The setGrayFill()
method changed the backgrounds of the cells in the second row. Note that the bor-
ders are different because the setBorder() method was used. Take a look at the next
bit of code, which created some of the cells in figure 4.7, to discover more new Rect-
angle methods that can be used to change the properties of a cell.

Figure 4.7 Cells and rotation, background color, borders, and border colors
Licensed to Bruno Lowagie <bruno@lowagie.com>

106 CHAPTER 4 Organizing content in tables
PdfPCell cell;
...
cell = new PdfPCell(new Phrase("red / no borders"));
cell.setBorder(Rectangle.NO_BORDER);
cell.setBackgroundColor(BaseColor.RED);
table.addCell(cell);
...
cell = new PdfPCell(new Phrase(
 "cyan / blue top border + padding"));
cell.setBorder(Rectangle.TOP);
cell.setUseBorderPadding(true);
cell.setBorderWidthTop(5f);
cell.setBorderColorTop(BaseColor.BLUE);
cell.setBackgroundColor(BaseColor.CYAN);
table.addCell(cell);
...
cell = new PdfPCell(new Phrase("0.6"));
cell.setBorder(Rectangle.NO_BORDER);
cell.setGrayFill(0.6f);
table.addCell(cell);

Rectangle.NO_BORDER (which removes the border) is one possible value that can be
used for the setBorder() method. To define a top, bottom, left, and right borders,
you need Rectangle.TOP, Rectangle.BOTTOM, Rectangle.LEFT, and Rectangle.RIGHT.
You’ll probably remember from chapter 2, when we discussed the borders of the
Image objects, that Rectangle.BOX is shorthand for the combination of the four bor-
ders. Rectangle.BOX is the default value for cell borders.

 In listing 4.12, you use setUseBorderPadding(true) B. This adapts the padding
to take the border width into account. Otherwise the border could overlap the con-
tent of the cell. This problem is demonstrated in the second cell of row 3 in figure 4.7.

 The border width can be set with the setBorderWidth() method, but there are
variations for every side of the border. The same goes for the setBorderColor()
method. This is demonstrated in the next listing, which is responsible for drawing two
more cells in figure 4.7.

cell = new PdfPCell(new Phrase("different borders"));
cell.setBorderWidthLeft(16f);
cell.setBorderWidthBottom(12f);
cell.setBorderWidthRight(8f);
cell.setBorderWidthTop(4f);
cell.setBorderColorLeft(BaseColor.RED);
cell.setBorderColorBottom(BaseColor.ORANGE);
cell.setBorderColorRight(BaseColor.YELLOW);
cell.setBorderColorTop(BaseColor.GREEN);
table.addCell(cell);
...
cell = new PdfPCell(new Phrase("red border"));
cell.setBorderWidth(8f);
cell.setBorderColor(BaseColor.RED);

Listing 4.12 RotationAndColors.java

Listing 4.13 RotationAndColors.java (continued)

Sets red
background,
no borders

Sets cyan
background, blue
5 pt top border

Adapts
padding

B

Sets gray
background,
no borders

Variable
borders

B

Uniform
borders

C

Licensed to Bruno Lowagie <bruno@lowagie.com>

107Changing the properties of a cell
There’s a subtle difference between the row with the variable borders B (cell 2 in
row 3 of figure 4.7) and the row with the uniform borders C. Whenever you use a
method that changes a property of a single border, the setUseVariableBor-
ders(true) method is invoked. This will cause the borders to be drawn within the
cell boundaries and the different parts to be miter joined. You can also invoke this
method youself on a cell with uniform borders. Because you didn’t use this method
in C, the final cell looks slightly bigger than the others: the thickness of the border
is distributed equally inside and outside the cell dimensions.

 And now it’s time to switch to composite mode.

4.2.2 PdfPCell in composite mode

Text mode is meant for Chunk and Phrase objects. As soon as you need Paragraphs, Lists,
or Images, you have to work in composite mode. There’s a huge difference between

PdfPCell cell = new PdfPCell(new Paragraph("some text"));

and

PdfPCell cell = new PdfPCell();
cell.addElement(new Paragraph("some text"));

In the first code line, the Paragraph is treated in text mode: Paragraph-specific prop-
erties, such as the leading and the alignment, are ignored. Instead, the corresponding
properties of the PdfPCell are used.

 In the last two lines, you switch to composite mode by using addElement(). All the
content that was previously inside the cell in text mode is discarded. Now the leading,
alignment, and indentation set for the cell are ignored in favor of the properties of
the elements that are added. This is exactly the same mechanism we discussed in the
previous chapter when we talked about the ColumnText object..

MOVIE LIST

You can now create a table of movie information and introduce Paragraph, List, and
Image objects. See figure 4.8.

Figure 4.8 Cells
in composite mode
Licensed to Bruno Lowagie <bruno@lowagie.com>

108 CHAPTER 4 Organizing content in tables
Each movie in the next listing takes only two cells: one with the movie poster B,
another one with information about the movie C.

cell = new PdfPCell(
 Image.getInstance(String.format(RESOURCE, movie.getImdb())), true);
cell.setBorder(PdfPCell.NO_BORDER);
table.addCell(cell);
cell = new PdfPCell();
Paragraph p = new Paragraph(movie.getTitle(), FilmFonts.BOLD);
p.setAlignment(Element.ALIGN_CENTER);
p.setSpacingBefore(5);
p.setSpacingAfter(5);
cell.addElement(p);
cell.setBorder(PdfPCell.NO_BORDER);
if (movie.getOriginalTitle() != null) {
 p = new Paragraph(movie.getOriginalTitle(), FilmFonts.ITALIC);
 p.setAlignment(Element.ALIGN_RIGHT);
 cell.addElement(p);
}
list = PojoToElementFactory.getDirectorList(movie);
list.setIndentationLeft(30);
cell.addElement(list);
p = new Paragraph(
 String.format("Year: %d", movie.getYear()), FilmFonts.NORMAL);
p.setIndentationLeft(15);
p.setLeading(24);
cell.addElement(p);
p = new Paragraph(String.format(
 "Run length: %d", movie.getDuration()), FilmFonts.NORMAL);
p.setLeading(14);
p.setIndentationLeft(30);
cell.addElement(p);
list = PojoToElementFactory.getCountryList(movie);
list.setIndentationLeft(40);
cell.addElement(list);
able.addCell(cell);

Cell 2 consists of Paragraph and List objects with different alignments, leading, spac-
ing, and indentation values C. Because you’re using the addElement() method,
you’re working in composite mode, and all the properties that are set for these differ-
ent Elements are preserved. For Images, you can specify whether or not they have to
be scaled.

ADDING IMAGES TO A TABLE

Figure 4.9 shows four movie posters added in four different ways. Listing 4.15 shows
that the posters of the first two X-Men movies (directed by Bryan Singer) were added
using a special PdfPCell constructor. The poster of the final part in the X-Men tril-
ogy (directed by Brett Ratner) was added straight to the table with addCell(). A
fourth poster was added to a cell with addElement(). (FYI: Bryan Singer stepped
down as director of X-Men 3 in favor of Superman Returns; he has regretted his mistake
ever since.)

Listing 4.14 MovieCompositeMode.java

B

C

Licensed to Bruno Lowagie <bruno@lowagie.com>

109Changing the properties of a cell
table.addCell("X-Men");
PdfPCell cell = new PdfPCell(img[0]);
table.addCell(cell);
table.getDefaultCell().setVerticalAlignment(Element.ALIGN_MIDDLE);
table.addCell("X2");
cell = new PdfPCell(img[1], true);
table.addCell(cell);
table.getDefaultCell().setVerticalAlignment(Element.ALIGN_BOTTOM);
table.addCell("X-Men: The Last Stand");
table.addCell(img[2]);
table.addCell("Superman Returns");
cell = new PdfPCell();
img[3].setWidthPercentage(50);
cell.addElement(img[3]);
table.addCell(cell);

When you create a PdfPCell with an Image as a parameter, the default padding is 0 pt
instead of 2 pt. With an extra parameter of type boolean, you can ask iText to scale the
image so that it fits the width of the cell C. By default, the value of this boolean is
false and the image isn’t scaled B. This is a risk; if the image doesn’t fit within the
borders of the cell, it will exceed them and overlap other cells.

 Adding an Image with addCell() will scale it, but the properties of the default cell
will be used D: the third poster in image 4.9 has a padding of 2 pt, and it’s bottom-
aligned.

 Finally, you can add an image as an element E. The Image is scaled so that it fills 100
percent of the cell width, unless you change the width percentage with the setWidth-
Percentage() method.

 Another special object that can be added to a cell is PdfPTable: tables can be nested!

NESTED TABLES

There was a time when rowspan wasn’t supported for PdfPCells. The only way to work
around this was to use nested tables. Cells 1.1 and 1.2 in figure 4.10 are part of a

Listing 4.15 XMen.java

Figure 4.9 Cells and images

B

C

D

E

Licensed to Bruno Lowagie <bruno@lowagie.com>

110 CHAPTER 4 Organizing content in tables
nested table. So are cells 12.1 and 12.2. Because of this, cells 13, 14, and 15 look as if
they have their rowspan set to 2.

 Looking at next listing, you’ll immediately see the difference between the nested
table in cell 1 and the nested table in cell 12.

PdfPTable table = new PdfPTable(4);
PdfPTable nested1 = new PdfPTable(2);
nested1.addCell("1.1");
nested1.addCell("1.2");
PdfPTable nested2 = new PdfPTable(1);
nested2.addCell("12.1");
nested2.addCell("12.2");
for (int k = 0; k < 16; ++k) {
 if (k == 1) {
 table.addCell(nested1);
 } else if (k == 12) {
 table.addCell(new PdfPCell(nested2));
 } else {
 table.addCell("cell " + k);
 }
}
document.add(table);

Just like with the Image object, the padding is 2 pt when the PdfPTable is added with
addCell() directly. The padding is 0 pt when you wrap the table in a PdfPCell first.

COMPLEX TABLE LAYOUTS

You can use nested tables to create layouts that are tabular, but that don’t fit in a tradi-
tional grid. Figure 4.11 is an example of such a layout.

Listing 4.16 NestedTable.java

Figure 4.10 Nested tables

Creates table
for cell 1

Creates table
for cell 12

Adds tables
as cell

Figure 4.11
Nesting tables for complex layouts
Licensed to Bruno Lowagie <bruno@lowagie.com>

111Changing the properties of a cell
This layout is created using the next listing, which is an example of deep nesting. A
table is nested inside a nested table.

public void createPdf(String filename)
 throws SQLException, DocumentException, IOException {
 DatabaseConnection connection = new HsqldbConnection("filmfestival");
 Document document = new Document();
 PdfWriter.getInstance(document, new FileOutputStream(filename));
 document.open();
 List days = PojoFactory.getDays(connection);
 for (Date day : days) {
 document.add(getTable(connection, day));
 document.newPage();
 }
 document.close();
 connection.close();
}
public PdfPTable getTable(
 DatabaseConnection connection, Date day)
 throws SQLException, DocumentException, IOException {
 PdfPTable table = new PdfPTable(1);
 ...
 List screenings
 = PojoFactory.getScreenings(connection, day);
 for (Screening screening : screenings) {
 table.addCell(getTable(connection, screening));
 }
 return table;
}
private PdfPTable getTable(
 DatabaseConnection connection, Screening screening)
 throws DocumentException, IOException {
 PdfPTable table = new PdfPTable(4);
 ...
 Movie movie = screening.getMovie();
 PdfPCell cell = new PdfPCell();
 cell.addElement(fullTitle(screening));
 ...
 table.addCell(cell);
 ...
 return table;
}
private static PdfPTable fullTitle(Screening screening)
 throws DocumentException {
 PdfPTable table = new PdfPTable(3);
 ...
 return table;
}

The table created with the fullTitle() method was added with the addElement()
method. The effect is different from adding a PdfPTable as a parameter of the
addCell() method or the PdfPCell constructor. With addElement(), the table is

Listing 4.17 NestedTables.java

Master
table

Table nested
inside master
table

Deep nested
table
Licensed to Bruno Lowagie <bruno@lowagie.com>

112 CHAPTER 4 Organizing content in tables
added to the ColumnText object of the cell, and you can add other elements to the
same cell.

 You’ve now worked with some small, almost academic, table examples to demon-
strate the properties of tables and cells, but once you start working with real-world
examples, tables can get really large. In the next section, we’ll discuss tips and tricks
that are important as soon as a table spans multiple pages.

4.3 Dealing with large tables
The table in figure 4.11 has a header with a date. If you download the example and
generate the PDF on your own computer, you’ll see that the table with all the movies
spans more than one page for most of the days. The table is nicely split, but unfortu-
nately the header isn’t repeated. In this section, you’ll fix this, and also add a footer
while you’re at it.

4.3.1 Repeating headers and footers

Figure 4.12 is another overview of movie screenings on a specific day. The date is
shown in the first row. The second row consists of headers that describe the content of
the columns: Location, Time, Run Length, Title, and so on. The same information is
also added as a footer.

Figure 4.12 Repeating headers and footers
Licensed to Bruno Lowagie <bruno@lowagie.com>

113Dealing with large tables
To get the effect in figure 4.12, you add three rows: a black row with the date B, then
a light gray row twice C (once for the header and once for the footer).

PdfPCell cell
 = new PdfPCell(new Phrase(day.toString(), f));
cell.setBackgroundColor(BaseColor.BLACK);
cell.setHorizontalAlignment(Element.ALIGN_CENTER);
cell.setColspan(7);
table.addCell(cell);
table.getDefaultCell().setBackgroundColor(BaseColor.LIGHT_GRAY);
for (int i = 0; i < 2; i++) {
 table.addCell("Location");
 table.addCell("Time");
 table.addCell("Run Length");
 table.addCell("Title");
 table.addCell("Year");
 table.addCell("Directors");
 table.addCell("Countries");
}
table.getDefaultCell().setBackgroundColor(null);
table.setHeaderRows(3);
table.setFooterRows(1);

This may seem strange, adding the footer before you start adding any other content,
but this is the twist: first you use the setHeaderRows() method to tell iText how many
rows are part of the header, and you add the row count of the footer. In listing 4.18,
you set the value to 3 D. Then you use the setFooterRows() method to tell iText how
many of the header rows are actually footer rows. If there are none, there’s no need to
do this, but in this example you set the value to 1 E.

 The result is that the first two rows will be added first, followed by the real content
of the table. When a new page is necessary, or when there’s no more real data, the
third row—the footer row—will be added. If the table continues on another page, the
header is repeated. And so is the footer at the end of the table, unless you’ve used
setSkipLastFooter(true). This method is useful if you want to add a footer saying,
“This table continues on the next page.” It’s obvious that you don’t want to add this
text if there is no more data in the table. There’s also a setSkipFirstHeader()
method for a similar reason: if you want the header to say something like, “This is the
continuation of the table on the previous page.”

 All the screenshots so far have showed only one page, or part of a page. But how
does iText split a table that runs over to a new page?

4.3.2 Splitting tables

What do you want iText to do if a row doesn’t fit on the page? Do you want iText to
start the row on a new page? Or do you want iText to add as much data from that row
on the current page, and add the rest to the next page? Both options are possible, and
they’re demonstrated in figure 4.13.

Listing 4.18 HeaderFooter1.java

B First header row

C Second header
row and footer

Three header rows ...D
Of which one is a footerE
Licensed to Bruno Lowagie <bruno@lowagie.com>

114 CHAPTER 4 Organizing content in tables
In the first example, the second Terminator movie doesn’t fit on the upper page. The
complete row is forwarded to the next page. This is the default behavior of iText.

 In the lower example, most of the data is added to the current page, but one coun-
try is printed on the next page.

PdfPTable table = getTable(connection, day);
table.setSplitLate(false);
document.add(table);

The HeaderFooter2 example extends the HeaderFooter1 example, and it reuses the
getTable() method, so the table is constructed in exactly the same way. But with the
setSplitLate() method, you decide whether iText should wait to split the cells of the
first row that doesn’t fit the page.

 By default, iText only splits rows that are forwarded to the next page but that still
don’t fit because the row height exceeds the available page height. You can avoid this
by using the following line of code:

table.setSplitRows(false);

Listing 4.19 HeaderFooter2.java

Figure 4.13 Different ways to split a table
Licensed to Bruno Lowagie <bruno@lowagie.com>

115Dealing with large tables
This is a dangerous line, because now not one row will be split. Rows that are too high to
fit on a page will be dropped from the table!

 Dealing with large tables isn’t only about repeating headers and footers, or about
splitting tables. It’s also about managing the memory that is used by a table, making
sure that you don’t consume more memory than is available in the Java Virtual
Machine (JVM).

4.3.3 Memory management for LargeElement implementations

In chapter 2, you learned that the Chapter and Section objects implement the Lar-
geElement interface. Just like PdfPTable, you risk consuming a lot of memory adding
many Elements to a LargeElement before adding the LargeElement to a Document.

 When an object is added to a Document, you can decide to make it eligible for gar-
bage collection (removal from memory). The problem with objects such as PdfPTable
and Chapter is that you can’t add the object to the Document until you’ve completed
it; or can you? In section 3.2, you constructed a large table that consisted of several
small tables that were glued to each other, but that doesn’t work if you want repeating
headers and footers that are drawn in the correct place automatically. What you need
is to write part of the table to the PdfWriter and its corresponding OutputStream,
then find a way to flush that part from memory. You should be able to do this without
unwanted side effects affecting the headers, footers, and, in the case of chapters,
indentations, titles, and so on.

 The LargeElement interface was created to help you solve this problem. Classes
implementing this interface need to implement three methods: setComplete(),
isComplete(), and flushContent(). The isComplete() and flushContent() meth-
ods are used by iText internally. The only method that is important for you is the set-
Complete() method.

PdfPTable table = new PdfPTable(new float[]{1, 7});
table.setComplete(false);
...
int count = 0;
for (Movie movie : movies) {
 ...
 if (count++ % 10 == 0) {
 document.add(table);
 checkpoint(writer);
 }
}
table.setComplete(true);
document.add(table);
...
resetMaximum(writer);

If you know you’ll be adding a LargeElement, and you don’t plan to reuse it, you have
to inform iText that you haven’t finished adding content. In listing 4.20, you’re adding

Listing 4.20 MemoryTests.java

Sets complete
to false

Adds cells

Adds incomplete
table

Sets complete
to true

Adds complete
table
Licensed to Bruno Lowagie <bruno@lowagie.com>

116 CHAPTER 4 Organizing content in tables
the table to the document every ten movies, but you’ve told iText that it isn’t complete
yet. Internally, iText will use the method isComplete(). If this method returns true, the
flushContent() method will be called.

 In previous examples, all the rows were added to the table and they were kept in
memory until the table was added to the document. In listing 4.20, rows are written to
the PdfWriter at an earlier stage. Once the cell and row objects are rendered to PDF,
they’re deleted, so that the JVM can remove them from the memory. Once you’ve fin-
ished adding rows, you flag the table as completed, and you add the remaining rows to
the document.

 The checkpoint() and resetMaximum() methods in listing 4.20 write information
about the memory use to a text file. By inspecting this file, you can discover that a
table with the information and posters for 120 movies consumes about 4 MB. If you
add the table to the document before it’s completed (for instance, every 10 movies),
the maximum memory needed by the JVM amounts to about 160 KB. This is a huge
difference; using the LargeElement interface can help you fine-tune your application
if you’re dealing with a large volume of data.

 The setComplete() method is only useful if you’re adding the table with the Doc-
ument.add() method. In the next section, you’ll add a PdfPTable to the direct con-
tent. This will give you more power, but also more responsibility: you’ll need to tell
iText where you want to position every part of the table.

4.4 Adding a table at an absolute position
In chapter 2, you created high-level objects, and you let iText decide where they had
to be put on the page. In chapter 3, you learned about writing to the direct content,
and you discovered how to combine high-level objects with low-level access using the
ColumnText object.

 Up until now, you’ve used the PdfPTable class as a high-level object. When added
to the Document, iText writes the textual content of the cells to the text layer, and all
the borders, background colors, and images are written to the layer just beneath. It’s
also possible to write a PdfPTable to one of the direct content layers on top of or
under the text and graphics layers. See figure 3.2 and read section 3.1.1 for a more
elaborate description.

 In the next section, you’ll discover that a table also has different layers.

4.4.1 Working with writeSelectedRows()

Figure 4.14 shows a calendar I made for 2011. In the background, you can see a pic-
ture taken by one of the editors of the book; in the foreground, you can see a table
that was added at an absolute position.

 Listing 4.21 shows how it’s done.

Licensed to Bruno Lowagie <bruno@lowagie.com>

117Adding a table at an absolute position
PdfPTable table;
Calendar calendar;
PdfContentByte canvas = writer.getDirectContent();
for (int month = 0; month < 12; month++) {
 calendar = new GregorianCalendar(year, month, 1);
 drawImageAndText(canvas, calendar);
 table = new PdfPTable(7);
 table.setTotalWidth(504);
 table.getDefaultCell().setBackgroundColor(BaseColor.WHITE);
 table.addCell(getMonthCell(calendar, locale));
 int daysInMonth =
 calendar.getActualMaximum(Calendar.DAY_OF_MONTH);
 int day = 1;
 int position = 2;
 while (
 position != calendar.get(Calendar.DAY_OF_WEEK)) {
 position = (position % 7) + 1;
 table.addCell("");
 }
 while (day <= daysInMonth) {
 calendar
 = new GregorianCalendar(year, month, day++);
 table.addCell(getDayCell(calendar, locale));
 }

Listing 4.21 PdfCalendar.java

Figure 4.14 A calendar in a PDF with a table added at an absolute position

Sets width
of table

B

Adds table
caption

Adds empty
cells first row

Adds days
of month
Licensed to Bruno Lowagie <bruno@lowagie.com>

118 CHAPTER 4 Organizing content in tables
 table.completeRow();
 table.writeSelectedRows(0, -1,
 169, table.getTotalHeight() + 18, canvas);
 document.newPage();
}

Note that you always have to set the total width B if you intend to add the PdfPTable
at an absolute position. You don’t have to lock the width, because iText will ignore the
width percentage anyway; that width only makes sense when using document.add().

 The table is added to a PdfContentByte object using the writeSelectedRows()
method C. Let’s take a look at the parameters.

SELECTING THE ROWS AND THE TABLE POSITION

With the first two parameters, you can define the start and the end of the table rows.
In listing 4.21, all the rows are added, because you use 0 as the starting row and –1 as
end row. The value –1 means, “show all the remaining rows.”

 The next two parameters of the writeSelectedRows() method define the (x,y)
coordinates of the upper-left corner of the table. You want the table to end 18 pt
above the lower boundary of the page, so you need to calculate the height of the table
and add 18 to that value.

NOTE The writeSelectedRows() method returns the current Y position after
the table is added. If you were to wrap line C inside a System.out.println()
statement in listing 4.21, you’d see that every table returns the value 18.

The final parameter is the PdfContentByte object to which you want to add the table.

CONTENT CANVASES

Instead of a single PdfContentByte object, you could pass an array of four PdfCon-
tentByte objects as the final parameter of the writeSelectedRow() method. These
represent four direct content layers (aka, canvases). Each canvas has a specific name
and purpose:

■ PdfPtable.BASECANVAS—Anything placed here will be under the table.
■ PdfPtable.BACKGROUNDCANVAS—This is the layer where the backgrounds are

drawn.
■ PdfPtable.LINECANVAS—This is the layer where the lines are drawn.
■ PdfPtable.TEXTCANVAS—This is the layer where the text goes. Anything placed

here will cover the table.

If you only pass one PdfContentByte object, text will cover lines, lines will cover back-
grounds, and backgrounds will cover anything added to the base canvas. Note that iText
never adds content to the base canvas. It’s there in case you want to add something that
goes under all the other content in a table or a cell event; see chapter 5 for examples.

SPLITTING A PDFPTABLE VERTICALLY

Suppose that a table has so many columns that it doesn’t fit the width of a page. In
that case, your only option is to split it vertically. This is demonstrated in figure 4.15.

C Adds table
to canvas

Adds empty
cells last row
Licensed to Bruno Lowagie <bruno@lowagie.com>

119Adding a table at an absolute position
This is a single table listing the movies directed by Zhang Yimou. The total width is set
to 600 pt in listing 4.22 B, but the width of a page is only 595 pt.

 In this example the writeSelectedRows() method was used twice, with two extra
parameters to select the columns.

List movies = PojoFactory.getMovies(connection, 3);
PdfPTable table = new PdfPTable(new float[] { 1, 5, 5, 1});
for (Movie movie : movies) {
 table.addCell(String.valueOf(movie.getYear()));
 table.addCell(movie.getMovieTitle());
 table.addCell(movie.getOriginalTitle());
 table.addCell(String.valueOf(movie.getDuration()));
}
table.setTotalWidth(600);
PdfContentByte canvas = writer.getDirectContent();
table.writeSelectedRows(0, 2, 0, -1, 236, 806, canvas);
document.newPage();
table.writeSelectedRows(2, -1, 0, -1, 36, 806, canvas);

Columns 0 to 2 (2 not included) are added at position (236, 806) C on one page.
Column 2 and all the remaining columns (–1 is used instead of the real number of
columns) are added at position (36, 806) on the next page D.

 This is one way to add a PdfPTable at an absolute position. The other way is to
wrap a PdfPTable object inside a ColumnText object.

4.4.2 Wrapping tables in columns

Figure 4.16 shows a table with a header and footer that were added at absolute posi-
tions in two separate columns on the same page.

 In listing 4.23, you use the ColumnText mechanism from chapter 3 in combination
with the PdfPTable functionality that repeats headers and footers (explained in sec-
tion 4.3.1).

Listing 4.22 Zhang.java

Figure 4.15 Splitting a table vertically

Sets page
width

B

Writes left
half of table

C

Writes right
half of table

D

Licensed to Bruno Lowagie <bruno@lowagie.com>

120 CHAPTER 4 Organizing content in tables
ColumnText column = new ColumnText(writer.getDirectContent());
List days = PojoFactory.getDays(connection);
float[][] x = {
 { document.left(), document.left() + 380 },
 { document.right() - 380, document.right() }
};
for (Date day : days) {
 column.addElement(getTable(connection, day));
 int count = 0;
 float height = 0;
 int status = ColumnText.START_COLUMN;
 while (ColumnText.hasMoreText(status)) {
 if (count == 0) {
 height = addHeaderTable(document,
 day, writer.getPageNumber());
 }
 column.setSimpleColumn(
 x[count][0], document.bottom(),
 x[count][1], document.top() - height - 10);
 status = column.go();
 if (++count > 1) {
 count = 0;
 document.newPage();

Listing 4.23 ColumnTable.java

Figure 4.16 A PdfPTable rendered in two columns

Defines
column
borders

Adds table with
screenings

Adds extra
header table
Licensed to Bruno Lowagie <bruno@lowagie.com>

121Summary
 }
 }
 document.newPage();
}

This section introduced some low-level functionality of the high-level table object. In
the next chapter, we’ll return to the PdfPTable and PdfPCell objects, and you’ll use
low-level methods to draw tables and cells with rounded corners and other fancy lay-
out features. But first, let’s look back on what you’ve learned in this chapter.

4.5 Summary
This chapter was dedicated entirely to tables. You learned how to create PdfPTable
and PdfPCell objects. You were made aware of the PdfPRow class, but you know that
you shouldn’t worry about it: rows are created behind the scenes by iText.

 You learned how to define the width, alignment, and spacing of the complete table
and its columns, and you discovered that cells are very similar to the ColumnText
object that was discussed in the previous chapter. You’ve worked with cells in text
mode and in composite mode. In the subsection about text mode, you learned more
about the properties of a cell. The section with the examples in composite mode
focused on special types of cells: cells with images, and cells containing other tables
(nested tables).

 As soon as you have a table that spans multiple pages, you need to pay special
attention to headers and footers if you want them to repeat on every page. You also
have to choose whether you want to split the cells of a row if they don’t fit on the cur-
rent page, or if you want to forward them to the next page. You also learned about the
implications on your JVM of having a large table; you learned how to reduce the maxi-
mum amount of memory needed when dealing with a large table.

 Finally, you added a PdfPTable at absolute coordinates in two different ways: with the
writeSelectedRows() method, and by wrapping the table inside a ColumnText object.

 In the next chapter, you’ll learn how to fine-tune the layout by using table and cell
events.
Licensed to Bruno Lowagie <bruno@lowagie.com>

Table, cell,
 and page events
In chapters 2 and 4, you added content to a document using a plethora of objects
and methods available in iText. When adding a Chunk, you were able to use meth-
ods to add lines and a background color. When creating a PdfPTable, you could
define borders and backgrounds. But what if all of this isn’t sufficient? What if you
don’t want a rectangular background for a Chunk, but a custom shape instead, such
as an ellipse? What if you want the borders of a PdfPCell to have rounded corners?
This chapter explains how to write custom functionality for Chunk, Paragraph,
Chapter, Section, PdfPTable, and PdfPCell objects.

This chapter covers
■ Cell and table events
■ Events for Chunks, Paragraphs, Chapters, and

Sections
■ Page boundaries
■ Adding headers, footers, and watermarks using

page events
122

Licensed to Bruno Lowagie <bruno@lowagie.com>

123Decorating tables using table and cell events
 In previous examples involving these objects, you’ve seen that iText takes responsi-
bility for creating a new page whenever the content doesn’t fit the current page. You
may want to automatically add artifacts with meta-content to each page—perhaps a
running head with a title, a footer with the page number, or a watermark. This can be
done using page events.

 All of this will be covered in this chapter, but let’s first continue with more table
examples, and find out how to create table and cell events.

5.1 Decorating tables using table and cell events
Two methods that are present in the API documentation for PdfPTable and PdfPCell
were overlooked in chapter 4: PdfPTable.setTableEvent() and PdfPCell.setCell-
Event(). The former method expects an implementation of the PdfPTableEvent
interface as its parameter; the latter expects a PdfPCellEvent implementation. These
interfaces can be used to define a custom layout for tables and cells; for instance, a
custom background or custom borders for a table and its cells. You’ll use these events
on a table you created in the previous chapter.

5.1.1 Implementing the PdfPTableEvent interface

Suppose you want to add a background color to every other row of a table, as shown in
figure 5.1.

Figure 5.1 Table with alternating row backgrounds
Licensed to Bruno Lowagie <bruno@lowagie.com>

124 CHAPTER 5 Table, cell, and page events
One way to achieve this would be to change the background color of the default cell
for each row so that odd rows don’t have a background color, and the background of
even rows is yellow. This would work, but you must consider a possible side effect. If
you look at figure 5.1, you’ll see that you’re able to fit 27 rows on one page, not includ-
ing header and footer rows. The table continues on the next page. If you alternate the
background color of the default cell, the background of row 28 in the table (an even
row) will be colored, in spite of the fact that it’s row 1 on the next page (an odd row).
Maybe you don’t want this—maybe you want the first row after the header to be a row
without a background color. If that’s the case, you should implement the tableLay-
out() method and use a table event.

Public class AlternatingBackground implements PdfPTableEvent {
 public void tableLayout(PdfPTable table,
 float[][] widths, float[] heights,
 int headerRows, int rowStart, PdfContentByte[] canvases) {
 int columns;
 Rectangle rect;
 int footer = widths.length - table.getFooterRows();
 int header
 = table.getHeaderRows() - table.getFooterRows() + 1;
 for (int row = header; row < footer; row += 2) {
 columns = widths[row].length - 1;
 rect = new Rectangle(widths[row][0], heights[row],
 widths[row][columns], heights[row + 1]);
 rect.setBackgroundColor(BaseColor.YELLOW);
 rect.setBorder(Rectangle.NO_BORDER);
 canvases[PdfPTable.BASECANVAS].rectangle(rect);
 }
 }
}

Take a look at the parameters of the tableLayout() method:

■ table—The PdfPTable object to which the event is added. Don’t use this
method to change the contents of the table; the table has already been ren-
dered at the moment the tableLayout() method is invoked. Consider this
object to be read-only.

■ widths—A two-dimensional array of float values. A table with m rows and n col-
umns results in an array with a maximum dimension of m x (n + 1). The X
coordinate of the left border of the first cell in row r is widths[r][0]; the right
border of the last cell in this row is widths[r][n + 1], provided that all cells in
the row have colspan 1. Setting a different colspan can result in a lower number
of elements in the row array. This is the case for the first row in figure 5.1 (the
header row). The array widths[0] has only two elements: widths[0][0] is the
X coordinate of the left border of the table; widths[0][1] is the X coordinate
of the right border.

Listing 5.1 AlternatingBackground.java

B Use this instead
of headerRows
parameter
Licensed to Bruno Lowagie <bruno@lowagie.com>

125Decorating tables using table and cell events
■ heights—An array with float values. You can see 30 rows in figure 5.1. The
heights array passed to the table event when this part of the table is drawn will
contain 31 values. These values are the Y coordinates of the borders of the rows:
heights[0] is the Y coordinate of the upper border of the table; heights[30] is
the Y coordinate of the lower border.

■ headerRows—An int with the same value as table.getHeaderRows(). If you also
have footer rows, you should use B to retrieve the correct number of header
and footer rows. This parameter dates from the time when the footer row func-
tionality wasn’t available yet.

■ rowStart—This int value will always be 0 if you add the table with docu-
ment.add(). If you use writeSelectedRows(), it will be identical to the parame-
ter with the same name passed to this method: the row number of the first row
that is drawn.

■ canvases—An array of PdfContentByte objects. There are four of them, and you
encountered them in section 4.4.1: PdfPtable.BASECANVAS, PdfPtable.BACK-
GROUNDCANVAS, PdfPtable.LINECANVAS, and PdfPtable.TEXTCANVAS.

In listing 5.1 you loop over the rows, starting with the second row after the header, in
steps of two rows. Every row can have a different number of columns. Using the
widths and the heights arrays, you define a rectangle encompassing the complete
row. Finally, you draw a yellow rectangle to the BASECANVAS. You chose the base canvas
because you don’t want to cover background colors that may be defined for some
cells. There aren’t any cells with backgrounds in this example, except in the header
and footer rows, but this way you can easily reuse this code for other tables.

 For the event to take effect, you need to use the setTableEvent() method.

List days = PojoFactory.getDays(connection);
PdfPTableEvent event = new AlternatingBackground();
for (Date day : days) {
 PdfPTable table = getTable(connection, day);
 table.setTableEvent(event);
 document.add(table);
 document.newPage();
}

Thanks to the information that is passed to the tableLayout() method, you can write
text and shapes to the direct content to change the appearance of a table and its cells.
A similar mechanism exists for PdfPCell objects.

5.1.2 Implementing the PdfPCellEvent interface

In figure 5.1, you list a number of screenings and include the run length of each
movie. Suppose you wanted to add visual information that is identical to the textual
info, but that can be read in a glance. This is done in figure 5.2: by looking at the

Listing 5.2 AlternatingBackground.java (continued)
Licensed to Bruno Lowagie <bruno@lowagie.com>

126 CHAPTER 5 Table, cell, and page events
background of the cell with the duration, you immediately get an indication of the
run length of the movie.

 The width of column 3 in figure 5.2 corresponds to 240 minutes. That’s 100 per-
cent. For a two-hour movie (50 percent of four hours), you draw a rectangle in the
background that takes half the width of that cell. If a movie has a duration less than 90
minutes, you draw a green rectangle. Movies with a duration greater than 120 minutes
are drawn in dark red. Movies with a run length between 90 and 120 minutes get an
orange rectangle. All of this is done in the cellLayout() implementation.

class RunLength implements PdfPCellEvent {
 public int duration;
 public RunLength(int duration) {
 this.duration = duration;
 }

 public void cellLayout(PdfPCell cell, Rectangle rect,
 PdfContentByte[] canvas) {
 PdfContentByte cb = canvas[PdfPTable.BACKGROUNDCANVAS];
 cb.saveState();
 if (duration < 90) {

Listing 5.3 RunLengthEvent.java

Figure 5.2 Cells with custom background and extra info added using cell events
Licensed to Bruno Lowagie <bruno@lowagie.com>

127Decorating tables using table and cell events
 cb.setRGBColorFill(0x7C, 0xFC, 0x00);
 }
 else if (duration > 120) {
 cb.setRGBColorFill(0x8B, 0x00, 0x00);
 }
 else {
 cb.setRGBColorFill(0xFF, 0xA5, 0x00);
 }
 cb.rectangle(rect.getLeft(), rect.getBottom(),
 rect.getWidth() * duration / 240, rect.getHeight());
 cb.fill();
 cb.restoreState();
 }
}

Observe that the cellLayout() method is a lot easier to understand than the table-
Layout() method. There are only three parameters:

■ cell—The PdfPCell object to which the event is added. This is just for read-
only purposes! Do not try to change the content of this cell—it won’t have any
effect. Once the method of the cell event is triggered, the cell has already
been rendered.

■ rect—The Rectangle object defining the borders of the cell.
■ canvas—An array of PdfContentByte objects with the same elements as

described in sections 4.4.1 and 5.1.1.

Suppose you’re planning to project the extended version of the Lord of the Rings tril-
ogy. The run length of part 3 is 250 minutes, pauses not included, so the background
of the duration cell for The Return of the King will exceed the cell borders. By using cell
events, you can extend the background color beyond the cell borders.

NOTE The layout methods give you access to direct content layers of the com-
plete page, along with coordinates that are helpful if you want to know the
position of the table or cell that was added. It’s up to you to use these coordi-
nates, or not. You can’t change the content and the appearance defined for
the original table or cell objects. These objects are already rendered to the
page when the layout method is called.

Cell events are declared to a PdfPCell using the setCellEvent() method.

PdfPCell runLength = new PdfPCell(table.getDefaultCell());
runLength.setPhrase(
 new Phrase(String.format("%d '", movie.getDuration())));
runLength.setCellEvent(new RunLength(movie.getDuration()));
if (screening.isPress()) {
 runLength.setCellEvent(press);
}
table.addCell(runLength);

Listing 5.4 RunLengthEvent.java (continued)
Licensed to Bruno Lowagie <bruno@lowagie.com>

128 CHAPTER 5 Table, cell, and page events
In listing 5.4, you use the copy constructor of PdfPCell to create a new cell with the
same characteristics as the default cell of the table. You use the setPhrase() method
to add content in text mode—this corresponds to the ColumnText.setText()
method. Before you add the cell to the table, you add the cell events. First the Run-
Length event, with the behavior explained in listing 5.3, then an event named press.
This is an instance of PressPreview, a cell event that adds the words “PRESS PREVIEW”
if the screening is a press preview.

NOTE Events are cumulative. The PressPreview event doesn’t replace the
RunLength event. The layout methods of both classes will be called if the
screening is a press preview. If you want to replace an existing cell event by a
new one, you need to remove the old event first. This can be done by setting
the event to null, like this: cell.setCellEvent(null);.

Here is the PressPreview class.

class PressPreview implements PdfPCellEvent {

 public BaseFont bf;
 public PressPreview() throws DocumentException, IOException {
 bf = BaseFont.createFont();
 }

 public void cellLayout(PdfPCell cell, Rectangle rect,
 PdfContentByte[] canvas) {
 PdfContentByte cb = canvas[PdfPTable.TEXTCANVAS];
 cb.beginText();
 cb.setFontAndSize(bf, 12);
 cb.showTextAligned(Element.ALIGN_RIGHT, "PRESS PREVIEW",
 rect.getRight() - 3, rect.getBottom() + 4.5f, 0);
 cb.endText();
 }
}

Many things that can be done with table events can be done in an easier way with cell
events. But cell events can never replace all the table events you need. Usually, you’ll
combine the power of table events with the ease of use of cell events.

5.1.3 Combining table and cell events

The table in figure 5.3 mimics the cell spacing you get from using the HTML cell-
spacing attribute for the <table> tag. There’s more than one way to achieve this look.

 You need a table event to draw the outer border of the complete table, but you can
choose what type of event to use to draw the cell borders.

MIMICKING HTML CELL SPACING

You can either use the widths and heights arrays from the tableLayout() method to
draw these inner borders. Or you can use a cell event for each cell, in which case you

Listing 5.5 RunLengthEvent.java (continued)
Licensed to Bruno Lowagie <bruno@lowagie.com>

129Decorating tables using table and cell events
get the coordinates of the border as a Rectangle object. Listing 5.6 combines table
and cell events.

public class PressPreviews implements PdfPCellEvent, PdfPTableEvent {
 public void tableLayout(PdfPTable table,
 float[][] width, float[] height,
 int headerRows, int rowStart,
 PdfContentByte[] canvas) {
 float widths[] = width[0];
 float x1 = widths[0];
 float x2 = widths[widths.length - 1];
 float y1 = height[0];
 float y2 = height[height.length - 1];
 PdfContentByte cb = canvas[PdfPTable.LINECANVAS];
 cb.rectangle(x1, y1, x2 - x1, y2 - y1);
 cb.stroke();
 cb.resetRGBColorStroke();
 }

 public void cellLayout(
 PdfPCell cell, Rectangle position,
 PdfContentByte[] canvases) {
 float x1 = position.getLeft() + 2;

Listing 5.6 PressPreviews.java

Figure 5.3 Mimicking cell spacing using cell and table events

Implements table
event method

Implements cell
event method
Licensed to Bruno Lowagie <bruno@lowagie.com>

130 CHAPTER 5 Table, cell, and page events
 float x2 = position.getRight() - 2;
 float y1 = position.getTop() - 2;
 float y2 = position.getBottom() + 2;
 PdfContentByte canvas
 = canvases[PdfPTable.LINECANVAS];
 canvas.rectangle(x1, y1, x2 - x1, y2 - y1);
 canvas.stroke();
 canvas.resetRGBColorStroke();
 }

 ...

 public PdfPTable getTable(DatabaseConnection connection)
 throws SQLException, DocumentException, IOException {
 PdfPTable table = new PdfPTable(new float[] { 1, 2, 2, 5, 1 });
 table.setTableEvent(new PressPreviews());
 table.setWidthPercentage(100f);
 table.getDefaultCell().setPadding(5);
 table.getDefaultCell().setBorder(PdfPCell.NO_BORDER);
 table.getDefaultCell()
 .setCellEvent(new PressPreviews());
 ...
 List screenings = PojoFactory.getPressPreviews(connection);
 Movie movie;
 for (Screening screening : screenings) {
 movie = screening.getMovie();
 table.addCell(screening.getLocation());
 table.addCell(String.format("%s %2$tH:%2$tM",
 screening.getDate().toString(), screening.getTime()));
 table.addCell(String.format("%d '", movie.getDuration()));
 table.addCell(movie.getMovieTitle());
 table.addCell(String.valueOf(movie.getYear()));
 }
 return table;
 }
}

Note that you’re setting the cell event for the default cell so the behavior is valid for all
the cells of the table in this particular case.

 In the examples so far in this chapter, you’ve used table and cell events for PdfPT-
able objects that were added with document.add(). This functionality also works if
you write a table to the direct content using the writeSelectedRows() method.

TABLE AND CELL EVENTS AND WRITESELECTEDROWS()

Figure 5.4 shows a calendar sheet created in almost the same way as the calendar you
made in the previous chapter (see figure 4.14). The PdfPTable with the information
about the month was added at an absolute position.

 The only difference between the two examples is the style used for the table and its
cells. In the previous chapter, you used standard PdfPTable and PdfPCell methods. In
this example, you’ll use table and cell events to obtain special effects, such as rounded
corners. You’ll use TableBackground, CellBackground, and RoundRectangle.

Implements cell
event method

Sets table
event

Sets cell event
Licensed to Bruno Lowagie <bruno@lowagie.com>

131Decorating tables using table and cell events
class TableBackground implements PdfPTableEvent {
 public void tableLayout(PdfPTable table,
 float[][] width, float[] height,
 int headerRows, int rowStart,
 PdfContentByte[] canvas) {
 PdfContentByte background
 = canvas[PdfPTable.BASECANVAS];
 background.saveState();
 background.setCMYKColorFill(0x00, 0x00, 0xFF, 0x0F);
 background.roundRectangle(
 width[0][0], height[height.length - 1] - 2,
 width[0][1] - width[0][0] + 6,
 height[0] - height[height.length - 1] - 4, 4);
 background.fill();
 background.restoreState();
 }
}

class CellBackground implements PdfPCellEvent {
 public void cellLayout(PdfPCell cell, Rectangle rect,
 PdfContentByte[] canvas) {
 PdfContentByte cb
 = canvas[PdfPTable.BACKGROUNDCANVAS];
 b.roundRectangle(

Listing 5.7 PdfCalendar.java

Figure 5.4 A variation on the calendar example, now with rounded corners

Specifies yellow
background,
rounded corners

Specifies white
background,
rounded corners
Licensed to Bruno Lowagie <bruno@lowagie.com>

132 CHAPTER 5 Table, cell, and page events
 rect.getLeft() + 1.5f, rect.getBottom() + 1.5f,
 rect.getWidth() - 3, rect.getHeight() - 3, 4);
 cb.setCMYKColorFill(0x00, 0x00, 0x00, 0x00);
 cb.fill();
 }
}

class RoundRectangle implements PdfPCellEvent {
 protected int[] color;
 public RoundRectangle(int[] color) {
 this.color = color;
 }
 public void cellLayout(PdfPCell cell, Rectangle rect,
 PdfContentByte[] canvas) {
 PdfContentByte cb = canvas[PdfPTable.LINECANVAS];
 cb.roundRectangle(
 rect.getLeft() + 1.5f, rect.getBottom() + 1.5f,
 rect.getWidth() - 3, rect.getHeight() - 3, 4);
 cb.setLineWidth(1.5f);
 cb.setCMYKColorStrokeF(
 color[0], color[1], color[2], color[3]);
 cb.stroke();
 }
}

...

public void createPdf(String filename, Locale locale, int year)
 throws IOException, DocumentException {
 Document document = new Document(PageSize.A4.rotate());
 PdfWriter writer =
 PdfWriter.getInstance(document, new FileOutputStream(RESULT));
 document.open();
 PdfPTable table;
 Calendar calendar;
 PdfContentByte canvas = writer.getDirectContent();
 for (int month = 0; month < 12; month++) {
 calendar = new GregorianCalendar(year, month, 1);
 drawImageAndText(canvas, calendar);
 table = new PdfPTable(7);
 table.setTableEvent(tableBackground);
 table.setTotalWidth(504);
 table.setLockedWidth(true);
 table.getDefaultCell().setBorder(PdfPCell.NO_BORDER);
 table.getDefaultCell().setCellEvent(whiteRectangle);
 table.addCell(getMonthCell(calendar, locale));
 int daysInMonth = calendar.getActualMaximum(Calendar.DAY_OF_MONTH);
 int day = 1;
 int position = 2;
 while (position != calendar.get(Calendar.DAY_OF_WEEK)) {
 position = (position % 7) + 1;
 table.addCell("");
 }
 while (day <= daysInMonth) {
 calendar = new GregorianCalendar(year, month, day++);
 table.addCell(getDayCell(calendar, locale));

Specifies white
background,
rounded corners

Specifies
colored rectangle,
rounded corners

Sets table
event

Formats month cell C

Specifies cell
default: white
border, rounded
corners

B

Licensed to Bruno Lowagie <bruno@lowagie.com>

133Events for basic building blocks
 }
 table.completeRow();
 table.writeSelectedRows(
 0, -1, 169, table.getTotalHeight() + 20, canvas);
 document.newPage();
 }
 document.close();
}

public PdfPCell getMonthCell(Calendar calendar, Locale locale) {
 PdfPCell cell = new PdfPCell();
 cell.setColspan(7);
 cell.setBorder(PdfPCell.NO_BORDER);
 cell.setUseDescender(true);
 Paragraph p = new Paragraph(
 String.format(locale, "%1$tB %1$tY", calendar), bold);
 p.setAlignment(Element.ALIGN_CENTER);
 cell.addElement(p);
 return cell;
}

public PdfPCell getDayCell(Calendar calendar, Locale locale) {
 PdfPCell cell = new PdfPCell();
 cell.setCellEvent(cellBackground);
 if (isSunday(calendar) || isSpecialDay(calendar))
 cell.setCellEvent(roundRectangle);
 cell.setPadding(3);
 cell.setBorder(PdfPCell.NO_BORDER);
 Chunk chunk = new Chunk(
 String.format(locale, "%1$ta", calendar), small);
 chunk.setTextRise(8);
 Paragraph p = new Paragraph(chunk);
 p.add(new Chunk(new VerticalPositionMark()));
 p.add(new Chunk(String.format(locale, "%1$te", calendar), normal));
 cell.addElement(p);
 return cell;
}

After creating the table, you set the table event to draw the background of the table,
and you make sure the default cells get a rounded rectangle as their border. B
doesn’t apply to the cell with the month C. The getMonthCell() method returns a
PdfPCell object with the name of the month. B also doesn’t apply to the cells created
with getDayCell(). These cells get a white background with rounded corners D. Sun-
days and special days (holidays) get a colored border E.

 There’s a similar mechanism that allows you to write custom functionality for
Chunk, Paragraph, and Chapter and Section objects. The layout methods to achieve
this are bundled in the PdfPageEvent interface.

5.2 Events for basic building blocks
When you add a basic building block to a Document instance, it’s translated into PDF
syntax and written to a PDF file by a PdfWriter object. In this process, there’s an
important class you’ll hardly ever need to address directly: PdfDocument. This class is

Formats
day cells

D

Formats
special day cells

E

Licensed to Bruno Lowagie <bruno@lowagie.com>

134 CHAPTER 5 Table, cell, and page events
responsible for examining the high-level objects. It’s the invisible rope tying the docu-
ment to the writer.

 The PdfDocument class is also responsible for firing the page events defined by the
PdfPageEvent interface. This interface has 11 methods that can be divided into two
groups:

■ Methods that involve basic building blocks—These are similar to the tableLayout()
and cellLayout() methods discussed in the previous section, but instead of
tables, they involve Chunks, Paragraphs, Chapters, and Sections. These meth-
ods will be discussed in this section.

■ Methods that involve the document and its pages—These are called when the docu-
ment is opened or closed, or when a page starts or ends. We’ll discuss these
methods in section 5.4.

The onGenericTag() method is without any doubt the most powerful method in the
first category.

5.2.1 Generic Chunk functionality

When we discussed the Chunk object in section 2.2.1, there was an example (shown in
figure 2.3) where we displayed country codes using a white font on a black back-
ground. This example demonstrated the setBackground() method. Figure 5.5 does
something similar, but instead of a rectangular background, you draw a filmstrip for
the year, and a blue ellipse for the link to the IMDB.

Figure 5.5 Page events for Chunks and Paragraphs
Licensed to Bruno Lowagie <bruno@lowagie.com>

135Events for basic building blocks
There are no standard methods to draw special backgrounds for Chunks, but you can
write your own custom Chunk functionality by implementing the onGenericTag()
method of the PdfPageEvent interface.

class GenericTags extends PdfPageEventHelper {

 public void onGenericTag(
 PdfWriter writer, Document pdfDocument,
 Rectangle rect, String text) {
 if ("strip".equals(text))
 strip(writer.getDirectContent(), rect);
 else if ("ellipse".equals(text))
 ellipse(writer.getDirectContentUnder(), rect);
 else
 countYear(text);
 }

 public void strip(
 PdfContentByte content, Rectangle rect) {
 content.rectangle(
 rect.getLeft() - 1, rect.getBottom() - 5f,
 rect.getWidth(), rect.getHeight() + 8);
 content.rectangle(
 rect.getLeft(), rect.getBottom() - 2,
 rect.getWidth() - 2, rect.getHeight() + 2);
 float y1 = rect.getTop() + 0.5f;
 float y2 = rect.getBottom() - 4;
 for (float f = rect.getLeft();
 f < rect.getRight() - 4; f += 5) {
 content.rectangle(f, y1, 4f, 1.5f);
 content.rectangle(f, y2, 4f, 1.5f);
 }
 content.eoFill();
 }

 public void ellipse(
 PdfContentByte content, Rectangle rect) {
 content.saveState();
 content.setRGBColorFill(0x00, 0x00, 0xFF);
 content.ellipse(
 rect.getLeft() - 3f, rect.getBottom() - 5f,
 rect.getRight() + 3f, rect.getTop() + 3f);
 content.fill();
 content.restoreState();
 }

 TreeMap<String, Integer> years
 = new TreeMap<String, Integer>();
 public void countYear(String text) {
 Integer count = years.get(text);
 if (count == null) {
 years.put(text, 1);
 }
 else {

Listing 5.8 MovieYears.java

PdfPageEventHelper
implements PdfPageEventB

Draws
filmstrip

Draws
ellipse

Tracks years
in TreeMap
Licensed to Bruno Lowagie <bruno@lowagie.com>

136 CHAPTER 5 Table, cell, and page events
 years.put(text, count + 1);
 }
 }
}

Instead of B, you could have written GenericTags implements PdfPageEvent, but
then you’d need to implement all the methods defined in the PdfPageEvent inter-
face. Here you’re only interested in the onGenericTag() method, so it’s easier to
extend the PdfPageEventHelper class. This class contains nothing but empty imple-
mentations of the interface’s methods. In this example, you override one specific
method, and you can safely ignore the other methods.

 The code in listing 5.8 won’t be executed unless you declare the event to a writer.
The onGenericTag() method will never be invoked if you don’t define generic tags
for Chunks.

Document document = new Document();
PdfWriter writer = PdfWriter.getInstance(
 document, new FileOutputStream(filename));
GenericTags event = new GenericTags();
writer.setPageEvent(event);
...
document.open();
...
Paragraph p;
Chunk c;
...
p = new Paragraph(22);
c = new Chunk(String.format("%d ", movie.getYear()), bold);
c.setGenericTag("strip");
p.add(c);
c = new Chunk(movie.getMovieTitle());
c.setGenericTag(String.valueOf(movie.getYear()));
p.add(c);
c = new Chunk(
 String.format(" (%d minutes) ", movie.getDuration()), italic);
p.add(c);
c = new Chunk("IMDB", white);
c.setAnchor("http://www.imdb.com/title/tt" + movie.getImdb());
c.setGenericTag("ellipse");
p.add(c);
document.add(p);
...
document.close();

Before we study the mechanisms used in this code, let’s look at the parameters passed
to the onGenericTag() method:

■ writer—The PdfWriter object to which the event is added.
■ pdfDocument—Not the Document object to which the Paragraph is added. This is

a PdfDocument that is created internally when you create a PdfWriter instance.
Use this object just for read-only purposes!

Listing 5.9 MovieYears.java (continued)

Tracks years
in TreeMap

Creates instance
of event

Declares event
to writer

Sets “strip”
as generic tag

Sets year as
generic tag

Sets “ellipse”
as generic tag
Licensed to Bruno Lowagie <bruno@lowagie.com>

137Events for basic building blocks
■ rect—Rectangle defining the boundaries of the Chunk for which a generic tag
is set.

■ text—The String passed to the Chunk with the setGenericTag() method.

In listing 5.9 you’re tagging the Chunks representing the year with a generic tag named
“strip”. When the content is written to the page, the onGenericTag() method is
invoked. In the page event implementation, the onGenericTag() method looks at the
text, and calls the strip() method to draw a filmstrip over the year.

NOTE If a Chunk is split over multiple lines, the onGenericTag() method will be
invoked as many times as there are lines. Every line will have its own Rectangle.

The same happens for the IMDB links: the text “ellipse” corresponds with the
ellipse() method. You’re using this page event to achieve more or less the same
goals as with table and cell events: to add special shapes. But there’s more.

 In listing 5.8, you’ll also find a countYear() method. This method is invoked
because you’re setting the year as a generic tag for the movie titles. A list of these years
and the number of times each year occurs is kept in the member variable years. Here
is what you can do with this TreeMap.

document.newPage();
writer.setPageEvent(null);
for (Map.Entry entry : event.years.entrySet()) {
 p = new Paragraph(String.format("%s: %d movie(s)",
 entry.getKey(), entry.getValue()));
 document.add(p);
}

You start a new page and remove the page events from the
writer by setting the page events to null. You don’t want any
of the page events to be active, and figure 5.5 shows that
GenericTags wasn’t the only event used in this example—
you also used a Paragraph event to draw extra lines. You
don’t want these lines to appear when you create an over-
view of the years for which you have a film in the database,
along with the number of times each year occurs. This over-
view is shown in figure 5.6.

 Listing 5.9 was far from complete—the lines in figure 5.5
were added using another type of page event. The following
line actually came right after GenericTags was set:

writer.setPageEvent(new ParagraphPositions());

ParagraphPositions is an example of how to create events
for Paragraph objects.

Listing 5.10 MovieYears.java (continued)

Figure 5.6 Counting
movies using the generic
tag functionality
Licensed to Bruno Lowagie <bruno@lowagie.com>

138 CHAPTER 5 Table, cell, and page events
5.2.2 Paragraph events

The ParagraphPositions class creates Paragraph events.

class ParagraphPositions extends PdfPageEventHelper {
 public void onParagraph(
 PdfWriter writer, Document pdfDocument,
 float paragraphPosition) {
 drawLine(writer.getDirectContent(),
 pdfDocument.left(), pdfDocument.right(),
 paragraphPosition - 8);
 }

 public void onParagraphEnd(
 PdfWriter writer, Document pdfDocument,
 float paragraphPosition) {
 drawLine(writer.getDirectContent(),
 pdfDocument.left(), pdfDocument.right(),
 paragraphPosition - 5);
 }

 public void drawLine(PdfContentByte cb,
 float x1, float x2, float y) {
 cb.moveTo(x1, y);
 cb.lineTo(x2, y);
 cb.stroke();
 }
}

There are two page event methods involving paragraphs. The first two parameters of
these methods, writer and pdfDocument, have the same meaning as the onGeneric-
Tag() parameters with the same names. I repeat: use pdfDocument for read-only pur-
poses. In this example, you use pdfDocument to get the values of the left and right
margins of the page. An extra parameter named paragraphPosition gives you access
to a Y coordinate.

 These are the two page event methods:

■ onParagraph()—Called before a Paragraph is rendered. The paragraphPosi-
tion passed to the method is the Y coordinate of the baseline of the first line of
the Paragraph, augmented with its leading.

■ onParagraphEnd()—Called after a Paragraph is rendered. The paragraphPo-
sition is the Y coordinate of the baseline of the last line of the Paragraph.

There are also page events involving Chapter and Section.

5.2.3 Chapter and Section events

You can use Chapter and Section events for the same reasons you use Paragraph
events: to retrieve a Y position and use that coordinate to draw lines or shapes. This is
what’s done in figure 5.7.

Listing 5.11 MovieYears.java (continued)

Called before
Paragraph is
rendered

Called after
Paragraph is
rendered
Licensed to Bruno Lowagie <bruno@lowagie.com>

139Events for basic building blocks
As you know, using Chapter and Section automatically creates an outline tree, visible
in the bookmarks pane of Adobe Reader. In the next example, you’ll use page events
to create a table of contents that can be printed. See figure 5.8.

 Next, you’ll reuse the example from section 2.3.2, but add a page event implemen-
tation for events that are triggered when a Chapter, a Section, or both, starts or ends.

Figure 5.7 Page events for Chapters and Sections

Figure 5.8 Page events for Chapters and Sections: reordering pages
Licensed to Bruno Lowagie <bruno@lowagie.com>

140 CHAPTER 5 Table, cell, and page events
class ChapterSectionTOC extends PdfPageEventHelper {

 List titles = new ArrayList<Paragraph>();

 public void onChapter(
 PdfWriter writer, Document document,
 float position, Paragraph title) {
 titles.add(
 new Paragraph(title.getContent(), FONT[4]));
 }

 public void onChapterEnd(
 PdfWriter writer, Document document, position) {
 drawLine(writer.getDirectContent(),
 document.left(), document.right(), position - 5);
 }

 public void onSection(
 PdfWriter writer, Document document,
 float position, int depth, Paragraph title) {
 title = new Paragraph(title.getContent(), FONT[4]);
 title.setIndentationLeft(18 * depth);
 titles.add(title);
 }

 public void onSectionEnd(
 PdfWriter writer, Document document, float position) {
 drawLine(writer.getDirectContent(),
 document.left(), document.right(), position - 3);
 }

 public void drawLine(PdfContentByte cb,
 float x1, float x2, float y) {
 cb.moveTo(x1, y);
 cb.lineTo(x2, y);
 cb.stroke();
 }
}

The onChapterEnd() and onSectionEnd() methods are very similar to onPara-
graphEnd(). The onChapter() and onSection() methods are similar to onPara-
graph(), but they have extra parameters. The title parameter contains the title
you’ve defined for the Chapter or Section; depth tells you how deep the Section can
be found in the outline tree.

 In this example, you’re adding Paragraphs with the content of the Chapter and
Section titles to a list, and you’re using the depth of the Sections to define an inden-
tation. You can create a table of contents if you add all the Paragraphs in this list to
the Document. You’ll find this table of contents (TOC) on the last pages of the docu-
ment. The TOC entries are stored only after Chapters and Sections are rendered. You
can’t add the TOC up front.

 If you want the document to start with the TOC on the first page, you’ll need to
find a way to reorder the pages before the Document is closed.

Listing 5.12 MovieHistory1.java

Contains list
of titles

Adds Chapter
title to list

Draws line 5 pt
under Chapter

Adds Section title
to list

Draws line 3 pt
under Section
Licensed to Bruno Lowagie <bruno@lowagie.com>

141Events for basic building blocks
5.2.4 Page order and blank pages

Before we look at the code to reorder pages, you have to know that pages in a PDF
document are usually organized in a page tree with different branches and leaves.

LINEAR PAGE MODE

By default, iText creates a balanced tree, because using such a tree optimizes the per-
formance of viewer applications. The simplest page tree structure consists of a single
node that references all of the document’s page objects directly.

 Reordering pages with iText is only possible if you tell PdfWriter to create this
simple structure. To do so, you need to add the following line before opening the
document:

writer.setLinearPageMode();

After opening the document, you add all the content. In this case, the content consists
of a series of chapters.

REORDERING PAGES

Once the content is added, you can reorder the pages.

document.newPage();
int toc = writer.getPageNumber();
for (Paragraph p : event.titles) {
 document.add(p);
}
document.newPage();
int total = writer.reorderPages(null);
int[] order = new int[total];
for (int i = 0; i < total; i++) {
 order[i] = i + toc;
 if (order[i] > total)
 order[i] -= total;
}
writer.reorderPages(order);
document.close();

Let’s examine this code step by step.

You start on a new page, and you store the current page number. That’s where the
table of contents starts before reordering the pages. In this example, the TOC starts on
page 27.

You add the TOC. That’s the list of Paragraphs you’ve created in the page event.

You need to start a new page before you can count the number of pages that need to
be reordered. You obtain this value by calling the reorderPages() method a first time
with null as the parameter. In this example, the total number of pages is 30.

You create an array of int values that will be used to map the new page index to the old
page number. The new page with index 0—the new page 1—will be the old page with
number toc. In this example, the first page will be the old page 27. The TOC consists

Listing 5.13 MovieHistory1.java (continued)

B Gets page number
where TOC starts

C Writes TOC

D Gets total number
of pages

E Creates new
page order

Reorders pagesF

B

C

D

E

Licensed to Bruno Lowagie <bruno@lowagie.com>

142 CHAPTER 5 Table, cell, and page events
of 4 pages. The new page with index 4—that is, page 5—was originally page 1. Creating
the new order is a matter of doing some simple math.

Once this mapping is done, you invoke reorderPages() a second time with the new
order as the parameter.

You could replace the two lines marked with D with the following line:

int total = writer.getPageNumber();

But experience has taught me that this can cause exceptions if the current page is
empty.

 You may wonder if using document.newPage() won’t result in an unnecessary extra
blank page at the end of the document. The answer is no: iText ignores docu-
ment.newPage() if the current page is empty. iText never adds a blank page to a docu-
ment unintentionally.

ADDING A BLANK PAGE

If adding a blank page is a requirement, you have to tell iText explicitly about this.

document.add(new Paragraph(
 "This page will NOT be followed by a blank page!"));
document.newPage();
document.newPage();
document.add(new Paragraph(
 "This page will be followed by a blank page!"));
document.newPage();
writer.setPageEmpty(false);
document.newPage();
document.add(
 new Paragraph("The previous page was a blank page!"));

In B, you add a Paragraph to page 1.
 With document.newPage() C, you go to page 2, but you don’t add anything to

this page: you immediately ask for another new page. Since nothing was added to
page 2, D will be ignored: the second Paragraph E will be added on page 2.

 Page 2 is no longer empty, so F will take you to page 3. You don’t add any content
to page 3, but with G you tell iText that the current page should not be treated as an
empty page.

 H takes you to page 4, and that’s where the third Paragraph I will be added.
 The example about creating a TOC using Chapter and Section events led us some-

what astray and resulted in a discussion about pages. We’ll talk about the second cate-
gory of page events in section 5.4, but first we’ll take a closer look at the boundaries of
a page.

5.3 Overview of the page boundaries
Up until now, you’ve defined the page size using a Rectangle as the value of one of the
five different page boundaries that can exist for a page in a PDF document. You’ll learn

Listing 5.14 NewPage.java

F

B

C
D

E

F
G

H
I

Licensed to Bruno Lowagie <bruno@lowagie.com>

143Overview of the page boundaries
more about these boundaries in this section, and you’ll work through an example that
demonstrates the difference between the two most important page boundaries.

 Suppose that I wanted to avoid being accused of false modesty. I could try to print
a poster measuring one square meter, featuring myself in a Superman outfit. Seri-
ously! The famous commercial artist Dick Kline once made such a drawing. It was sent
to me as a gift by Bill Segraves, a long-time iText user.

 The drawing isn’t a raster image. It consists of a sequence of Bézier curves that I’ve
copied into a text file named hero.txt. To do this, you’d create a PdfTemplate from
such a text file.

public PdfTemplate createTemplate(PdfContentByte content, Rectangle rect,
 int factor) throws IOException {
 PdfTemplate template = content.createTemplate(
 rect.getWidth(), rect.getHeight());
 template.concatCTM(factor, 0, 0, factor, 0, 0);
 FileReader reader = new FileReader(RESOURCE);
 int c;
 while ((c = reader.read()) > -1) {
 template.setLiteral((char)c);
 }
 return template;
}

As you can see, you can write literal PDF syntax to the direct content using the setLit-
eral() method. It accepts a char, a float, or a String value.

WARNING Incorrect use of this method can result in seriously damaged PDF
files. Please don’t use it before you’ve read chapter 14. In the next chapter, we’ll
return to this example and find a much better way to reuse existing content.

The original drawing is intended to be added on an A4 page, but I want to put it on an
A0 document, so I have to scale it with a factor 4 (see ISO-216). I could create a Docu-
ment with PageSize.A0 like this:

Document document = new Document(PageSize.A0);

This line defines the media box of the first page in the document.

5.3.1 The media box

So far, you’ve been creating documents with only one type of boundary: the media box.

The media box defines the boundaries of the physical medium on which the page is to be
printed. It may include any extended area surrounding the finished page for bleed,
printing marks, or other such purposes. It may also include areas close to the edges of the
medium that cannot be marked because of physical limitations of the output device.
Content falling outside this boundary may safely be discarded without affecting the
meaning of the PDF file.

—ISO-32000-1:2008, section 14.1.2

Listing 5.15 Hero1.java
Licensed to Bruno Lowagie <bruno@lowagie.com>

144 CHAPTER 5 Table, cell, and page events
The A0 rectangle used in the code line at the end of the previous section is defined
like this:

public static final Rectangle A0 = new RectangleReadOnly(2384,3370);

This corresponds to a physical medium measuring 2384 pt x 3370 pt (or 84.10 cm
x 118.89 cm, or 33.11 in x 46.81 in).

NOTE The values 2384 and 3370 in this constructor match the width and
height of the page, but they really form the coordinates of the upper-right
corner of a rectangle. The values for the coordinate of the lower-left corner
are omitted because they are zero: the lower-left coordinates are (0,0).

When you learned how to add lines, shapes, and text at absolute positions in chap-
ter 3, you assumed that the origin of the coordinate system coincided with the lower-
left corner of the page. This assumption is correct as long as the media box is
defined with (0,0) as the coordinate for its lower-left corner, but that’s not manda-
tory. It’s perfectly OK for an application to create a media box with a different ori-
gin. It might be interesting to have the origin of the coordinate system in the upper-
left corner of the page. Or you could place the origin in the middle of a page, so
that you can distinguish four quadrants for your drawing operations. That’s what I
did when I created my Superman poster in PDF.

Figure 5.9 A PDF with a different origin
Licensed to Bruno Lowagie <bruno@lowagie.com>

145Overview of the page boundaries
The cross that is drawn in figure 5.9 (close to my navel) marks the origin of the coor-
dinate system.

Rectangle rect = new Rectangle(-1192, -1685, 1192, 1685);
Document document = new Document(rect);
PdfWriter writer =
 PdfWriter.getInstance(document, new FileOutputStream(filename));
document.open();

PdfContentByte content = writer.getDirectContent();
PdfTemplate template = createTemplate(content, rect, 4);
content.addTemplate(template, -1195, -1685);
content.moveTo(-595, 0);
content.lineTo(595, 0);
content.moveTo(0, -842);
content.lineTo(0, 842);
content.stroke();

document.close();

If you look at all the PDFs that can be found in the wild, you’ll discover that the lower-
left corner is the origin of the coordinate system for most PDF documents. This exam-
ple proves that you shouldn’t assume that this is true for every possible PDF. Knowing
this will be important when you start manipulating existing PDFs in the next chapter.
When you add content at an absolute position, you’ll need to take the (x,y) value of
the origin into account if it’s different from (0,0). Otherwise, you risk adding content
in the wrong place, maybe even outside the visible area of the page.

 You also have to make sure not to add anything outside the crop box of the page.

5.3.2 The crop box

The crop box is another type of boundary that can be defined as a rectangle that dif-
fers from the media box.

The crop box defines the region to which the contents of the page shall be clipped
(cropped) when displayed or printed. Unlike the other boxes, the crop box has no defined
meaning in terms of physical page geometry or intended use; it merely imposes clipping
on the page contents. However, in the absence of additional information ..., the crop box
determines how the page’s contents shall be positioned on the output medium. The
default value is the page’s media box.

—ISO-32000-1:2008, section 14.1.2

Suppose I want to print my A0 Superman poster, but I have a printer that is only able
to print A4 pages. As defined in ISO-216, an A4 page can be obtained by folding an A0
page 4 times. My printing problem could be solved if I manage to split the single page
shown in figure 5.9 into 16 smaller pages. See figure 5.10 for the result.

 Now I can print the A0 as 16 separate pages, and I can start gluing them together
into one large page. To achieve this, I’ll specify a media box with size A0, but I’ll use
the setCropBox() method to define a crop box with size A4.

Listing 5.16 Hero1.java (continued)

Specifies page size
with negative origin

Adds template with
negative offset

Draws line from
negative to positive X

Draws line from
negative to position Y
Licensed to Bruno Lowagie <bruno@lowagie.com>

146 CHAPTER 5 Table, cell, and page events
float w = PageSize.A4.getWidth();
float h = PageSize.A4.getHeight();
Rectangle rect = new Rectangle(-2*w, -2*h, 2*w, 2*h);
Rectangle crop = new Rectangle(-2*w, h, -w, 2*h);
Document document = new Document(rect);
PdfWriter writer =
 PdfWriter.getInstance(document, new FileOutputStream(filename));
writer.setCropBoxSize(crop);
document.open();
PdfContentByte content = writer.getDirectContent();
PdfTemplate template = createTemplate(content, rect, 4);
float adjust;
while(true) {
 content.addTemplate(template, -2*w, -2*h);
 adjust = crop.getRight() + w;
 if (adjust > 2 * w) {
 adjust = crop.getBottom() - h;
 if (adjust < - 2 * h)
 break;
 crop = new Rectangle(
 -2*w, adjust, -w, crop.getBottom());
 }
 else {
 crop = new Rectangle(
 crop.getRight(), crop.getBottom(),
 adjust, crop.getTop());
 }
 writer.setCropBoxSize(crop);
 document.newPage();
}
document.close();

Listing 5.17 Hero2.java

Figure 5.10 An A0
sized page divided
into 16 A4 pages

Defines
MediaBox size

B

Defines
CropBox sizeC

Sets
CropBox sizeD

E Adds
template

F Defines new
CropBox size

G Sets new
CropBox size
Licensed to Bruno Lowagie <bruno@lowagie.com>

147Overview of the page boundaries
This code snippet crops the large image into smaller parts, sixteen times in a row. First
I create a Rectangle that is about the size of an A0 page B. I’ll use this object as the
media box. Note that this line defines an origin with a negative X and Y, just like in the
previous example. Then I create a page that’s the size of an A4 page C. Compared to
the Rectangle defined in B, it’s positioned in the top-left corner of the media box.
I’ll use this second rectangle as the crop box D.

 Next, I add the Superman template multiple times to the document in a loop E.
Because of the crop box, the first page will be blank. The visible area on the A0 poster
is cropped to the size of an A4 page in the upper-left corner. For the next pages, I
redefine the crop box F. I continue with the next A4 rectangle that fits inside the A0
page to the right of the previous page. If that’s not possible, I start with the first A4
rectangle on the next row. As long as I can create valid A4 pages, I use these rectangles
to set a new crop box value that will be valid for the next page G.

 The result will be a PDF document with 16 pages, each page clipped to an A4 that
reveals part of the complete A0 poster.

 But suppose that I don’t want to print the poster myself. Instead I want to send the
PDF to a graphical designer, asking them to add a nice caption, some publicity for this
book, and so on. However, I don’t want the image altered or overwritten, so I need to
define a region that is preserved for the Superman drawing. I could use an art box to
pass this information to a third party. That’s one of the three remaining page bound-
aries discussed in the next section.

5.3.3 Other page boundaries

You can set the media box in the Document constructor, or with the setPageSize()
method. You can define a crop box with the setCropBox() method, but there’s also a
setBoxSize(String boxName, Rectangle size) method that’s more generic. Allowed
names for boxName are crop, bleed, trim, and art.

The bleed box defines the region to which the contents of the page shall be clipped when
output in a production environment. This may include any extra bleed area needed to
accommodate the physical limitations of cutting, folding, and trimming equipment. The
actual printed page may include printing marks that fall outside the bleed box. The
default value is the page’s crop box.

The trim box defines the intended dimensions of the finished page after trimming. It
may be smaller than the media box to allow for production-related content, such as
printing instructions, cut marks, or color bars. The default value is the page’s crop box.

The art box defines the extent of the page’s meaningful content (including potential
white space) as intended by the page’s creator. The default value is the page’s crop box.

—ISO-32000-1:2008, section 14.1.2

Note that the crop, bleed, trim, and art boxes shouldn’t extend beyond the boundar-
ies of the media box. If they do, they are reduced to their intersection with the media
box.
Licensed to Bruno Lowagie <bruno@lowagie.com>

148 CHAPTER 5 Table, cell, and page events
 These values are important primarily for the PDF consumer. Setting these boundar-
ies doesn’t have any effect on the way iText creates the document. For instance, set-
ting the art box doesn’t affect the page margins.

Document document = new Document(PageSize.A4);
PdfWriter writer =
 PdfWriter.getInstance(document, new FileOutputStream(filename));
Rectangle art = new Rectangle(50, 50, 545, 792);
writer.setBoxSize("art", art);
document.open();
PdfContentByte content = writer.getDirectContent();
PdfTemplate template = createTemplate(content, PageSize.A4, 1);
content.addTemplate(template, 0, 0);
document.close();

In the first example of the next section, you’ll use the art box to retrieve information
that can be used to add a header and footer.

5.4 Adding page events to PdfWriter
After the intermezzo about page boundaries, containing some self-glorifying exam-
ples, it’s time to return to the real topic of this chapter: page events. We have already
discussed seven methods of the PdfPageEvent interface; four more methods involving
the document and its pages remain:

■ onOpenDocument()—Triggered when a document is opened. This is a good
place to initialize variables that will be needed throughout the document.

■ onStartPage()—Triggered when a new page is started. Use this method for ini-
tializing variables or for setting parameters that are page-specific. Do not use
this method to add content.

■ onEndPage()—Triggered just before starting a new page and before closing the
document. This is the best place to add a header, a footer, a watermark, and so on.

■ onCloseDocument()—Triggered just before the document is closed. This is the
ideal place for any finalizations and to release resources (if necessary).

Let’s use these methods to solve common issues that are often mentioned in mailing-
list questions. For instance, how can you add a page header while creating a PDF
document.

5.4.1 Adding a header and a footer

Let’s return to the Chapter and Section example from section 2.3.2. You’ll make two
small changes: you’ll define an art box, and you’ll add an event to the writer. This
event, an instance of the HeaderFooter class, will add a header and a footer to the
document as shown in figure 5.11.

 First, take a look at the footer: you want to add page numbers that start with “page 1”
every time a new chapter begins. The text should be put under the actual content of the

Listing 5.18 Hero3.java
Licensed to Bruno Lowagie <bruno@lowagie.com>

149Adding page events to PdfWriter
page, as a centered String. As for the header, you want it to alternate between the chap-
ter title aligned to the left, and the String “Movie history” aligned to the right. The fol-
lowing implementation of the PdfPageEvent interface meets these requirements.

class HeaderFooter extends PdfPageEventHelper {

 Phrase[] header = new Phrase[2];
 int pagenumber;

 public void onOpenDocument(PdfWriter writer, Document document) {
 header[0] = new Phrase("Movie history");
 }

 public void onChapter(PdfWriter writer, Document document,
 float paragraphPosition, Paragraph title) {
 header[1] = new Phrase(title.getContent());
 pagenumber = 1;
 }

 public void onStartPage(PdfWriter writer, Document document) {
 pagenumber++;
 }

 public void onEndPage(PdfWriter writer, Document document) {
 Rectangle rect = writer.getBoxSize("art");
 switch(writer.getPageNumber() % 2) {
 case 0:
 ColumnText.showTextAligned(writer.getDirectContent(),
 Element.ALIGN_RIGHT, header[0],
 rect.getRight(), rect.getTop(), 0);
 break;
 case 1:

Listing 5.19 MovieHistory2.java

Figure 5.11 Adding headers and footers using page events

Adds header
for even pages
Licensed to Bruno Lowagie <bruno@lowagie.com>

150 CHAPTER 5 Table, cell, and page events
 ColumnText.showTextAligned(writer.getDirectContent(),
 Element.ALIGN_LEFT, header[1],
 rect.getLeft(), rect.getTop(), 0);
 break;
 }
 ColumnText.showTextAligned(writer.getDirectContent(),
 Element.ALIGN_CENTER, new Phrase(
 String.format("page %d", pagenumber)),
 (rect.getLeft() + rect.getRight()) / 2,
 rect.getBottom() - 18, 0);
 }
}

There are no surprises in this code sample. You define two member variables:

■ header—An array with two Phrase objects. One is set in onOpenDocument(), and
it’s valid for the full document. The other varies depending on the current
chapter. It’s set in the onChapter() method.

■ pagenumber—A custom page number that is reset to 1 every time a new chapter
starts. It’s augmented in the onStartPage() method.

No content is added in the page event until a page has been completed. The header
and footer are written to the direct content in the onEndPage() method. The parame-
ters writer and document are to be used in the same way as done in section 5.2.

 Note that you ask the writer for the art box rectangle using the getBoxSize()
method. You use this rectangle to position the header and the footer. This will only
work if you’ve defined that specific page boundary between steps 2 and 3 in the PDF
creation process. Otherwise, the getBoxSize() method will return null.

FAQ Why is it not advised to add content in the onStartPage() method? You’ll
remember from section 5.2.4 that iText ignores newPage() calls when the cur-
rent page is empty. This method is executed—or ignored—when you call it
explicitly from your code, but it’s also invoked implicitly from within iText on
multiple occasions. It’s important that it’s ignored for empty pages; otherwise
you’d end up with plenty of unwanted new pages that are unintentionally left
blank. If you add content in an onStartPage() method, there’s always a risk
of having unwanted pages. Consider it more safe to reserve the onEndPage()
method for adding content.

In the next example, you’ll put the page number in the header, and you’ll add the
total number of pages.

5.4.2 Solving the “page X of Y” problem

An example of a “page X of Y” header is shown in figure 5.12.
 Retrieving the value of X is easy. You have access to the PdfWriter object in the

onEndPage() method, so you can get the page number with getPageNumber(). But
how can you retrieve the value for Y? There’s no way of knowing the total number of
pages when the headers for the first pages are written. You only know the value of Y
for sure when iText has finished writing the last page.

Adds header
for odd pages

Adds footer with
page number
Licensed to Bruno Lowagie <bruno@lowagie.com>

151Adding page events to PdfWriter
There are two ways to solve this problem. One solution will be discussed in the next
chapter. It involves creating the PDF in two passes. You add the content in the first pass
and the header or footer in a second pass. The other solution involves a PdfTemplate
object and page events.

 When we discussed form XObjects in section 3.4.2, I explained that iText only
writes a PdfTemplate to the OutputStream when you explicitly use the releaseTem-
plate() method. Otherwise the object is kept in memory until you close the Docu-
ment. This opens possibilities: you can add a template to page 1, and wait until the
final page to write content to this template. Even if the content stream of the first page
has already been sent to the OutputStream, the content added to the template after-
wards will still be shown on the first page.

class TableHeader extends PdfPageEventHelper {
 String header;
 PdfTemplate total;

 public void setHeader(String header) {
 this.header = header;
 }

 public void onOpenDocument(PdfWriter writer, Document document) {
 total = writer.getDirectContent().createTemplate(30, 16);
 }

 public void onEndPage(PdfWriter writer, Document document) {
 PdfPTable table = new PdfPTable(3);
 try {
 table.setWidths(new int[]{24, 24, 2});
 table.setTotalWidth(527);
 table.setLockedWidth(true);
 table.getDefaultCell().setFixedHeight(20);
 table.getDefaultCell().setBorder(Rectangle.BOTTOM);

Listing 5.20 MovieCountries1.java

Figure 5.12 Solving the page X of Y problem with page events

Creates empty
template

B

Licensed to Bruno Lowagie <bruno@lowagie.com>

152 CHAPTER 5 Table, cell, and page events
 table.addCell(header);
 table.getDefaultCell().setHorizontalAlignment(
 Element.ALIGN_RIGHT);
 table.addCell(
 String.format("Page %d of", writer.getPageNumber()));
 PdfPCell cell = new PdfPCell(Image.getInstance(total));
 cell.setBorder(Rectangle.BOTTOM);
 table.addCell(cell);
 table.writeSelectedRows(0, -1,
 34, 803, writer.getDirectContent());
 }
 catch(DocumentException de) {
 throw new ExceptionConverter(de);
 }
 }

 public void onCloseDocument(PdfWriter writer, Document document) {
 ColumnText.showTextAligned(total, Element.ALIGN_LEFT,
 new Phrase(String.valueOf(writer.getPageNumber() - 1)), 2, 2, 0);
 }
}

When the document is opened, you create a template with a size of 30 pt x 16 pt B.
This time, you use a table with one row and three columns to draw the header. In the
first cell, you add the text for the header. In this example, you’re listing movies by
country, so you’ll let the header reflect the name of the country. This name is set using
the setHeader() setter method.

 In the second cell, you add “page X of” where X is the value returned by writer.get-
PageNumber(). The third cell is special: you add the template created in the onOpen-
Document() method, wrapped in an Image C. No content has been added to this
template yet—it’s just an empty canvas. It isn’t until the onCloseDocument() method is
invoked that you add the page number of the final page to this small canvas D.

NOTE When the document is closed, the newPage() method is triggered to
perform finalizations on the current page. When newPage() is called, the page
number is augmented, so you need to use (writer.getPageNumber() - 1) if
you want to add the total number of pages in the onCloseDocument() method.

In the previous example, you added a header and footer with the showTextAligned()
method. This example demonstrates that it’s sometimes more interesting to use
PdfPTable and writeSelectedRows(). You can define a bottom border for each cell
so that the header is underlined. This is the most elegant way to add headers and
footers, because the table mechanism allows you to position and align lines, images,
and text.

 Another common requirement when creating documents is to add a watermark.

5.4.3 Adding a watermark

The next example extends the previous one. The main difference is one extra feature,
demonstrated in figure 5.13: we’ve added a watermark.

Adds empty template
wrapped in Image C

Fills out template D
Licensed to Bruno Lowagie <bruno@lowagie.com>

153Adding page events to PdfWriter
The code to create this document is almost identical to the code used in the previous
example. You only need to add one extra page event, the Watermark class.

class Watermark extends PdfPageEventHelper {
 Font FONT =
 new Font(FontFamily.HELVETICA, 52, Font.BOLD, new GrayColor(0.75f));
 public void onEndPage(PdfWriter writer, Document document) {
 ColumnText.showTextAligned(writer.getDirectContentUnder(),
 Element.ALIGN_CENTER, new Phrase("FOOBAR FILM FESTIVAL", FONT),
 297.5f, 421, writer.getPageNumber() % 2 == 1 ? 45 : -45);
 }
}

If your watermark is an image, you have options: you can add it with the PdfContent-
Byte.addImage() method, or you can wrap it in a ColumnText object, or you can put it
inside a cell in a table.

NOTE If you add an Image in a page event, be sure you create the Image
object only once, such as in the event’s constructor or in the onOpenDocu-
ment() method. If you create the Image object in onStartPage() or onEnd-
Page(), your PDF will become bloated: you risk adding the same byte
sequence over and over again. This will cost you not only in performance, but
also in file size.

We’ll conclude this chapter with one more example, introducing functionality that
creates a document that can be displayed as a presentation, similar to a PowerPoint
presentation.

Listing 5.21 MovieCountries2.java

Figure 5.13 Adding
a watermark using
page events
Licensed to Bruno Lowagie <bruno@lowagie.com>

154 CHAPTER 5 Table, cell, and page events
5.4.4 Creating a slideshow

When you read a PDF document on screen, you usually hit a key, click a button, or use
a scrollbar to go to the next page. But you can also let the viewer go to the next page
automatically after a number of seconds, define a transition, or both.

 In the example, you’ll set the viewer preferences to “Full Screen” mode B,
because you want to use the PDF as a presentation.

class TransitionDuration extends PdfPageEventHelper {
 public void onStartPage(PdfWriter writer, Document document) {
 writer.setTransition(new PdfTransition(PdfTransition.DISSOLVE, 3));
 writer.setDuration(5);
 }
}
public void createPdf(String filename)
 throws IOException, DocumentException, SQLException {
 DatabaseConnection connection = new HsqldbConnection("filmfestival");
 Document document = new Document(PageSize.A5.rotate());
 PdfWriter writer =
 PdfWriter.getInstance(document, new FileOutputStream(filename));
 writer.setPdfVersion(PdfWriter.VERSION_1_5);
 writer.setViewerPreferences(PdfWriter.PageModeFullScreen);
 writer.setPageEvent(new TransitionDuration());
 document.open();
 List movies = PojoFactory.getMovies(connection);
 Image img;
 PdfPCell cell;
 PdfPTable table = new PdfPTable(6);
 for (Movie movie : movies) {
 img = Image.getInstance(String.format(RESOURCE, movie.getImdb()));
 cell = new PdfPCell(img, true);
 cell.setBorder(PdfPCell.NO_BORDER);
 table.addCell(cell);
 }
 document.add(table);
 document.close();
 connection.close();
}

 There are two new special methods in onStartPage():

■ setDuration()—This method’s parameter defines for how many seconds the
page is shown. If no duration is defined, user input is expected to go to the next
page.

■ setTransition()—This method expects a Transition object. The main
constructor of this class takes two parameters: a transition type and a value for
the duration of the transition. Don’t confuse this with the value for the page
duration.

There are different groups of transition types:

Listing 5.22 MovieSlideShow.java

Sets duration
for new page Sets transition

for new page

Sets
event

Changes page mode
to Full Screen B
Licensed to Bruno Lowagie <bruno@lowagie.com>

155Summary
■ Dissolve—The old page gradually dissolves to reveal a new one (DISSOLVE).
■ Glitter—Similar to dissolve, except that the effect sweeps across the page in a

wide band: diagonally (DGLITTER), from top to bottom (TBGLITTER), or from
left to right (LRGLITTER).

■ Box—A rectangular box sweeps inward from the edges (INBOX) or outward
from the center (OUTBOX).

■ Split—The lines sweep across the screen horizontally or vertically, depending
on the value that was passed: SPLITHIN, SPLITHOUT, SPLITVIN, or SPLITVOUT.

■ Blinds—Multiple lines, evenly spaced across the screen, sweep in the same
direction to reveal the new page horizontally (BLINDH) or vertically (BLINDV).

■ Wipe—A single line sweeps across the screen from one edge to the other: from
top to bottom (TWIPE), from bottom to top (BWIPE), from right to left (RLWIPE),
or from left to right (LRWIPE).

If you don’t specify a type, BLINDH is used. The default duration of a transition is 1 sec-
ond. This is a nice example showing how onStartPage() can be used to set page
parameters, because you need to set the transition and duration for every page.

 With this example, we’ve covered all the methods of the PdfPageEvent interface.
It’s high time for a short summary of this chapter, and of part 1 as a whole.

5.5 Summary
After a short introduction to what you can do with PDF, we started with the basic
mechanics of iText’s PDF creation process. You created several “Hello World” examples
that demonstrated the famous “five steps” that were used in every example of part 1.

 Two chapters dealt with building blocks offered by iText, allowing you to create
PDF documents using high-level concepts. In chapter 2, you learned about Chunks,
Phrases, Paragraphs, Lists, ListItems, Anchors, Images, Chapters, and Sections.
Chapter 4 was dedicated entirely to the PdfPTable and PdfPCell objects.

 Chapter 3 explained how to add content at a lower level: you added lines, shapes,
and text to different direct content layers. You also discovered two other important
objects: using the ColumnText object, you added high-level objects at absolute posi-
tions; with PdfTemplate you learned how to reuse content as an XObject.

 You’ve made good use of that knowledge in this chapter. First you found a way to
extend the functionality of PdfPTable and PdfPCell using table and cell events. Then
you learned how to use the PdfPageEvent interface. Initially you added custom fea-
tures to Chunk, Paragraph, Chapter, and Section objects. After an intermezzo about
pagination, involving reordering pages, adding blank pages, and defining page
boundaries, you used a second series of page events to solve a number of common
issues: adding headers and footers, adding “page X of Y” to every page, adding water-
marks, and even defining a duration and a transition for each page.

 Now that you’ve finished part 1, you’re ready to start writing a prototype applica-
tion that creates PDF documents from scratch. If you need to integrate this prototype
Licensed to Bruno Lowagie <bruno@lowagie.com>

156 CHAPTER 5 Table, cell, and page events
into a web application, you’ll have to read further in part 3. That’s where you’ll learn
how to generate a PDF document using Java servlet technology. Also, when you want to
make your application production-ready, you’ll probably want to know more about
using special fonts, about protecting your documents, and so on. Part 3 will teach you
these essential iText skills.

 But first, we’ll take a look at another aspect of iText programming. In part 2, you’ll
learn how to manipulate existing PDF documents: how to import pages from one PDF
document into another, how to stamp content on an existing PDF document, how to
split one PDF into smaller PDFs, how to combine different PDFs into one large docu-
ment, and so on. You’ll also learn how to fill out interactive forms using iText.
Licensed to Bruno Lowagie <bruno@lowagie.com>

Part 2

Manipulating
 existing PDF documents

Part 2 deals with existing PDF files, be they documents created with iText as
discussed in part 1, or PDFs created with Adobe Acrobat, Open Office, or any
other PDF producer. You’ll learn different ways to copy, stamp, split, and merge
documents. You’ll add actions and JavaScript, and you’ll learn all about filling
out interactive forms.

Licensed to Bruno Lowagie <bruno@lowagie.com>

Licensed to Bruno Lowagie <bruno@lowagie.com>

Working
 with existing PDFs
When I wrote the first book about iText, the publisher didn’t like the subtitle “Cre-
ating and Manipulating PDF.” He didn’t like the word manipulating because of some
of its pejorative meanings. If you consult the dictionary on Yahoo! education, you’ll
find the following definitions:

■ To influence or manage shrewdly or deviously
■ To tamper with or falsify for personal gain

Obviously, that’s not what the book is about. The publisher suggested “Creating
and Editing PDF” as a better subtitle. I explained that PDF isn’t a document format
well suited for editing. PDF is an end product. It’s a display format. It’s not a word pro-
cessing format.

This chapter covers
■ Importing pages from existing PDF documents
■ Adding content to existing PDF documents and

filling forms
■ Copying pages from existing PDF documents
159

Licensed to Bruno Lowagie <bruno@lowagie.com>

160 CHAPTER 6 Working with existing PDFs
 In a word processing format, the content is distributed over different pages when
you open the document in an application, not earlier. This has some disadvantages: if
you open the same document in different applications, you can end up with a differ-
ent page count. The same text snippet can be on page X when looked at in Microsoft
Word, and on page Y when viewed in Open Office. That’s exactly the kind of problem
you want to avoid by choosing PDF.

 In a PDF document, every character or glyph on a PDF page has its fixed position,
regardless of the application that’s used to view the document. This is an advantage,
but it also comes with a disadvantage. Suppose you want to replace the word “edit”
with the word “manipulate” in a sentence, you’d have to reflow the text. You’d have to
reposition all the characters that follow that word. Maybe you’d even have to move a
portion of the text to the next page. That’s not trivial, if not impossible.

 If you want to “edit” a PDF, it’s advised that you change the original source of the
document and remake the PDF. If the original document was written using Microsoft
Word, change the Word document, and make the PDF from the new version of the
Word document. Don’t expect any tool to be able to edit a PDF file the same way you’d
edit a Word document.

 This being said, the verb “to manipulate” also means

■ To move, arrange, operate, or control by the hands or by mechanical means,
especially in a skillful manner

That’s exactly what you’re going to do in this chapter. Using iText, you’re going to
manipulate the pages of a PDF file in a skillful manner. You’re going to treat a PDF
document as if it were made of digital paper.

 But before you can take copies of pages or add new content, you’ll need an object
that can “read” an existing PDF document.

6.1 Accessing an existing PDF with PdfReader
First, we’ll look at how you can retrieve information about the document you’re going
to manipulate. For instance, how many pages does the original document have?
Which page size is used? All of this is done with a PdfReader object.

6.1.1 Retrieving information about the document and its pages

In this first example, we’ll inspect some of the PDF documents you created in part 1.
You can query a PdfReader instance to get the number of pages in the document, the
rectangle defining the media box, the rotation of the page, and so on.

public static void inspect(PrintWriter writer, String filename)
 throws IOException {
 PdfReader reader = new PdfReader(filename);
 writer.println(filename);
 writer.print("Number of pages: ");
 writer.println(reader.getNumberOfPages());

Listing 6.1 PageInformation.java
Licensed to Bruno Lowagie <bruno@lowagie.com>

161Accessing an existing PDF with PdfReader
 Rectangle mediabox = reader.getPageSize(1);
 writer.print("Size of page 1: [");
 writer.print(mediabox.getLeft());
 writer.print(',');
 writer.print(mediabox.getBottom());
 writer.print(',');
 writer.print(mediabox.getRight());
 writer.print(',');
 writer.print(mediabox.getTop());
 writer.println("]");
 writer.print("Rotation of page 1: ");
 writer.println(reader.getPageRotation(1));
 writer.print("Page size with rotation of page 1: ");
 writer.println(reader.getPageSizeWithRotation(1));
 writer.print("File length: ");
 writer.println(reader.getFileLength());
 writer.print("Is rebuilt? ");
 writer.println(reader.isRebuilt());
 writer.print("Is encrypted? ");
 writer.println(reader.isEncrypted());
 writer.println();
 writer.flush();
}

The following output was obtained while inspecting some of the PDFs from chap-
ters 1 B and C, 3 D, and 5 E.

results/part1/chapter01/hello_landscape1.pdf
Number of pages: 1
Size of page 1: [0.0,0.0,612.0,792.0]
Rotation of page 1: 90
Page size with rotation of page 1:
 Rectangle: 792.0x612.0 (rot: 90 degrees)
Is rebuilt? false
Is encrypted? false

results/part1/chapter01/hello_landscape2.pdf
Number of pages: 1
Size of page 1: [0.0,0.0,792.0,612.0]
Rotation of page 1: 0
Page size with rotation of page 1:
 Rectangle: 792.0x612.0 (rot: 0 degrees)
Is rebuilt? false
Is encrypted? false

results/part1/chapter03/movie_templates.pdf
Number of pages: 8
Size of page 1: [0.0,0.0,595.0,842.0]
Rotation of page 1: 90
Page size with rotation of page 1:
 Rectangle: 842.0x595.0 (rot: 90 degrees)
Is rebuilt? false
Is encrypted? false

results/part1/chapter05/hero1.pdf
Number of pages: 1

Output from PDF
in chapter 1

Output from PDF
in chapter 1

Output from PDF
in chapter 3

Output from PDF
in chapter 5
Licensed to Bruno Lowagie <bruno@lowagie.com>

162 CHAPTER 6 Working with existing PDFs
Size of page 1: [-1192.0,-1685.0,1192.0,1685.0]
Rotation of page 1: 0
Page size with rotation of page 1:
 Rectangle: 2384.0x3370.0 (rot: 0 degrees)
Is rebuilt? false
Is encrypted? false

The most important PdfReader methods you’ll use in this chapter are getNumberOf-
Pages() and getPageSizeWithRotation(). The former method will be used to loop
over all the pages of the existing document; the latter is a combination of the methods
getPageSize() and getPageRotation().

PAGE SIZE

The first two examples show the difference between creating a document with land-
scape orientation using

Document document = new Document(PageSize.LETTER.rotate());

and a document created using

Document document = new Document(new Rectangle(792, 612));

This difference will matter when you import a page or when you stamp extra content
on the page. Observe that in example E of the earlier output, the coordinates of the
lower-left corner are different from (0,0) because that’s how I defined the media box
in section 5.3.1.

BROKEN PDFS

When you open a corrupt PDF file in Adobe Reader, you can expect the message,
“There was an error opening this document. The file is damaged and could not be
repaired.” PdfReader will also throw an exception when you try to read such a file. You
can get an InvalidPdfException with the following message: “Rebuild failed: trailer
not found; original message: PDF startxref not found.” If that happens, iText can’t do
anything about it: the file is damaged, and it can’t be repaired. You’ll have to contact
the person who created the document, and ask him or her to create a version of the
document that’s a valid PDF file.

 In other cases, for example if a rogue application added unwanted carriage return
characters, Adobe Reader will open the document and either ignore the fact that the
PDF isn’t syntactically correct, or will show the warning “The file is damaged but is
being repaired” very briefly. PdfReader can also overcome small damages like this. No
alert box is shown, because iText isn’t necessarily used in an environment with a GUI.
You can use the method isRebuilt() to check whether or not a PDF needed repairing.

 You may also have difficulties trying to read encrypted PDF files.

ENCRYPTED PDFS

PDF files can be protected by two passwords: a user password and an owner password.
If a PDF is protected with a user password, you’ll have to enter this password before
you can open the document in Adobe Reader. If a document has an owner password,
you must provide the password along with the constructor when creating a PdfReader

Output from PDF
in chapter 5
Licensed to Bruno Lowagie <bruno@lowagie.com>

163Accessing an existing PDF with PdfReader
instance, or a BadPasswordException will be thrown. More details about the different
ways you can encrypt a PDF document, and about the different permissions you can
set, will follow in chapter 12.

6.1.2 Reducing the memory use of PdfReader

In most of this book’s examples, you’ll create an instance of PdfReader using a String
representing the path to the existing PDF file. Using this constructor will cause
PdfReader to load plenty of PDF objects (from the file) into Java objects (in memory).
This can be overkill for large documents, especially if you’re only interested in part of
the document. If that’s the case, you can choose to read the PDF only partially.

PARTIAL READS

Suppose you have a document with 1000 pages. PdfReader will do a full read of these
pages, even if you’re only interested in page 1. You can avoid this by using another
constructor. You can compare the memory used by different PdfReader instances cre-
ated to read the timetable PDF from chapter 3:

public static void main(String[] args) throws IOException {
 MovieTemplates.main(args);
 PrintWriter writer = new PrintWriter(new FileOutputStream(RESULT));
 fullRead(writer, MovieTemplates.RESULT);
 partialRead(writer, MovieTemplates.RESULT);
 writer.close();
}
public static void fullRead(PrintWriter writer, String filename)
 throws IOException {
 long before = getMemoryUse();
 PdfReader reader = new PdfReader(filename);
 reader.getNumberOfPages();
 writer.println(String.format("Memory used by full read: %d",
 getMemoryUse() - before));
 writer.flush();
}
public static void partialRead(PrintWriter writer, String filename)
 throws IOException {
 long before = getMemoryUse();
 PdfReader reader = new PdfReader(
 new RandomAccessFileOrArray(filename), null);
 reader.getNumberOfPages();
 writer.println(String.format("Memory used by partial read: %d",
 getMemoryUse() - before));
 writer.flush();
}

The file size of the timetable document from chapter 3 is 15 KB. The memory used by
a full read is about 35 KB, but a partial read needs only 4 KB. This is a significant differ-
ence. When reading a file partially, more memory will be used as soon as you start
working with the reader object, but PdfReader won’t cache unnecessary objects. That

Listing 6.2 MemoryInfo.java
Licensed to Bruno Lowagie <bruno@lowagie.com>

164 CHAPTER 6 Working with existing PDFs
also makes a huge difference, so if you’re dealing with large documents, consider
using PdfReader with a RandomAccessFileOrArray parameter constructed with a path
to a file.

NOTE In part 4, you’ll see how to manipulate a PDF at the lowest level.
You’ll change PDF objects in PdfReader and then save the altered PDF. For
this to work, the modified objects need to be cached. Depending on the
changes you want to apply, using a PdfReader instance created with a Ran-
domAccessFileOrArray may not be an option.

Another way to reduce the memory usage of PdfReader up front is to reduce the num-
ber of pages before you start working with it.

SELECTING PAGES

Next, you’ll read the timetable from example 3 once again, but you’ll immediately tell
PdfReader that you’re only interested in pages 4 to 8.

PdfReader reader = new PdfReader(MovieTemplates.RESULT);
reader.selectPages("4-8");

The general syntax for the range that’s used in the selectPages() method looks like
this:

[!][o][odd][e][even]start[-end]

You can have multiple ranges separated by commas, and the ! modifier removes pages
from what is already selected. The range changes are incremental; numbers are added
or deleted as the range appears. The start or the end can be omitted; if you omit
both, you need at least o (odd; selects all odd pages) or e (even; selects all even pages).

 If you ask the reader object for the number of pages before selectPages() in list-
ing 6.3, it will tell you that the document has 8 pages. If you do the same after making
the page selection, it will tell you that there are only 5 pages: pages 4, 5, 6, 7, and 8.
The old page 4 will be the new page 1. Be careful not to try getting information about
pages that are outside the new range. Don’t add the following line to listing 6.3:

reader.getPageSize(6);

This line will throw a NullPointerException because there are no longer 6 pages in
the reader object.

 Now that you’ve had a short introduction to PdfReader, you’re ready to start
manipulating existing PDF documents.

6.2 Copying pages from existing PDF documents
You probably remember the Superman PDF from chapter 5. The Hero example
imported a plain text file containing PDF syntax into the direct content. I explained
that this wasn’t standard practice. If you want to reuse existing content, it’s dangerous

Listing 6.3 SelectPages.java
Licensed to Bruno Lowagie <bruno@lowagie.com>

165Copying pages from existing PDF documents
to copy and paste PDF syntax like I did in listing 5.14. There are safer ways to import
existing content, as you’ll find out in the next example.

 In this section, you’ll use an object named PdfImportedPage to copy the content from
an existing PDF opened with PdfReader into a new Document written by PdfWriter.

6.2.1 Importing pages

Let’s continue working with the timetable from chapter 3. Suppose you want to reuse
the pages of this document and treat them as if every page were an image. Figure 6.1
shows how you could organize these imported pages into a PdfPTable. The document
in the front of figure 6.1 is created with the code in listing 6.4.

Document document = new Document();
PdfWriter writer = PdfWriter.getInstance(
 document, new FileOutputStream(RESULT));
document.open();
PdfPTable table = new PdfPTable(2);
PdfReader reader = new PdfReader(MovieTemplates.RESULT);
int n = reader.getNumberOfPages();
PdfImportedPage page;
for (int i = 1; i <= n; i++) {
 page = writer.getImportedPage(reader, i);
 table.addCell(Image.getInstance(page));
}
document.add(table);
document.close();

Listing 6.4 ImportingPages1.java

Figure 6.1 Importing pages from an existing PDF document

Step 1

Step 2

Step 3

Step 4
Step 5
Licensed to Bruno Lowagie <bruno@lowagie.com>

166 CHAPTER 6 Working with existing PDFs
You’ll recognize the five steps in the PDF creation process discussed in part 1. Now
you’re also creating a PdfReader object and looping over all the pages, getting PdfIm-
portedPage instances with the getImportedPage() method (as highlighted in bold).
What does this method do?

PAGE CONTENT AND RESOURCES

If you browse the API of the PdfReader class, you’ll discover the getPageContent()
method, which returns the content stream of a page. This content stream is very simi-
lar to what’s inside the hero.txt file. In general, such a content stream contains refer-
ences to external objects, images, and fonts.

 In section 3.4.1, for instance, we examined the PDF syntax needed to draw a raster
image:

q 232 0 0 362 25.5 27 cm /img0 Do Q

In this snippet, /img0 referred to a key in the /Resources dictionary of the page. The
corresponding value was a reference to a stream object containing the bits and bytes of
the image. Without the bits and bytes of the image, the PDF syntax referring to /img0
is meaningless.

WARNING It doesn’t make sense to get the content stream of a page from
one PDF document, and copy that stream into another PDF without copying
all the resources that are needed.

The Hero example was an exception: the syntax to draw the vector image of Superman
was self-contained, and this is very unusual. As soon as there’s text involved, you’ll
have at least a reference to a font. If you don’t copy that font, you’ll get warnings or
errors, such as “Could not find a font in the Resources dictionary.” That’s why it’s
never advisable to extract a page from PdfReader directly. Instead, you should pass the
reader object to the writer class, and ask the writer (not the reader!) to import a page.
A PdfImportedPage object is returned. Behind the scenes, all the necessary resources
(such as images and fonts) are retrieved and copied to the writer.

FAQ Why are all my links lost when I copy a page with PdfImportedPage? It’s
important to understand the difference between resources needed to ren-
der the content of a page and the interactive features of a page. In general,
these features are called annotations. They include links, text annotations,
and form fields. Annotations aren’t part of the content stream. They aren’t
listed in the resources dictionary of the page, but in the annotation diction-
ary. These interactive features aren’t copied when using PdfImportedPage,
which means that all interactivity is lost when copying a page with the get-
ImportedPage() method of the PdfWriter class.

The PdfImportedPage class extends PdfTemplate, but you can’t add any new content
to it. It’s a read-only XObject you can reuse in a document with the method addTem-
plate(); or you can wrap it inside an Image. You’ve already used these techniques in
Licensed to Bruno Lowagie <bruno@lowagie.com>

167Copying pages from existing PDF documents
section 3.4. The original dimensions of each imported page are the same as the origi-
nal media box, but in this example, the PdfImportedPages are scaled to fit inside a
table. Note that the rotation of the original page isn’t taken into account. If that’s a
problem, you’ll have to apply the rotation.

PdfPTable table = new PdfPTable(2);
for (int i = 1; i <= n; i++) {
 page = writer.getImportedPage(reader, i);
 table.getDefaultCell().setRotation(-reader.getPageRotation(i));
 table.addCell(Image.getInstance(page));
}

You can see the result in figure 6.1 (the figure in the back). Observe that cell and
image rotations go counterclockwise. In the next example, we’ll look at how to apply
more transformations.

6.2.2 Scaling and superimposing pages

You can transform pages in iText, just like you can transform images. Do you remem-
ber figure 3.2? That was the image I used to explain the different content layers used
by iText. I created this image by generating a document with four pages, and then
importing those pages into a new one; see figure 6.2.

 The imported pages are added to the new PDF document using addTemplate().
The parameters are calculated so that each page is scaled and skewed.

Listing 6.5 ImportingPages2.java

Figure 6.2 Scaling and skewing pages from an existing PDF
Licensed to Bruno Lowagie <bruno@lowagie.com>

168 CHAPTER 6 Working with existing PDFs
PdfContentByte canvas = writer.getDirectContent();
PdfImportedPage page;
BaseFont bf = BaseFont.createFont(BaseFont.ZAPFDINGBATS, "",

BaseFont.EMBEDDED);
for (int i = 0; i < reader.getNumberOfPages();) {
 page = writer.getImportedPage(reader, ++i);
 canvas.addTemplate(page, 1f, 0, 0.4f, 0.4f, 72, 50 * i);
 canvas.beginText();
 canvas.setFontAndSize(bf, 20);
 canvas.showTextAligned(Element.ALIGN_CENTER,
 String.valueOf((char)(181 + i)), 496, 150 + 50 * i, 0);
 canvas.endText();
}

A common technique used with PDF files is called superimposing.

SUPERIMPOSING PDF PAGES

Superimposing means that you add different PDF pages on top of each other on the
same page. You could do this with the four pages shown to the left in figure 6.2 to
obtain the PDF shown in figure 6.3.

PdfReader reader = new PdfReader(SOURCE);
Document document = new Document(PageSize.POSTCARD);
PdfWriter writer = PdfWriter.getInstance(document,
 new FileOutputStream(RESULT));
document.open();
PdfContentByte canvas = writer.getDirectContent();
PdfImportedPage page;

Listing 6.6 Layers.java

Listing 6.7 Superimposing.java

Figure 6.3 PDF created by
superimposing four different pages
Licensed to Bruno Lowagie <bruno@lowagie.com>

169Copying pages from existing PDF documents
for (int i = 1; i <= reader.getNumberOfPages(); i++) {
 page = writer.getImportedPage(reader, i);
 canvas.addTemplate(page, 1f, 0, 0, 1, 0, 0);
}
document.close();

Superimposing is often used to create documents with a standard header and footer.

IMPORTING COMPANY STATIONERY

Suppose your company has preprinted paper containing the company name and logo
in the letterhead, and maybe also a watermark. All letters are printed on this company
stationery. You can achieve something similar with PDF, as shown in figure 6.4.

In figure 6.4, the PDF to the left is the equivalent of the preprinted paper. When creat-
ing a new document, as shown to the right, the template page is imported and added
to the background of each new page using a page event.

public class Stationery extends PdfPageEventHelper {
 protected PdfImportedPage page;

 public void useStationary(PdfWriter writer) throws IOException {
 writer.setPageEvent(this);
 PdfReader reader = new PdfReader(STATIONERY);
 page = writer.getImportedPage(reader, 1);

Listing 6.8 Stationery.java

Figure 6.4 Using an existing PDF as background image for new PDFs
Licensed to Bruno Lowagie <bruno@lowagie.com>

170 CHAPTER 6 Working with existing PDFs
 }

 public void onEndPage(PdfWriter writer, Document document) {
 writer.getDirectContentUnder().addTemplate(page, 0, 0);
 }
}

We’ll conclude the series of PdfImportedPage examples by introducing two more
concepts.

6.2.3 N-up copying and tiling PDF documents

When searching for PDF tools on the internet, you’ll find numerous small tools that
are designed to meet specific requirements, such as one that creates an N-up layout in
a PDF file.

 To cut paper costs by 50 percent when printing a PDF document, you can copy an
existing PDF into a new one that has half the number of pages. All you have to do is
put two pages next to each other on one page. This is called 2-up copying. Figure 6.5
shows the document you created in the previous example in its 2-up, 4-up, 8-up,
and 16-up forms.

 Most of the tools you can find online have iText on the inside.

Figure 6.5 N-up copying combines multiple pages onto one page
Licensed to Bruno Lowagie <bruno@lowagie.com>

171Copying pages from existing PDF documents
public void manipulatePdf(String src, String dest, int pow)
 throws IOException, DocumentException {
 PdfReader reader = new PdfReader(src);
 Rectangle pageSize = reader.getPageSize(1);
 Rectangle newSize = (pow % 2) == 0 ?
 new Rectangle(
 pageSize.getWidth(), pageSize.getHeight()) :
 new Rectangle(
 pageSize.getHeight(), pageSize.getWidth());
 Rectangle unitSize = new Rectangle(
 pageSize.getWidth(), pageSize.getHeight());
 for (int i = 0; i < pow; i++) {
 unitSize = new Rectangle(
 unitSize.getHeight() / 2, unitSize.getWidth());
 }
 int n = (int)Math.pow(2, pow);
 int r = (int)Math.pow(2, pow / 2);
 int c = n / r;

 Document document = new Document(newSize, 0, 0, 0, 0);
 PdfWriter writer = PdfWriter.getInstance(document,
 new FileOutputStream(String.format(dest, n)));
 document.open();
 PdfContentByte cb = writer.getDirectContent();
 PdfImportedPage page;
 Rectangle currentSize;
 float offsetX, offsetY, factor;
 int total = reader.getNumberOfPages();
 for (int i = 0; i < total;) {
 if (i % n == 0) {
 document.newPage();
 }
 currentSize = reader.getPageSize(++i);
 factor = Math.min(
 unitSize.getWidth() / currentSize.getWidth(),
 unitSize.getHeight() / currentSize.getHeight());
 offsetX = unitSize.getWidth() * ((i % n) % c)
 +(unitSize.getWidth()
 - (currentSize.getWidth() * factor))/2f;
 offsetY = newSize.getHeight()
 - (unitSize.getHeight() * (((i % n) / c) + 1))
 + (unitSize.getHeight()
 - (currentSize.getHeight() * factor))/2f;
 page = writer.getImportedPage(reader, i);
 cb.addTemplate(page,
 factor, 0, 0, factor, offsetX, offsetY);
 }
 document.close();
}

Listing 6.9 NUp.java

Gets original
page size

Sets page size of
new document

Calculates page
size of unit

Calculates
helper variables

Calculates
scale factor

Calculates
offset

Scales and
positions page
Licensed to Bruno Lowagie <bruno@lowagie.com>

172 CHAPTER 6 Working with existing PDFs
The opposite of N-up copying a PDF file is when you have one page, and you want to
print it on different pages; see figure 6.6. We already looked at this in chapter 5, but
now you’ll do the exercise again using PdfImportedPage.

 The next bit of code takes one page from a PDF document and scales it so that the
one page is “tiled” over 16 pages.

public void manipulatePdf(String src, String dest)
 throws IOException, DocumentException {
 PdfReader reader = new PdfReader(src);
 Rectangle pagesize = reader.getPageSizeWithRotation(1);
 Document document = new Document(pagesize);
 PdfWriter writer =
 PdfWriter.getInstance(document, new FileOutputStream(dest));
 document.open();
 PdfContentByte content = writer.getDirectContent();
 PdfImportedPage page = writer.getImportedPage(reader, 1);
 float x, y;
 for (int i = 0; i < 16; i++) {
 x = -pagesize.getWidth() * (i % 4);
 y = pagesize.getHeight() * (i / 4 - 3);
 content.addTemplate(page, 4, 0, 0, 4, x, y);
 document.newPage();
 }
 document.close();
}

Listing 6.10 TilingHero.java

Figure 6.6 Scaling and tiling a PDF file
Licensed to Bruno Lowagie <bruno@lowagie.com>

173Adding content with PdfStamper
In this section, we’ve been reusing content from existing PDF documents in a new doc-
ument. You can take digital photocopies of existing pages, scale them up or down, and
use them as if they were an image or an XObject.

 In the next section, we’re going to take an existing PDF and add extra content.

6.3 Adding content with PdfStamper
Up until now, we’ve created new documents using the five steps in the iText docu-
ment-creation process. In this chapter we’ll add content to an existing document
using PdfStamper.

 PdfStamper uses a different mechanism, as demonstrated in the manipulateWith-
Stamper() method.

public static void main(String[] args)
 throws IOException, DocumentException {
 new MovieTemplates().createPdf(MovieTemplates.RESULT);
 PdfReader reader = new PdfReader(MovieTemplates.RESULT);
 reader.selectPages("4-8");
 manipulateWithStamper(reader);
 ...
}
private static void manipulateWithStamper(PdfReader reader)
 throws IOException, DocumentException {
 PdfStamper stamper =
 new PdfStamper(reader, new FileOutputStream(RESULT1));
 stamper.close();
}

You’ve already seen part of this example in listing 6.3. It’s an example that creates a
new PDF document containing only a selection of pages from the original document.
In B, you create a PdfReader that will read the 8 pages of the timetable PDF, but you
immediately tell the reader that you’re only interested in pages 4 to 8. In C, you cre-
ate a PdfStamper object. As soon as you close the stamper, a new document will be cre-
ated. It will contain only 5 pages. You can add content between the constructor and
the close() method.

6.3.1 Adding content at absolute positions

Let’s start with the “Hello World” examples with paper size Letter in landscape format
from chapter 1. There were two versions of this example. Let’s add the words “Hello
people!”

PdfReader reader = new PdfReader(src);
PdfStamper stamper = new PdfStamper(reader, new FileOutputStream(dest));
PdfContentByte canvas = stamper.getOverContent(1);
ColumnText.showTextAligned(canvas,
 Element.ALIGN_LEFT, new Phrase("Hello people!"), 36, 540, 0);
stamper.close();

Listing 6.11 SelectPages.java

Listing 6.12 StampText.java

B

C

Licensed to Bruno Lowagie <bruno@lowagie.com>

174 CHAPTER 6 Working with existing PDFs
The getOverContent() method is similar to the getDirectContent() method dis-
cussed in chapter 3. It returns a PdfContentByte object that allows you to write to a
new layer that goes on top of the existing content of the page you choose. There’s also
a getUnderContent() method, which is the equivalent of getDirectContentUnder().

NOTE The methods getOverContent() and getUnderContent() give you
the option to write to the direct content on a layer that goes on top of or
below the existing content. They don’t give you access to the layer with the
existing content. You can’t use these methods to replace existing content,
nor to complete it. It’s not possible to say: “I want to add the words ‘Hello
people!’ after the words ‘Hello World’.” You can only add those words to the
layer above or below the existing content at an absolute position whose coor-
dinates you know.

The media box of the file that was used as the basis for hello3.pdf was 792 pt x 612 pt.
I’ve added the extra text at the coordinates (36,540). That’s near the top-left corner.
The file used as the basis for hello1.pdf had a media box measuring 612 pt x 792 pt,
but the page had a rotation of 90 degrees. The difference between these two ways of
creating a page in landscape is made transparent: iText took the rotation into account
and rotated the coordinate system. If you don’t want this, you can tell iText to ignore
the fact that the page is rotated. That’s what happened with hello2.pdf in figure 6.7.

 In the next code snippet, the extra text was added at the same coordinates as in
listing 6.12, but the rotation of the page isn’t taken into account. This is prevented
with the setRotateContents() method.

Figure 6.7 Adding text to an existing document
Licensed to Bruno Lowagie <bruno@lowagie.com>

175Adding content with PdfStamper
PdfReader reader = new PdfReader(src);
PdfStamper stamper = new PdfStamper(reader, new FileOutputStream(dest));
stamper.setRotateContents(false);
PdfContentByte canvas = stamper.getOverContent(1);
ColumnText.showTextAligned(canvas,
 Element.ALIGN_LEFT, new Phrase("Hello people!"), 36, 540, 0);
stamper.close();

We could now repeat everything that we covered in chapter 3, and explain how to
draw lines, shapes, and text to the PdfContentByte layers obtained with getOverCon-
tent() and getUnderContent(), but it’s a better idea to look at practical examples.

6.3.2 Creating a PDF in multiple passes

In section 5.4.2, we solved the “page X of Y” problem by using page events and a
PdfTemplate object. One of the problems inherent to this solution is that you don’t
know the number of pages when you create and position the placeholder. You create a
small canvas up front, but you can only add the page number once the document is
completely finished. You don’t know in advance how much space will be needed to
draw this number. Will the document eventually have 9 pages or 9999? You could
guess the number of digits beforehand and reserve enough space for them accord-
ingly, but you won’t always be able to make the right guess.

 That’s why you might consider an alternative way to add page numbers. The docu-
ment shown in figure 6.8 is made in two passes.

 In the first pass, the document is created without a header. The header, and—if
necessary—a footer and a watermark, can be added in a second pass. Note that it isn’t
necessary to create two files on disk. If the file size isn’t huge, and the memory
available in your JVM allows it, you can easily keep the file created during the first pass
in memory.

Listing 6.13 StampText.java (continued)

Figure 6.8 Adding a page X of Y header to an existing document
Licensed to Bruno Lowagie <bruno@lowagie.com>

176 CHAPTER 6 Working with existing PDFs
ByteArrayOutputStream baos
 = new ByteArrayOutputStream();
Document document =
 new Document(PageSize.A4, 36, 36, 54, 36);
PdfWriter.getInstance(document, baos);
document.open();
...
document.close();
...
PdfReader reader = new PdfReader(baos.toByteArray());
PdfStamper stamper =
 new PdfStamper(reader, new FileOutputStream(RESULT));
int n = reader.getNumberOfPages();
for (int i = 1; i <= n; i++) {
 getHeaderTable(i, n).writeSelectedRows(
 0, -1, 34, 803, stamper.getOverContent(i));
}
stamper.close();

Instead of writing the document to a FileOutputStream in the first pass, you keep the
file in memory using a ByteArrayOutputStream (see section 1.3.2). In the second
pass, you use the bytes from this OutputStream to create a PdfReader instance.

FAQ PdfStamper always creates a new PDF file, but how can I manipulate the
existing file? You can’t use the same physical file used by PdfReader to create
a FileOutputStream for PdfStamper. Common sense tells us that changing a
file while you’re still reading it risks corrupting the file. There are different
ways to work around this. Some applications read a file into memory before
changing it; you could read the original file into a byte array and create a
PdfReader object as demonstrated in listing 6.13. Other applications work
with temporary files; once you’ve finished “stamping,” you could replace the
original file with the new one. Finally, you could also create the new file in
memory using a ByteArrayOutputStream, and then overwrite the original
file using these bytes. The “best choice” depends on the context. As a rule of
thumb, I prefer temporary files for applications that run on the desktop; in
a web environment, I create all files in memory.

In section 6.2, you added an existing PDF as the background of a newly created PDF
using page events. But suppose you’re given an existing PDF, and you need to add
company stationery after the fact. That’s what the next example is about.

6.3.3 Adding company stationery to an existing document

Figure 6.9 looks very similar to figure 6.4, but now you have an existing file, original.pdf,
to which you want to add the file stationary.pdf, with the file stamped_stationery.pdf
being the result.

 To achieve this, you need to import a page from one PDF and add it as the back-
ground to another PDF.

Listing 6.14 TwoPasses.java

First pass
Code that adds
content omitted

Second pass
Licensed to Bruno Lowagie <bruno@lowagie.com>

177Adding content with PdfStamper
PdfReader reader = new PdfReader(src);
PdfReader s_reader = new PdfReader(stationery);
PdfStamper stamper =
 new PdfStamper(reader, new FileOutputStream(dest));
PdfImportedPage page = stamper.getImportedPage(s_reader, 1);
int n = reader.getNumberOfPages();
PdfContentByte background;
for (int i = 1; i <= n; i++) {
 background = stamper.getUnderContent(i);
 background.addTemplate(page, 0, 0);
}
stamper.close();

Here you obtain a PdfImportedPage object from PdfStamper with the getImported-
Page() method. This method writes the resources necessary to render the imported
page to the writer associated with the stamper.

 This technique is often used to add watermarks to existing document. You can eas-
ily adapt the example to add an Image with the addImage() method instead of an
imported page. All the methods from chapter 3 are at your disposal.

Listing 6.15 StampStationery.java

Figure 6.9 Adding stationery to an existing document
Licensed to Bruno Lowagie <bruno@lowagie.com>

178 CHAPTER 6 Working with existing PDFs
NOTE This example combines PdfStamper with PdfImportedPage. All the
interactive features present in the document that’s being manipulated with
PdfStamper are preserved, but the interactive features that were present on
the page that’s being imported are lost.

As discussed in the introduction of this chapter, PDF isn’t a format that can be used
for word processing. You can’t insert a couple of lines between two existing para-
graphs on a page. You can only insert complete pages. That’s what you’re going to do
in the next example.

6.3.4 Inserting pages into an existing document

In section 5.2.4, you were faced with a problem concerning the TOC of a document.
You were only able to create the table of contents (TOC) once the document was fin-
ished. But you wanted to display the TOC before the rest of the content, not after. In
listing 5.12, you reordered the pages.

 Listing 6.16 offers an alternative solution: you could create the PDF in two passes
and add the TOC in the second pass by inserting extra pages. You could, for instance,
create a ColumnText object containing a series of Paragraphs, then you add these
Paragraphs to a number of pages that are inserted into the existing document.

ColumnText ct = new ColumnText(null);
 while (rs.next()) {
 ct.addElement(new Paragraph(24,
 new Chunk(rs.getString("country"))));
}

PdfReader reader = new PdfReader(src);
PdfReader stationery = new PdfReader(Stationery.STATIONERY);
PdfStamper stamper = new PdfStamper(reader, new FileOutputStream(dest));
PdfImportedPage page = stamper.getImportedPage(stationery, 1);
int i = 0;
while(true) {
 stamper.insertPage(++i, reader.getPageSize(1));
 stamper.getUnderContent(i).addTemplate(page, 0, 0);
 ct.setCanvas(stamper.getOverContent(i));
 ct.setSimpleColumn(36, 36, 559, 770);
 if (!ColumnText.hasMoreText(ct.go()))
 break;
}
stamper.close();

There’s a significant difference between what you did in chapter 3 and how you create
the ColumnText object here in B. Normally, you have to pass a PdfContentByte object
with the constructor. In this case, you don’t have a reference to the direct content yet:
you use null as the parameter. You wait to set the canvas until C. In D you try to fit
the content inside a rectangle. If the content doesn’t fit on page one, you insert a sec-
ond page, and so on.

Listing 6.16 InsertPages.java

B Constructs
ColumnText
object

Inserts new page

Keeps track
of page
number

Sets canvas of
ColumnText object

C

D Adds content
from ColumnText
to new page
Licensed to Bruno Lowagie <bruno@lowagie.com>

179Adding content with PdfStamper
 In the previous example, the TOC consists of only two pages; the actual content
consists of 39 pages. What if you want to reorder the pages?

PdfReader reader = new PdfReader(RESULT1);
reader.selectPages("3-41,1-2");
PdfStamper stamper =
 new PdfStamper(reader, new FileOutputStream(RESULT2));
stamper.close();

There’s nothing new in the listing. It’s almost identical to what you did in listing 6.11,
but now you’re using selectPages() to reorder the pages. The document created by
PdfStamper will start on page 3 of the original document, go on until page 41, and
then add pages 1 and 2 at the end of the document.

 These are practical examples that can be used to solve common problems with the
help of PdfStamper, and using the concept of writing to the direct content as dis-
cussed in chapter 3. In the next section, we’ll look at a totally different concept. We’ll
talk about interactive forms.

6.3.5 Filling out a PDF form

There are different flavors of forms in PDF. We’ll discuss the details in chapter 8,
where we’ll create forms using iText. For now, we’re going to use another tool to cre-
ate an interactive PDF form.

CREATING A FORM WITH OPEN OFFICE

Figure 6.10 shows how you can use Open Office to create an XML form document.
Using the Form Controls toolbar, you can add different kinds of form fields. Figure
6.11 shows a Film Data Sheet. It has text fields for the title, director, year, and dura-
tion. It has check boxes for the locations, because one movie can be screened in dif-
ferent movie theaters during the film festival. Finally, it has radio buttons for the

Listing 6.17 InsertPages.java (continued)

Figure 6.10 Creating
an XML form document
with Open Office Writer
Licensed to Bruno Lowagie <bruno@lowagie.com>

180 CHAPTER 6 Working with existing PDFs
category, because each film in the selection
belongs to only one category. The properties
for each of these fields—name, possible val-
ues, and so on—are set in a separate Proper-
ties dialog box.

 When you create such a document, you
may want to save it as an ODT file first. This
will allow you to edit the document after-
wards, in case something has to be changed.
Then choose File > Export as PDF to open the
PDF Options dialog box shown in figure 6.12.

 Make sure that the check box next to
Create PDF Form is checked. The resulting
PDF document will be a form, as shown in
figure 6.13.

 This is an interactive form. You can start
entering data manually into the fields you
defined. However, when using Adobe
Reader, you’ll get a message saying, “You
cannot save data typed into this form.” In
section 9.2, you’ll see how data entered in a

Figure 6.11 Creating fields in an Open Office document

Figure 6.12 Exporting an Open Office
document as a PDF form
Licensed to Bruno Lowagie <bruno@lowagie.com>

181Adding content with PdfStamper
form that has a Submit button can be posted to a server, but the film data sheet you’re
using in this chapter was created for a different purpose: you’re going to fill it out pro-
grammatically, using iText and PdfStamper. That is, after you’ve learned how to
inspect the form.

INSPECTING THE FORM AND ITS FIELDS

If you want to fill out the form using iText, you need to know the name of each field
you want to fill out. In the case of check boxes and radio buttons, you also need to
know the different values that can be chosen. You know these names and values if
you’ve created the form yourself, but in most cases the form will be created by a
graphical designer. As a developer, you’ll have to inspect the form to find out which
names were used.

 Listing 6.18 shows the different types of fields you can encounter. These types will
be discussed in detail in chapter 8, except for signature fields, which will be discussed
in chapter 12.

PdfReader reader = new PdfReader(DATASHEET);
AcroFields form = reader.getAcroFields();
Set<String> fields = form.getFields().keySet();
for (String key : fields) {

Listing 6.18 FormInformation.java

Figure 6.13 A form created with Open Office Writer

Gets read-only
AcroFields instance

Gets all field names
Licensed to Bruno Lowagie <bruno@lowagie.com>

182 CHAPTER 6 Working with existing PDFs
 writer.print(key + ": ");
 switch (form.getFieldType(key)) {
 case AcroFields.FIELD_TYPE_CHECKBOX:
 writer.println("Checkbox");
 break;
 case AcroFields.FIELD_TYPE_COMBO:
 writer.println("Combobox");
 break;
 case AcroFields.FIELD_TYPE_LIST:
 writer.println("List");
 break;
 case AcroFields.FIELD_TYPE_NONE:
 writer.println("None");
 break;
 case AcroFields.FIELD_TYPE_PUSHBUTTON:
 writer.println("Pushbutton");
 break;
 case AcroFields.FIELD_TYPE_RADIOBUTTON:
 writer.println("Radiobutton");
 break;
 case AcroFields.FIELD_TYPE_SIGNATURE:
 writer.println("Signature");
 break;
 case AcroFields.FIELD_TYPE_TEXT:
 writer.println("Text");
 break;
 default:
 writer.println("?");
 }
}

writer.println("Possible values for CP_1:");
String[] states = form.getAppearanceStates("CP_1");
for (int i = 0; i < states.length; i++) {
 writer.print(" - ");
 writer.println(states[i]);
}
writer.println("Possible values for category:");
states = form.getAppearanceStates("category");
for (int i = 0; i < states.length - 1; i++) {
 writer.print(states[i]);
 writer.print(", ");
}
writer.println(states[states.length - 1]);

The result when executing this code for the form shown in figure 6.13 looks like this:

MA_2: Checkbox
GP_8: Checkbox
GP_7: Checkbox
director: Text
CP_1: Checkbox
MA_3: Checkbox
CP_2: Checkbox
CP_3: Checkbox
title: Text

Checks
field type

Gets different values
for check box CP_1

Gets different values for
radio group category
Licensed to Bruno Lowagie <bruno@lowagie.com>

183Adding content with PdfStamper
duration: Text
category: Radiobutton
GP_3: Checkbox
GP_4: Checkbox
year: Text
Possible values for CP_1:
 - Off
 - Yes
Possible values for category:
spec, toro, anim, comp, hero, Off, worl, rive, teen, kim,
kauf, zha, fest, s-am, fdir, lee, kubr, kuro, fran, scan

Note that the movie theaters are stored in the database like this: CP.1, GP.3, MA.3, ...
But when you define the check boxes using Open Office (as in figure 6.11), you
replace the dot with an underscore character because the dot character is forbidden
in field names.

 A check box has two possible values that correspond with an appearance state. In the
case of the locations, the value can be Off—the check box isn’t checked—or Yes—the
check box is checked. These values can vary from PDF to PDF, so it’s important to
check the possible states before you start filling out the form. The possible values for
the group of radio buttons is either Off—no radio button is selected—or a code that
corresponds with the keyword field in the festival_category table (see figure 3.4).

 Now that you’ve inspected the form, you have enough information to fill it out
using iText.

FILLING OUT THE FORM

Filling out forms programmatically is usually done for two reasons: prefilling data in
an editable form, and presenting information in a standard layout.

 Imagine an online insurance company. When a customer wants to report an inci-
dent, they can log in, and choose among a number of PDF forms. These forms contain
a number of standard fields with content that’s already present in the company’s data-
base: name, address, and so on. When the customer logs in, the application could
have access to this information, so why require the customer to enter all this informa-
tion manually? Wouldn’t it be better to take the blank form and prefill part of the
information to save time for the customer?

 That’s what’s done in figure 6.14. The film data sheet is filled with data from the
database, but the data is still editable. In the context of an insurance company, the
customer’s phone number could be filled in, but the customer could still change it in
case his number has changed.

 Another typical use of PDF forms is when you want to use the form as a standard
template. You don’t really need a form to communicate with an end user. You just
want to create documents that share the same structure, but with differing content.

 The PDF shown in figure 6.15 was made using the Film Data Sheet form, but it’s no
longer interactive. The form has disappeared. The fields were only used as placehold-
ers for the film title, director, and so on.

 The process of keeping the data but removing the form is called flattening, and
there are different possibilities in-between. You can choose to flatten only specific
Licensed to Bruno Lowagie <bruno@lowagie.com>

184 CHAPTER 6 Working with existing PDFs
fields, or you can change the status of specific fields to read-only. For instance, a cus-
tomer of an insurance company is allowed to change their telephone number on the
prefilled form, but not their name. Flattening will be discussed in chapter 8; in this
chapter, you’ll only use the basic mechanism of form filling.

Figure 6.14 A form filled out using iText

Figure 6.15 A form filled out and flattened using iText
Licensed to Bruno Lowagie <bruno@lowagie.com>

185Adding content with PdfStamper
public static void main(String[] args)
 throws SQLException, IOException, DocumentException {
 DatabaseConnection connection = new HsqldbConnection("filmfestival");
 List movies = PojoFactory.getMovies(connection);
 PdfReader reader;
 PdfStamper stamper;
 for (Movie movie : movies) {
 if (movie.getYear() < 2007)
 continue;
 reader = new PdfReader(DATASHEET);
 stamper = new PdfStamper(reader,
 new FileOutputStream(
 String.format(RESULT, movie.getImdb())));
 fill(stamper.getAcroFields(), movie);
 if (movie.getYear() == 2007)
 stamper.setFormFlattening(true);
 stamper.close();
 }
 connection.close();
}

public static void fill(AcroFields form, Movie movie)
 throws IOException, DocumentException {
 form.setField("title", movie.getMovieTitle());
 form.setField("director", getDirectors(movie));
 form.setField("year",
 String.valueOf(movie.getYear()));
 form.setField("duration",
 String.valueOf(movie.getDuration()));
 form.setField("category",
 movie.getEntry().getCategory().getKeyword());
 for (Screening screening :
 movie.getEntry().getScreenings()) {
 form.setField(
 screening.getLocation().replace('.', '_'), "Yes");
 }
}

In this listing, you’re creating a separate document for every movie in the database
that was made after 2006. The new reader instance is created inside the loop.

FAQ Why do I get a DocumentException saying “The original document was
reused. Read it again from file.”? Every PdfReader object can be used for one
and only one PdfStamper object. Looking at the example in listing 6.19, you
might argue that new PdfReader(DATASHEET) could be moved outside the
loop, because it’s the same for all the PdfStamper objects, but that won’t
work. As soon as you use a PdfReader object to create a PdfStamper, the
reader object is tampered. You can check this by adding the line
reader.isTampered();. If this method returns true, you can’t use the
reader to create a new stamper object. You have to create a new instance—
which is exactly what the error message tells you.

Listing 6.19 FillDataSheet.java

Gets AcroFields
instance from stamper

Creates reader
and stamper

B
Flattens forms for
movies in 2007Closes

stamper

Fills out
fields
Licensed to Bruno Lowagie <bruno@lowagie.com>

186 CHAPTER 6 Working with existing PDFs
If you want to fill out a form, you need to have an AcroFields object. You can get an
instance of this object using the method getAcroFields().

FAQ Why do I get a DocumentException saying “This AcroFields instance is read-
only?” If you look closely at listings 6.18 and 6.19, you’ll see that the getAc-
roFields() method exists in the PdfReader class as well as in the Pdf-
Stamper class. The AcroFields retrieved in listing 6.18 is read-only, and it
will throw a DocumentException as soon as you try to fill out a field. You
need to use the method with PdfStamper if you want to update the form.

Filling out the form is easy. If you know the field name, such as “title”, you can set its
value using only one line:

form.setField("title", movie.getMovieTitle());

As you can see in listing 6.19 B, the filled-out data sheets of movies dating
from 2007 are flattened. Figure 6.15 shows such a data sheet. It looks like an ordi-
nary PDF file. The content is stamped on the document; it’s no longer an editable
form. In figure 6.14, you see a data sheet for a movie made in 2008. It’s still a form;
you can change the title manually.

 There’s much more to say about forms, but we can’t go into further detail until
we’ve talked about annotations. Also, I haven’t said anything about the different types
of PDF forms yet: there are forms based on AcroForm technology (like the form you
created using Open Office), and there are XFA forms (created with Adobe Designer).
This will have to wait until chapter 8, because we have one more group of PDF manip-
ulation classes left to cover.

6.4 Copying pages with PdfCopy
In the previous section, each PdfStamper object was associated with one and only one
PdfReader object. As soon as you want to assemble pages from more than one docu-
ment, you should use another PDF manipulation class: PdfCopy.

 PdfCopy extends PdfWriter, and you’ll immediately recognize the five steps in the
PDF creation process:

public static void main(String[] args)
 throws IOException, DocumentException {
 new MovieTemplates().createPdf(MovieTemplates.RESULT);
 PdfReader reader = new PdfReader(MovieTemplates.RESULT);
 reader.selectPages("4-8");
 ...
 manipulateWithCopy(reader);
}

private static void manipulateWithCopy(PdfReader reader)
 throws IOException, DocumentException {
 int n = reader.getNumberOfPages();
 Document document = new Document();

Listing 6.20 SelectPages.java

Step 1
Licensed to Bruno Lowagie <bruno@lowagie.com>

187Copying pages with PdfCopy
 PdfCopy copy = new PdfCopy(
 document, new FileOutputStream(RESULT2));
 document.open();
 for (int i = 0; i < n;) {
 copy.addPage(copy.getImportedPage(reader, ++i));
 }
 document.close();
}

The main difference between these five steps and the ones from chapter 1 is that
you’re now using PdfCopy instead of PdfWriter in step 2. You can only add content
using addPage(). Listing 6.20 is a variation on listing 6.11, with only one document
being involved in this example. Let’s extend the example and concatenate two PDFs.

6.4.1 Concatenating and splitting PDF documents

In chapter 2, we created a list with movies containing links to the Internet Movie
Database (IMDB). We also created a historical overview of these movies with book-
marks that were generated automatically. Now let’s combine those two PDFs into one
new document.

String[] files = { MovieLinks1.RESULT, MovieHistory.RESULT };
Document document = new Document();
PdfCopy copy = new PdfCopy(document, new FileOutputStream(RESULT));
document.open();
PdfReader reader;
int n;
for (int i = 0; i < files.length; i++) {
 reader = new PdfReader(files[i]);
 n = reader.getNumberOfPages();
 for (int page = 0; page < n;) {
 copy.addPage(copy.getImportedPage(reader, ++page));
 }
}
document.close();

MovieLinks1.RESULT is a document with 34 pages. MovieHistory.RESULT has 26
pages. The page count of the concatenated file is 60.

FAQ After merging two PDFs, I’m seeing unnecessary white space. Why are there so
many blank areas? Sometimes people expect that a document with one page
concatenated with another document counting one page will result in a doc-
ument with only one page. They expect that, when the pages of the original
document are only half full, the new document will put both halves on one
page. That’s not how PDF works! In PDF, you work with complete pages; it’s
not possible to reflow the content on those pages.

There are two different versions of the addPage() method. You can add blank pages if
you use a Rectangle and a rotation value as parameters, or you can add a PdfImport-
edPage obtained from the same PdfCopy instance using getImportedPage().

Listing 6.21 Concatenate.java

Step 2

Step 3

Step 4

Step 5
Licensed to Bruno Lowagie <bruno@lowagie.com>

188 CHAPTER 6 Working with existing PDFs
PRESERVATION OF INTERACTIVE FEATURES

You’ve used imported pages with PdfWriter in section 6.2 and with PdfStamper in sec-
tion 6.3. You’ve scaled these imported pages, rotated them, and so on. All of this isn’t
possible with the PdfImportedPage objects obtained from PdfCopy. You can only add
them to a new document in their original form and size.

 This limitation comes with a major advantage: most of the interactive features of
the page are preserved. The links that are present in MovieLinks1.RESULT are lost if
you import a page using PdfWriter or PdfStamper, but they still work if you import
the same page with PdfCopy. Links are a special type of annotation, and we’ll discuss
the different types of annotations in chapter 7. For now, it’s sufficient to know that all
annotations are kept with PdfCopy. The bookmarks of MovieHistory.RESULT, on the
other hand, are lost.

 We’ll find a way to work around this in the next chapter.

ADDING CONTENT WITH PDFCOPY

In previous sections, I explained that PdfImportedPage is a read-only subclass of
PdfTemplate. You can’t add any content to an imported page. This wasn’t a big deal
when using imported pages with PdfWriter and PdfStamper because we could easily
add content over or under the imported page. When using PdfCopy, it would be inter-
esting if we could somehow add extra content too.

 It would be interesting if we could add a “page X of Y” footer that reflects the new
page numbers.

Document document = new Document();
PdfCopy copy = new PdfCopy(document, new FileOutputStream(RESULT));
document.open();
PdfReader reader1 = new PdfReader(MovieLinks1.RESULT);
int n1 = reader1.getNumberOfPages();
PdfReader reader2 = new PdfReader(MovieHistory.RESULT);
int n2 = reader2.getNumberOfPages();
PdfImportedPage page;
PdfCopy.PageStamp stamp;
for (int i = 0; i < n1;) {
 page = copy.getImportedPage(reader1, ++i);
 stamp = copy.createPageStamp(page);
 ColumnText.showTextAligned(
 stamp.getUnderContent(), Element.ALIGN_CENTER,
 new Phrase(
 String.format("page %d of %d", i, n1 + n2)),
 297.5f, 28, 0);
 stamp.alterContents();
 copy.addPage(page);
}
for (int i = 0; i < n2;) {
 page = copy.getImportedPage(reader2, ++i);
 stamp = copy.createPageStamp(page);
 ColumnText.showTextAligned(
 stamp.getUnderContent(), Element.ALIGN_CENTER,

Listing 6.22 ConcatenateStamp.java

Document 1: reader
and page count

Document 2: reader
and page count

Adds
document 1

B

C

D

Adds
document 2B

C

Licensed to Bruno Lowagie <bruno@lowagie.com>

189Copying pages with PdfCopy
 new Phrase(
 String.format("page %d of %d", n1 + i, n1 + n2)),
 297.5f, 28, 0);
 stamp.alterContents();
 copy.addPage(page);
}
document.close();

With PdfCopy, we can add content to a PdfImportedPage using a PdfCopy.PageStamp
object. Such an object can be obtained with the createPageStamp() method B. This
object has two methods for getting a direct content layer: getUnderContent() and
getOverContent(). These methods return a PdfCopy.StampContent object. PdfCopy.
StampContent extends PdfContentByte, and you can use it just as you’d use any other
PdfContentByte object. In listing 6.22, you use it to add text at an absolute position C.
There’s one caveat: you mustn’t forget to invoke the alterContents() method D.

SPLITTING A PDF

Using a PdfReader instance with PdfCopy doesn’t tamper the reader the way Pdf-
Stamper does. You can reuse the same reader object for different PdfCopy objects. You
can, for instance, construct one reader instance that reads the timetable PDF from
chapter 3, and create a new PdfCopy instance for every page to split the document
into individual pages. In PDF terminology, this process is often called PDF bursting.

PdfReader reader = new PdfReader(MovieTemplates.RESULT);
Document document;
PdfCopy copy;
int n = reader.getNumberOfPages();
for (int i = 0; i < n;) {
 document = new Document();
 copy = new PdfCopy(document,
 new FileOutputStream(String.format(RESULT, ++i)));
 document.open();
 copy.addPage(copy.getImportedPage(reader, i));
 document.close();
}

The original file representing the timetable contained 8 pages, and its size was about 15
KB. Bursting this file results in 8 different single-page documents, each with a file size
of about 4 KB. 8 times 4 KB is 32 KB, which is more than the original 15 KB, because
resources that were shared among pages in the original document are now copied into
each separate document. So you might wonder what would happen if you concatenated
PDF documents containing duplicate content.

6.4.2 PdfCopy versus PdfSmartCopy

In section 6.3.5, you filled out and flattened the film data sheet form to create a sepa-
rate file for movies made in the year 2007. Wouldn’t it be nice to create one single
document that contains the data sheets for all the movies in the database?

Listing 6.23 Burst.java

C

D Adds
document 2
Licensed to Bruno Lowagie <bruno@lowagie.com>

190 CHAPTER 6 Working with existing PDFs
 Here you’ll fill the data sheet using PdfStamper. The resulting PDF files will be kept
in memory just long enough to copy the page into a new document with PdfCopy.

public void createPdf(String filename)
 throws IOException, DocumentException, SQLException {
 Document document = new Document();
 PdfCopy copy = new PdfCopy(
 document, new FileOutputStream(filename));
 document.open();
 addDataSheets(copy);
 document.close();
}

public void addDataSheets(PdfCopy copy)
 throws SQLException, IOException, DocumentException {
 DatabaseConnection connection =
 new HsqldbConnection("filmfestival");
 List<Movie> movies = PojoFactory.getMovies(connection);
 PdfReader reader;
 PdfStamper stamper;
 ByteArrayOutputStream baos;
 for (Movie movie : movies) {
 reader = new PdfReader(DATASHEET);
 baos = new ByteArrayOutputStream();
 stamper = new PdfStamper(reader, baos);
 fill(stamper.getAcroFields(), movie);
 stamper.setFormFlattening(true);
 stamper.close();

 reader = new PdfReader(baos.toByteArray());
 copy.addPage(copy.getImportedPage(reader, 1));
 }
 connection.close();
}

This example works perfectly, and at first sight you won’t find anything wrong with the
resulting PDF when you open it in Adobe Reader. Only when you look at the file size
will you have doubts. The original datasheet.pdf was less than 60 KB, but the resulting
PDF is almost 5 MB.

 This document has 120 pages that are almost identical. Only the specific movie
information differs from page to page; the form template is repeated over and over
again. But PdfCopy isn’t aware of that: it takes every page you add, including its
resources, and copies everything to the writer. The code in listing 6.24 adds the same
bits and bytes representing the original form to the same document 120 times. The
resulting PDF is full of redundant information.

 This can be avoided by using PdfSmartCopy instead of PdfCopy in step 2.

public void createPdf(String filename)
 throws IOException, DocumentException, SQLException {
 Document document = new Document();

Listing 6.24 DataSheets1.java

Listing 6.25 DataSheets2.java

Step 1

Step 2

Step 3
Step 4

Step 5

Creates single
page in memory

Adds page
to PdfCopy

Step 1
Licensed to Bruno Lowagie <bruno@lowagie.com>

191Copying pages with PdfCopy
 PdfSmartCopy copy = new PdfSmartCopy(
 document, new FileOutputStream(filename));
 document.open();
 addDataSheets(copy);
 document.close();
}

Now the size of the resulting PDF file is only about 300 KB; that’s a much better result.
 PdfSmartCopy extends PdfCopy. It inherits the same functionality, but it checks

every page that’s added for redundant objects, so it can save plenty of disk space or
bandwidth. There’s a price to pay for this extra “intelligence.” PdfSmartCopy needs
more memory and more time to concatenate files than PdfCopy. It will be up to you to
decide what’s more important: file size and bandwidth, or memory and time. It will
also depend on the nature of the documents you want to concatenate. If there is little
resemblance between the pages, you might as well use PdfCopy. If different docu-
ments all have the same company logo on every page, you might want to consider
using PdfSmartCopy to detect that logo.

 In this example, you’ve concatenated flattened forms. But what happens if
you concatenate the original forms? You don’t have to try this: it won’t work.
Although PdfCopy (and PdfSmartCopy) preserve the annotations used to visualize a
form, the form functionality will be broken if you try to concatenate two or more
documents containing forms using PdfCopy. Your best chance to achieve this is to
use PdfCopyFields.

6.4.3 Concatenating forms

Suppose you want to create a film data sheet form with two or more pages. This can
easily be done with only four lines of code.

NOTE These examples will only work if your forms are created using Acro-
Form technology. It’s not possible to concatenate XFA forms using iText.

PdfCopyFields copy = new PdfCopyFields(new FileOutputStream(RESULT));
copy.addDocument(new PdfReader(DATASHEET));
copy.addDocument(new PdfReader(DATASHEET));
copy.close();

DATASHEET refers to the file datasheet.pdf. RESULT refers to a new form with two identi-
cal pages. This form probably won’t work the way you expect it to. You probably want
to be able to enter the information about one movie on the first page, and about
another movie on the second page. That’s impossible with this form. Although the
field “title” is physically present in two different locations in the same document,
there’s only one logical field with the name “title” in the form. This single field can
only have one value. If you enter a title on page one, you’ll see the same title appear
on page two. That may not be your intention; you probably want to create a form with
two pages that can be used to enter information about two different movies.

Listing 6.26 ConcatenateForms1.java

Step 2

Step 3
Step 4

Step 5
Licensed to Bruno Lowagie <bruno@lowagie.com>

192 CHAPTER 6 Working with existing PDFs
 That’s only possible if you use forms with different field names, or if you rename
the fields.

public static void main(String[] args)
 throws IOException, DocumentException {
 PdfCopyFields copy = new PdfCopyFields(new FileOutputStream(RESULT));
 copy.addDocument(new PdfReader(renameFieldsIn(DATASHEET, 1)));
 copy.addDocument(new PdfReader(renameFieldsIn(DATASHEET, 2)));
 copy.close();
}
private static byte[] renameFieldsIn(String datasheet, int i)
 throws IOException, DocumentException {
 ByteArrayOutputStream baos = new ByteArrayOutputStream();
 PdfStamper stamper =
 new PdfStamper(new PdfReader(datasheet), baos);
 AcroFields form = stamper.getAcroFields();
 Set<String> keys
 = new HashSet(form.getFields().keySet());
 for (String key : keys) {
 form.renameField(
 key, String.format("%s_%d", key, i));
 }
 stamper.close();
 return baos.toByteArray();
}

This code snippet renames fields such as “title” into “title_1” (on page 1) and “title_2”
(on page 2). Now there’s no longer a conflict between the field names on the differ-
ent pages.

NOTE Don’t use PdfCopyFields to concatenate PDF documents without
form fields. As opposed to concatenating documents using PdfCopy, Pdf-
CopyFields needs to keep all the documents in memory to update the com-
bined form. This can become problematic if you’re trying to concatenate
large documents.

The PdfCopyFields example completes this chapter on the different PDF manipula-
tion classes. It’s high time for a summary with an overview that will help you pick the
right class for the job.

6.5 Summary
In this chapter, you’ve been introduced to the different PDF manipulation classes
available in iText. You’ve used these classes to solve a series of common problems: N-
up copying and tiling PDF documents, using a PDF as company stationery, adding
headers, footers, watermarks, and “page X of Y” to existing documents, concatenating
and splitting PDFs, and so on.

 Every class had its specific specialties and limitations. Table 6.1 gives an overview of
the classes that were discussed in this chapter.

Listing 6.27 ConcatenateForms2.java

Creates new
version of
formRenames

fields
Licensed to Bruno Lowagie <bruno@lowagie.com>

193Summary
In the next chapter, we’ll focus mainly on PdfStamper. I’ll introduce the concept of
annotations, and you’ll learn that form fields are a special type of annotation. You’ll
create a form from scratch using iText, and we’ll discuss the different types of interac-
tive forms in PDF.

Table 6.1 An overview of the PDF manipulation classes

iText class Usage

PdfReader Reads PDF files. You pass an instance of this class to one of the other PDF
manipulation classes.

PdfImportedPage A read-only subclass of PdfTemplate. Can be obtained from a PDF manipu-
lation class using the method getImportedPage().

PdfWriter Generates PDF documents from scratch. Can import pages from other PDF
documents. The major downside is that all interactive features of the imported
page (annotations, bookmarks, fields, and so forth) are lost in the process.

PdfStamper Manipulates one (and only one) PDF document. Can be used to add content at
absolute positions, to add extra pages, or to fill out fields. All interactive fea-
tures are preserved, except when you explicitly remove them (for instance, by
flattening a form).

PdfCopy Copies pages from one or more existing PDF documents. Major downsides:
PdfCopy doesn’t detect redundant content, and it fails when concatenating
forms.

PdfSmartCopy Copies pages from one or more existing PDF documents. PdfSmartCopy is
able to detect redundant content, but it needs more memory and CPU than
PdfCopy.

PdfCopyFields Puts the fields of the different forms into one form. Can be used to avoid the
problems encountered with form fields when concatenating forms using
PdfCopy. Memory use can be an issue.
Licensed to Bruno Lowagie <bruno@lowagie.com>

Making
 documents interactive
In the summary of the previous chapter, table 6.1 outlined the most important
iText classes for manipulating documents. You’ve used these classes to manipulate
the content of existing documents to copy pages, add extra content, fill out forms,
and so forth. In this chapter, you’ll use PdfStamper and PdfCopy to add interactive
features to an existing document.

 We’ll start by adding actions that will help the end user navigate through the
document, similar to what you did with internal and external links in section 2.3.1.
Next we’ll look at bookmarks, but instead of using Chapters and Sections, as you
did in section 2.3.2, we’ll look at how to create a custom outline tree. Finally, we’ll
add annotations. For example, you’ll learn how to put a sticky note on an existing
page, and how to show an advertisement when a PDF document is opened.

This chapter covers
■ Creating actions and destinations
■ Working with outlines and bookmarks
■ Adding annotations and JavaScript
194

Licensed to Bruno Lowagie <bruno@lowagie.com>

195Introducing actions
7.1 Introducing actions
If you’re reading this book from beginning to end, actions shouldn’t be new to you.
You created documents containing actions in chapter 2, but we didn’t call them
actions; instead we talked about remote and local goto links. In this section, you’ll add
goto actions using the PdfAction class, and you’ll also learn how to introduce new
actions, such as actions that trigger JavaScript functions embedded in the document.

 But let’s start with an example that adds actions to navigate through documents.

7.1.1 Document-navigation actions

Most PDF viewers have buttons that allow the end user of the PDF document to switch
to another page. In some cases, these viewer buttons can be removed or the toolbar
can be hidden by setting the viewer preferences. Maybe you want to add extra naviga-
tional aids to the page itself, to make it easier for the end user to go to the first, previ-
ous, next, or last page. For this purpose, ISO-32000-1 defines four named actions that
should be supported by every PDF viewer.

NAMED ACTIONS

In figure 7.1, you can find arrows to jump to the first page (⇐), the previous page
(←), the next page (→), and the last page (⇒).

These arrows correspond to four named actions: /NextPage, /PrevPage, /FirstPage,
and /LastPage. You can create these links using the PdfAction class. You can see how
to associate an instance of this class with a Chunk using the setAction() method .

Font symbol = new Font(FontFamily.SYMBOL, 20);
PdfPTable table = new PdfPTable(4);
table.getDefaultCell().setBorder(Rectangle.NO_BORDER);
table.getDefaultCell().setHorizontalAlignment(Element.ALIGN_CENTER);
Chunk first = new Chunk(String.valueOf((char)220), symbol);
first.setAction(new PdfAction(PdfAction.FIRSTPAGE));
table.addCell(new Phrase(first));
Chunk previous = new Chunk(String.valueOf((char)172), symbol);
previous.setAction(new PdfAction(PdfAction.PREVPAGE));
table.addCell(new Phrase(previous));
Chunk next = new Chunk(String.valueOf((char)174), symbol);
next.setAction(new PdfAction(PdfAction.NEXTPAGE));

Listing 7.1 NamedActions.java

Figure 7.15
Timetable with named
actions triggered by
clicking the arrows

Jumps to
first page

Jumps to
previous page

Jumps to next page
Licensed to Bruno Lowagie <bruno@lowagie.com>

196 CHAPTER 7 Making documents interactive
table.addCell(new Phrase(next));
Chunk last = new Chunk(String.valueOf((char)222), symbol);
last.setAction(new PdfAction(PdfAction.LASTPAGE));
table.addCell(new Phrase(last));
table.setTotalWidth(120);

You can add the table from listing 7.1 to the timetable PDF using PdfStamper and the
method writeSelectedRows().

NOTE Most of the functionality discussed in this chapter can also be used
when creating documents from scratch.

In the next example, you’ll rewrite listing 2.23 using PdfAction instances.

REMOTE AND LOCAL GOTO ACTIONS

The MovieLinks examples in section 2.3.1 resulted in two PDF files. The links and des-
tinations in the first PDF were created using the Anchor class. The document con-
tained external links to the IMDB and local destinations that were referred to by a
name or a string. These destinations are called named destinations—the country code
was the name for the local destination.

 The second PDF showed a list of countries with one external link to the IMDB web-
site, an external link to a named destination referring to a country page in the first
document, and an internal link to the top of the page. Listing 7.2 duplicates the code
from the original MovieLinks2 example but replaces methods such as setRemote-
Goto() and setLocalGoto() with setAction().

Chunk imdb = new Chunk(
 "Internet Movie Database", FilmFonts.ITALIC);
imdb.setAction(
 new PdfAction(new URL("http://www.imdb.com/")));
p = new Paragraph("Click on a country, and you'll get a list of movies,"
 + " containing links to the ");
p.add(imdb);
p.add(".");
document.add(p);

p = new Paragraph("This list can be found in a ");
Chunk page1 = new Chunk("separate document");
page1.setAction(new PdfAction("movie_links_1.pdf", 1));
p.add(page1);
p.add(".");
document.add(p);
...
Paragraph country = new Paragraph(rs.getString("country"));
country.add(": ");
Chunk link = new Chunk(
 String.format("%d movies", rs.getInt("c")));
link.setAction(PdfAction.gotoRemotePage(
 "movie_links_1.pdf", rs.getString("country_id"),
 false, true));
country.add(link);

Listing 7.2 LinkActions.java

Jumps to
last page

B Link to
external URL

C Link to page
in external
document

D Link to named
destination in
external
document
Licensed to Bruno Lowagie <bruno@lowagie.com>

197Introducing actions
document.add(country);
...
p = new Paragraph("Go to ");
top = new Chunk("top");
top.setAction(PdfAction.gotoLocalPage("top", false));
p.add(top);
p.add(".");
document.add(p);

Let’s examine all the constructors and methods used to create the PdfActions in this
example.

JUMP TO AN EXTERNAL URL

The first action added in the listing will create a link to an external URL B. This
example uses a URL object, but passing a String with the link address would have
worked too. When adding the action to a Chunk, a rectangular clickable area is cre-
ated. If you add a boolean as an extra parameter, the X and Y coordinate of the posi-
tion you’ve clicked will be added to the URL as a query string. You could define an
action like this:

new PdfAction("http://www.lowagie.com/", true);

Clicking on such a link in the lower-left corner of the clickable area could result in the
following hit on the lowagie.com server:

http://www.lowagie.com/?5,3

Inspecting the query string on the server side will reveal that the user’s mouse pointer
pointed at the position X = 5, Y = 3 in the clickable rectangle.

JUMP TO A LOCATION IN A DOCUMENT

There are different ways to create a link to an external document. You can use one of
the constructors of PdfAction, as is done in listing 7.2 C:

■ new PdfAction(String filename, String name)—This will create a link to the
document named filename and jump to a named destination with the name
name.

■ new PdfAction(String filename, int page)—This will create a link to the doc-
ument named filename and jump to a specific page number: page.

Executing these actions will replace the document that is currently viewed by the new
document. If you want to open the new document in a new viewer window, you can
create the action like this:

PdfAction action = new PdfAction("other.pdf", 1);
action.put(PdfName.NEWWINDOW, PdfBoolean.PDFTRUE);

If you’ll look inside iText, you’ll see that PdfAction is a PdfDictionary, which means
it’s a collection of key-value pairs. The keys are of type PdfName, and the value can be
(a reference to) any subclass of PdfObject; in this case, a PdfBoolean. This mecha-
nism will be explained in detail in chapter 13. You can use it to extend iText with func-
tionality that isn’t provided out of the box.

E Link to local
named
destination
Licensed to Bruno Lowagie <bruno@lowagie.com>

198 CHAPTER 7 Making documents interactive
NOTE A new viewer window is not the same as a new browser window. If you
tell iText that the action should open a new window, this will only work if
you’re looking at the document in the standalone Adobe Reader application.
It will open a new standalone Adobe Reader window. If you’re looking at the
document using the Adobe Reader plug-in inside a browser, it will not open a
new browser tab or window.

In D in listing 7.2, the static method gotoRemotePage() is used to create an instance
of class PdfAction. This method has four parameters:

■ filename—Specifies the filename of the external document.
■ dest—Specifies the named destination inside this document.
■ isName—Indicates whether the destination is stored as a PdfName (when set to

true) or as a PdfString (when set to false). These are two different types of
PDF objects that can be used to define a named destination. Note that iText cre-
ates named destinations as Strings.

■ newWindow—Specifies whether the document will be opened in a new viewer
window (if set to true) or not.

Actions that jump to a local destination are created using a static gotoLocalPage()
method. In E this method is used with a String for the name; the boolean value
false indicates that the name was stored as a PdfString, not as a PdfName.

 In listing 7.2, you know the names of the named destinations, because you’re creat-
ing the documents yourself. But suppose somebody gives you an existing document,
and you’re asked to create a new document that links to the named destinations in
this existing document. How can you find out which names to use?

RETRIEVING NAMED DESTINATIONS FROM AN EXISTING DOCUMENT

You can create a HashMap and an XML file containing information about the named
destinations inside an existing PDF document.

PdfReader reader = new PdfReader(src);
HashMap<String,String> map =
 SimpleNamedDestination.getNamedDestination(reader, false);
SimpleNamedDestination.exportToXML(map,
 new FileOutputStream(RESULT3), "ISO8859-1", true);

With the boolean parameter false, you indicate that you’re interested in the names
that are stored as a PdfString. If you change this parameter to true, you ask iText for
the names that are stored as a PdfName inside the document.

 The keys of such a map are String values. In this case, they are the keys of the
countries stored in the database: US, AR, and so on. You can find an example of the val-
ues in the Page attribute of the XML that is generated:

<?xml version="1.0" encoding="ISO8859-1"?>
<Destination>
 <Name Page="1 XYZ 36 802 0">US</Name>

Listing 7.3 LinkActions.java (continued)
Licensed to Bruno Lowagie <bruno@lowagie.com>

199Introducing actions
 <Name Page="19 XYZ 36 802 0">AR</Name>
 ...
</Destination>

In this snippet, an XML file is created using the Latin-1 encoding (ISO8859-1), and
you ask iText to escape all non-ASCII characters with the boolean parameter true. The
values 1 XYZ 36 802 0 and 19 XYZ 36 802 0 need to be explained in more detail. They
refer to explicit destinations.

7.1.2 Explicit destinations

If you look at figure 7.1, you’ll see that I zoomed in on the arrows at the bottom of the
page. If you click on one of the arrows, a named action will be executed. You will jump
to another page, and that page will be shown using the same zoom factor.

 Suppose you don’t want this—suppose you want to instruct the viewer to jump to an
exact position on the first, previous, next, or last page using the zoom factor of your
choice. In iText, you can achieve this by using the PdfDestination class. The construc-
tor of this class always has at least one parameter: type defines the destination type.

OVERVIEW OF THE DIFFERENT TYPES

Table 7.1 gives an overview of the available types of explicit destinations.

Table 7.1 Destination types for creating a PdfDestination object

Type Extra parameters Description

FIT - The current page is displayed with its contents magnified just enough to
fit the document window, both horizontally and vertically.

FITB - The current page is displayed magnified just enough to fit the bounding
box of the contents (the smallest rectangle enclosing all of its contents).

FITH float top The page is displayed so that the page fits within the document window
horizontally (the entire width of the page is visible). The extra parameter
specifies the vertical coordinate of the top edge of the page.

FITBH float top This option is almost identical to FITH, but the width of the bounding box
of the page is visible. This isn’t necessarily the entire width of the page.

FITV float left The page is displayed so that the page fits within the document window
vertically (the entire height of the page is visible). The extra parameter
specifies the horizontal coordinate of the left edge of the page.

FITBV float left This option is almost identical to FITV, but the height of the bounding box
of the page is visible. This isn’t necessarily the entire height of the page.

XYZ float left,
float top,
float zoom

The parameter left defines an X coordinate, top defines a Y coordi-
nate, and zoom defines a zoom factor. If you want to keep the current X
coordinate, Y coordinate, or zoom factor, you can pass negative values
or 0 for the corresponding parameter.

FITR float left,
float bottom,
float right,
float top

The parameters define a rectangle. The page is displayed with its con-
tents magnified just enough to fit this rectangle. If the required zoom
factors for the horizontal and the vertical magnification are different,
the smaller of the two is used.
Licensed to Bruno Lowagie <bruno@lowagie.com>

200 CHAPTER 7 Making documents interactive
Table 7.1 can be used to interpret the output generated with the SimpleNamedDesti-
nation class. For instance 1 XYZ 36 802 0 means that you want to jump to the coordi-
nate (36, 802) on page 1, keeping the current zoom factor.

 The table can also be used to create a new Map of named destinations “manually.”
PdfWriter has an addNamedDestinations() method that can be used to inject such a
map in a document that is built from scratch. This method was originally written to
work around a problem with named destinations when using PdfCopy.

NAMED DESTINATIONS AND PDFCOPY

A recurring question on the iText mailing list involves the concatenation of docu-
ments that have named destinations. Suppose you want to concatenate the two files
created in listing 7.2. In chapter 6, you learned that most of the interactive features
are preserved if you use PdfCopy, but there are exceptions. Using PdfCopy with docu-
ments that have named destinations is one of these exceptions. All annotations, such
as link annotations, are kept with PdfCopy, but they no longer work for links to local
named destinations. There is a workaround for this problem.

PdfReader[] readers = {
 new PdfReader(LinkActions.RESULT2),
 new PdfReader(LinkActions.RESULT1) };
Document document = new Document();
PdfCopy copy =
 new PdfCopy(document, new FileOutputStream(RESULT1));
document.open();
int n;
for (int i = 0; i < readers.length; i++) {
 readers[i].consolidateNamedDestinations();
 n = readers[i].getNumberOfPages();
 for (int page = 0; page < n;) {
 copy.addPage(copy.getImportedPage(readers[i], ++page));
 }
}
copy.addNamedDestinations(SimpleNamedDestination
 .getNamedDestination(readers[1], false),
 readers[0].getNumberOfPages());
document.close();

PdfReader reader = new PdfReader(RESULT1);
reader.makeRemoteNamedDestinationsLocal();
PdfStamper stamper =
 new PdfStamper(reader, new FileOutputStream(RESULT2));
stamper.close();

If you use listing 6.21 to concatenate the two documents from the previous example
(listing 7.2), you’ll find out that the link to go to the named destination “top” has
the appearance of a link, but if you click it, it won’t work. You can work around this
problem by using the method consolidateNamedDestinations() B. This method
translates all the local links referring to a named destination into links that use
explicit destinations.

Listing 7.4 ConcatenateNamedDestinations.java

Makes links to local named
destinations explicit

B

C Adds map of named
destinations

Converts remote
goto into local goto

D

Licensed to Bruno Lowagie <bruno@lowagie.com>

201Introducing actions
 That fixes the internal link problem, but it may not be sufficient. You can link to
the file LinkActions.RESULT1 from another file using a named destination, but these
destinations are lost in the concatenated file. You can restore these links by injecting
them into the PdfCopy object C. In listing 7.4, you use SimpleNamedDestination to
retrieve a map containing the named destinations you want to preserve. Note that
page 1 of the original document is no longer page 1 in the concatenated document.
When you use the addNamedDestinations() method, you have to use a page offset
based on the number of pages in the documents that were added before the docu-
ment with the named destinations.

 And what about the links to named destinations in external files? These will keep
on working, but they’ll point to the original external document. Maybe you want to con-
catenate two documents that are linking to each other, and change the remote goto
actions into local goto actions. PdfCopy can’t do this. You have to run the file through
PdfStamper and use the makeRemoteNamedDestinationsLocal() method D. This
method will try to convert remote goto links into local goto links. Only the remote
links that refer to a name that isn’t known as a named destination in the local file are
preserved as external links.

 With these three mechanisms, you can work around the problems that are caused
by the limitations of PdfCopy when dealing with named destinations.

CREATING EXPLICIT DESTINATIONS

Table 7.1 also serves as a reference for creating explicit destinations. The types in the
first column are names of public static final int values in the PdfDestination
class. You can use these values to construct a PdfDestination object, as follows:

PdfDestination dest = new PdfDestination(PdfDestination.XYZ, 36, 802, 0);

The static method PdfAction.gotoLocalPage() creates an action that jumps to an
explicit destination on a specific page.

public void manipulatePdf(String src, String dest)
 throws IOException, DocumentException {
 PdfReader reader = new PdfReader(src);
 int n = reader.getNumberOfPages();
 PdfStamper stamper
 = new PdfStamper(reader, new FileOutputStream(dest));
 actions = new ArrayList<PdfAction>();
 PdfDestination d;
 for (int i = 0; i < n;) {
 d = new PdfDestination(PdfDestination.FIT);
 actions.add(PdfAction.gotoLocalPage(
 ++i, d, stamper.getWriter()));
 }
 PdfContentByte canvas;
 for (int i = 0; i < n;) {
 canvas = stamper.getOverContent(++i);
 createNavigationTable(i, n)
 .writeSelectedRows(0, -1, 696, 36, canvas);

Listing 7.5 TimetableDestinations.java

Creates
destination

Creates action and
adds it to list

Creates table containing
the actions
Licensed to Bruno Lowagie <bruno@lowagie.com>

202 CHAPTER 7 Making documents interactive
 }
 stamper.close();
}

This is a rewrite of the first example in this chapter. The output is identical to what is
shown in figure 7.1. Instead of using named actions, you create a List containing
PdfAction objects. If you look at the parameters of the gotoLocalPage() method,
you’ll recognize the page number, the destination of choice, and a third parameter
that needs further explanation.

PAGE NUMBERS VERSUS PAGE REFERENCES

In listing 7.3, you retrieved information about named destinations using the Simple-
NamedDestination class. This class uses reader.getNamedDestination() to get the
named destinations. You could use this method too, but you’d get entries like this:

US=[1 0 R, /XYZ, 36, 802, 0]
AR=[210 0 R, /XYZ, 36, 802, 0]

The values 1 0 R and 210 0 R aren’t page numbers but references to page dictionaries.
There are no page numbers inside a PDF file. Pages are organized in a page tree, and their
position in this tree defines the page number. When you create a link to an explicit des-
tination using gotoLocalPage(), iText needs to translate the page number (for
instance, page 19 to jump to the page with films from Argentina) to a reference (such
as 210 0 R). iText can only do this if you also pass a PdfWriter instance. In listing 7.5,
you pass the writer associated with a PdfStamper object: stamper.getWriter().

 You’ll create more destinations in section 7.2, when we talk about bookmarks, but
first, let’s introduce JavaScript into your documents.

7.1.3 JavaScript in PDF documents

JavaScript is a scripting language that is primarily used to add client-side functionality
to an HTML page and to create dynamic websites. It allows programmatic access to
objects within the web browser. JavaScript is also available in PDF viewers such as
Adobe Reader.

 There’s a JavaScript API for PDF documents that extends the core client-side
JavaScript specification and gives you access to Acrobat and Adobe Reader objects. Ini-
tially JavaScript 1.2 was used; since Acrobat 5.0, the API has been based on JavaScript 1.5.
The most recent versions of Acrobat and Adobe Reader (since 8.0) use JavaScript 1.6.
If you want to know more about the complete set of objects and functions, you can down-
load the PDFs Developing Acrobat Applications Using JavaScript and JavaScript for Acrobat API
Reference from the adobe.com site (see appendix B for useful links).

 We’re going to use some of the objects listed in those references to learn how to
introduce JavaScript in a PDF document using iText.

DOCUMENT-LEVEL JAVASCRIPT

Here is an example of a simple script that clears the JavaScript console window, makes
it visible, and writes information about the viewer and its version number.

Licensed to Bruno Lowagie <bruno@lowagie.com>

203Introducing actions
console.clear();
console.show();
console.println("Hello");
console.println("You are using: " + app.viewerType);
console.println("The version of " + app.viewerType
 + " is: " + app.viewerVersion);

The console is an object that originally
wasn’t available in Adobe Reader, only
in Acrobat. It was introduced in Adobe
Reader 7.0 to report errors and show
messages. The script in listing 7.6 prints
the value of the viewerType and view-
erVersion property of the application
(the app object) to the console, as
shown in figure 7.2.

 Figure 7.2 shows that I opened the
document in Adobe Reader version 9.2.
You can add the script from listing 7.6 to
an existing PDF document.

PdfReader reader = new PdfReader(HelloWorld.RESULT);
PdfStamper stamper =
 new PdfStamper(reader, new FileOutputStream(RESULT));
stamper.addJavaScript(Utilities.readFileToString(RESOURCE));
stamper.close();

What you’re doing in listings 7.6 and 7.7 isn’t
very elegant. It works, but the addJava-
Script() method should only be used to add
JavaScript functions that can be called from a
JavaScript action.

JAVASCRIPT ACTIONS

In chapter 4, you created a day-to-day over-
view of all the movies that are screened at the
festival. The movies are sorted by date and
time, but suppose you’d like to offer func-
tionality that allows the end user to search for
the occurrence of a specific director in the
document. See figure 7.3.

 This can be achieved with the search
object.

Listing 7.6 viewer_version.js

Listing 7.7 AddVersionChecker

Figure 7.2 JavaScript Console window

Figure 7.3 Search window in Adobe Reader
Licensed to Bruno Lowagie <bruno@lowagie.com>

204 CHAPTER 7 Making documents interactive
function findDirector(name) {
 if (search.available) {
 search.query(name, "ActiveDoc");
 }
 else {
 app.alert("The Search plug-in isn't installed.");
 }
}

Note that you first check for the availability of the Search plug-in, because you mustn’t
assume that the plug-in is installed in every PDF viewer. If the plug-in is missing, you use
the app.alert() method to inform the end user that searching for directors won’t
work. This method is similar to the alert() method in plain JavaScript. The viewer
application opens an alert box showing the String that is passed to the method.

FAQ Why are some of the methods I’ve found in the API documentation not working? If
you look for the query() method in the API documentation provided by
Adobe, you’ll see that the method is marked with a red “S”. This means that the
usage of the method can be restricted because of security reasons. Some meth-
ods only work in the full Acrobat application, not in the free Reader. Or, they
are only supposed to work when the document is certified (see chapter 12), or
reader-enabled (see chapter 8). Please check the JavaScript for Acrobat API Ref-
erence before reporting problems with JavaScript.

You can call the method shown from an action.

public void createPdf(String filename)
 ...
 PdfReader[] readers = {
 new PdfReader(baos.toByteArray()),
 new PdfReader(NestedTables.RESULT) };
 Document document = new Document();
 PdfCopy copy = new PdfCopy(
 document, new FileOutputStream(filename));
 document.open();
 copy.addJavaScript(
 Utilities.readFileToString(RESOURCE));
 int n;
 for (int i = 0; i < readers.length; i++) {
 n = readers[i].getNumberOfPages();
 for (int page = 0; page < n;) {
 copy.addPage(copy.getImportedPage(readers[i], ++page));
 }
 }
 document.close();
}
public Paragraph createDirectorParagraph(PdfWriter writer, ResultSet rs)
 throws UnsupportedEncodingException, SQLException {

Listing 7.8 find_director.js

Listing 7.9 FindDirectors

Reads new
document with
search actions

Reads original document

B Adds JS function
to document
Licensed to Bruno Lowagie <bruno@lowagie.com>

205Introducing actions
 String n = new String(rs.getBytes("name"), "UTF-8");
 Chunk name = new Chunk(n);
 name.setAction(PdfAction.javaScript(
 String.format("findDirector('%s');", n), writer));
 name.append(", ");
 name.append(new String(rs.getBytes("given_name"), "UTF-8"));
 return new Paragraph(name);
}

In this listing, you add the function findDirector(name) as document-level
JavaScript B. You use that function in the first document in actions triggered when
the end user clicks on the name of a director C.

 You’ll use more JavaScript later on, when you create bookmarks and we talk about
annotations and forms.

7.1.4 More actions

The PdfAction object provides more actions—for instance, an action to trigger an
action in a Flash application that is embedded in the PDF—but that will be discussed
in chapter 16. In this section, we’ll look at launch actions. We’ll also talk about creat-
ing a chain of actions and about triggering actions with events.

LAUNCH ACTIONS

According to ISO-32000-1, you can start an application from a PDF file with a launch
action. Here is a harmless example of a clickable Paragraph that will open Notepad
on a Windows OS showing a simple text file, test.txt, that is supposed to be present
in the directory C:\itext-core\book\resources\txt.

Paragraph p = new Paragraph(new Chunk(
 "Click to open test.txt in Notepad.")
 .setAction(new PdfAction("c:/windows/notepad.exe",
 "test.txt", "open", "C:\\itext-core\\book\\resources\\txt")));

Recent versions of Adobe Reader show a warning or even disallow this functionality,
because executing an external program from a PDF file can be a security hazard.
You’ll use the example created with listing 7.10 in section 13.3.2, where you’ll learn
how to remove launch actions from existing PDF files. The example in chapter 13 is
used on a mail server—PDFs that are attached to mail messages are checked for
launch actions, and if such an action is found, it’s replaced with an app.alert()
JavaScript action using iText.

 Suppose that you don’t want to start an external program, but you want different
actions to be executed one after the other. That sounds like programming, but in PDF
it’s called chaining actions together.

CHAINING ACTIONS

Chaining actions is done with the next() method. Let’s reuse the timetable, and add
the text “print this page” to every page. If an end user clicks these words, you’ll cause
three actions to be triggered.

Listing 7.10 LaunchAction

C Creates action that
uses the function
Licensed to Bruno Lowagie <bruno@lowagie.com>

206 CHAPTER 7 Making documents interactive
Chunk chunk = new Chunk("print this page");
PdfAction action = PdfAction.javaScript(
 "app.alert('Think before you print!');", stamper.getWriter());
action.next(PdfAction.javaScript(
 "printCurrentPage(this.pageNum);", stamper.getWriter()));
action.next(new PdfAction("http://www.panda.org/savepaper/"));
chunk.setAction(action);

First, you want to show an alert box saying, “Think before you print!” B. Then you
want the Print dialog box to open with only the current page selected C. That can be
done using this JavaScript function.

function printCurrentPage() {
 var pp = this.getPrintParams();
 pp.firstPage = this.pageNum;
 pp.lastPage = pp.firstPage;
 this.print(pp);
}

In this context, this refers to the Doc object of the current document. You ask the
document for its printer parameters, and you ask it to print itself using a slightly
altered print range. The Print dialog box will open with that range already selected.
The end user can still decide whether or not to print the document. Once the user
closes the dialog box, they’ll be invited to visit the “How you can save paper” web page
from the World Wide Fund for Nature (WWF).

 These three actions happen one after the other because the user clicked a link, but
actions can also be started when something happens: they can be triggered by an
event.

EVENTS TRIGGERING ACTIONS

In listing 7.7, you used document-level JavaScript that was triggered when the docu-
ment was opened. But opening a document is an event—it would have been better to
trigger the action to open the console from such an event.

 If you look at the first day of the Foobar Film Festival on the timetable, you’ll see
that there’s only one movie that isn’t reserved for the press: the opening movie. But
you know from figure 3.1 that the tickets for this movie are sold out. People consult-
ing the timetable will be disappointed if they’re looking to buy tickets. To avoid this,
you can use an open action to tell the viewer application to jump to the second page
immediately. That way, the end user can still navigate to the first page, but only after
having seen the second page.

 Furthermore, you’ll repeat the “Think before you print” message upon printing,
and tell the user to “Think again next time!” afterwards. Upon closing the document,
you’ll wish the user a good festival.

Listing 7.11 PrintTimeTable

Listing 7.12 print_page.js

B Think!

C Print!

Read!
Licensed to Bruno Lowagie <bruno@lowagie.com>

207Introducing actions
PdfReader reader = new PdfReader(src);
PdfStamper stamper =
 new PdfStamper(reader, new FileOutputStream(dest));
PdfWriter writer = stamper.getWriter();
PdfAction action = PdfAction.gotoLocalPage(
 2, new PdfDestination(PdfDestination.FIT), writer);
writer.setOpenAction(action);
action = PdfAction.javaScript(
 "app.alert('Think before you print');", writer);
writer.setAdditionalAction(PdfWriter.WILL_PRINT, action);
action = PdfAction.javaScript(
 "app.alert('Think again next time!');", writer);
writer.setAdditionalAction(PdfWriter.DID_PRINT, action);
action = PdfAction.javaScript(
 "app.alert('We hope you enjoy the festival');", writer);
writer.setAdditionalAction(PdfWriter.DOCUMENT_CLOSE, action);
action = PdfAction.javaScript(
 "app.alert('This day is reserved for people with an

➥ accreditation an invitation.');", writer);
stamper.setPageAction(PdfWriter.PAGE_OPEN, action, 1);
action = PdfAction.javaScript(
 "app.alert('You can buy tickets for all the other days');", writer);
stamper.setPageAction(PdfWriter.PAGE_CLOSE, action, 1);
stamper.close();

The setOpenAction() method is specific B; the corresponding action is triggered
when a user opens the document. With the setAdditionalAction() method C, you
can couple an action to the following events:

■ WILL_PRINT—The action is triggered just before printing (part of) the document.
■ DID_PRINT—The action is triggered just after printing.
■ WILL_SAVE—The action is triggered just before saving the document.
■ DID_SAVE—The action is triggered just after saving the document.
■ DOCUMENT_CLOSE—The action is triggered just before closing the document.

Note that the WILL_SAVE and DID_SAVE actions aren’t triggered if you perform a Save
As operation. This implies that these additional actions will only work in the full Acro-
bat or for Reader-enabled documents.

 You can also define page actions D. In listing 7.13, you tell the end user that the
information on the first page may not be useful; when the user leaves the page, you
display the message, “You can buy tickets for all the other days.” This is done with the
setPageAction() method and one of these values:

■ PAGE_OPEN—The action is triggered when you enter a certain page.
■ PAGE_CLOSE—The action is triggered when you leave a certain page.

This method exists for both PdfWriter and PdfStamper. The only difference is that
with PdfStamper, you have to pass a page number to tell iText which page you want
the action added to.

Listing 7.13 EventsAndActions

B Open action

C Additional
actions

DPage actions
Licensed to Bruno Lowagie <bruno@lowagie.com>

208 CHAPTER 7 Making documents interactive
 Before we move on to discuss bookmarks, let me repeat what I wrote in the FAQ
entry: just because an action works in one context doesn’t mean it will work in
another. In the chained action, for instance, you added a URL action to open a page
on the WWF site. This is an example of an action that will be ignored when triggered
automatically. That’s good practice. The document should only open a URL when the
end user actively clicks a link, or a bookmark, as you’ll find out in the next example.

7.2 Adding bookmarks
In PDF language, we often use the terms outline tree or outlines as synonyms for book-
marks. In chapter 2, you created bookmarks automatically by using Chapter and Sec-
tion objects. The result was nice, but you can do better if you create the outline using
PdfOutline objects. The PdfOutline class offers much more functionality, and you
can use it to create bookmarks for existing documents.

 Let’s start using them in a document that’s created from scratch.

7.2.1 Creating bookmarks for a new document

Take a look at figure 7.4. The bookmarks consist of movie titles printed in bold; one of
the movie titles is shown using Korean characters. If you click one of these titles, you’ll
jump to the movie in the document. For every movie, there’s also a bookmark shown
in blue to the corresponding site on IMDB. If you click the Instant Info bookmark, an
alert window opens showing the year and run length of the movie.

This is different from what you did before with Chapter and Section objects. These
bookmarks aren’t referring to a specific destination in the document; they cause the
execution of actions.

Document document = new Document();
PdfWriter writer =
 PdfWriter.getInstance(document, new FileOutputStream(filename));

Listing 7.14 CreateOutlineTree

Figure 7.4 Document with bookmarks created using PdfOutline
Licensed to Bruno Lowagie <bruno@lowagie.com>

209Adding bookmarks
writer.setViewerPreferences(
 PdfWriter.PageModeUseOutlines);
document.open();
PdfOutline root = writer.getRootOutline();
PdfOutline movieBookmark;
PdfOutline link;
String title;
List<Movie> movies = PojoFactory.getMovies(connection);
for (Movie movie : movies) {
 title = movie.getMovieTitle();
 if ("3-Iron".equals(title))
 title = "\ube48\uc9d1";
 movieBookmark = new PdfOutline(root,
 new PdfDestination(PdfDestination.FITH,
 writer.getVerticalPosition(true)),
 true
);
 movieBookmark.setStyle(Font.BOLD);
 link = new PdfOutline(movieBookmark,
 new PdfAction(
 String.format(RESOURCE, movie.getImdb())),
 "link to IMDB");
 link.setColor(BaseColor.BLUE);
 new PdfOutline(movieBookmark,
 PdfAction.javaScript(String.format(INFO,
 movie.getYear(), movie.getDuration()), writer),
 "instant info");
 document.add(new Paragraph(movie.getMovieTitle()));
 document.add(PojoToElementFactory.getDirectorList(movie));
 document.add(PojoToElementFactory.getCountryList(movie));
}
document.close();

The first thing you need is the root of the outline tree. You can get this with the get-
RootOutline() method B. During the creating of the document, you can use this
root PdfOutline to create children C.

 The constructor of the PdfOutline class accepts four parameters:

■ The parent—Another PdfOutline object of which the newly created bookmark
is a kid.

■ A destination or an action—A PdfDestination if you want to add a local goto
link, or a PdfAction object for any other action.

■ A title for the bookmark—This can be a Paragraph, a String, or even a PdfString.
■ A boolean value open (optional)—Indicates whether the outline has to be open

(the default) or closed when the user opens the bookmark panel.

In listing 7.14, you create a PdfDestination to create a traditional bookmark that
jumps to the vertical position just before you add a movie title. The zoom factor will
be adapted so that the complete horizontal width is visible (look for FITH in table 7.1).
Because you are creating the document from scratch, you don’t have to pass the page
number; iText uses the reference to the current page.

Sets viewer preferences
for bookmarks

Gets root of
outline treeB

C Adds first-level
bookmark with
internal link

D Adds second-level
bookmark with
external link

E Adds second-level
bookmark with
JavaScript action
Licensed to Bruno Lowagie <bruno@lowagie.com>

210 CHAPTER 7 Making documents interactive
NOTE When adding basic building blocks to a document, you normally don’t
have to bother about pagination or the current Y position. But if you want to
create a PdfDestination object, you need to know the vertical position. You
can retrieve this coordinate with the getVerticalPosition() method. This
method doesn’t just “get” the Y value. It can also ensure that you get the posi-
tion of the next line. That’s why you pass the boolean value true in listing 7.14.

In listing 7.14, you’re using actions to create outlines that are added as children of the
movie title bookmark. D serves as a link to IMBD using a URL action. E adds a JavaScript
action. The script consists of a single line that can be found in the INFO String:

app.alert('Movie produced in %s; run length: %s');

The String will be formatted for each movie so that %s is replaced with the year and
duration found in your database.

NOTE You can use a Paragraph for the bookmark title, but the style of the
Paragraph object will not be taken into account. You can change the style
only with the methods setStyle() C and setColor() D. Observe that Uni-
code characters are accepted. In listing 7.14, the title of the movie “3-Iron” is
replaced with the characters for “Bin-Jip” (which is the original Korean title of
this excellent movie).

You’ve now created a new PDF document with bookmarks, but this part of the book is
mainly about manipulating existing documents. Suppose that you receive a document
like the one you’ve just created—how can you retrieve the bookmarks? That’s what
we’re going to look at in the next example.

7.2.2 Retrieving bookmarks from an existing document

In section 7.1.1, you used the SimpleNamedDestination class to retrieve the named
destinations from a document in the form of a HashMap or an XML file. Here you use a
similar object to extract the bookmarks from an existing PDF: SimpleBookmark.

PdfReader reader = new PdfReader(src);
List<HashMap<String,Object>> list = SimpleBookmark.getBookmark(reader);
 SimpleBookmark.exportToXML(list,
 new FileOutputStream(dest), "ISO8859-1", true);

You first obtain a List of HashMap objects. Each HashMap item contains at least one of
the keys listed in table 7.2.

Listing 7.15 CreateOutlineTree

Table 7.2 Possible keys for a bookmark entry

Key Value Description

Title String The bookmark title that is used in the outline tree.

Color Three float
values

Color values for red, green, and blue ranging from 0 to 1, defining the
color of the title.

B

Licensed to Bruno Lowagie <bruno@lowagie.com>

211Adding bookmarks
You can export the bookmarks list to an XML file B (in listing 7.15) using the Latin-1
encoding (see the "ISO8859-1" parameter), accepting only ASCII characters (see the
true parameter). The resulting XML file looks like this:

<?xml version="1.0" encoding="ISO8859-1"?>
<Bookmark>
 <Title Action="GoTo" Page="1 FitH 806"
 Style="bold" >2001: A Space Odyssey
 <Title Action="URI" URI="http://imdb.com/title/tt0062622/"
 Color="0 0 1" >link to IMDB</Title>
 <Title >instant info</Title>
 </Title>
 <Title Action="GoTo" Page="1 FitH 734"
 Style="bold" >빈집
 <Title Action="URI" URI="http://imdb.com/title/tt0423866/"
 Color="0 0 1" >link to IMDB</Title>
 <Title >instant info</Title>
 </Title>
</Bookmark>

You can use table 7.2 to interpret this XML file. The root tag is always named Book-
mark. The Title tags are used for its children. There’s no Kids tag; the entries of the
Kids list are nested Title tags. All other key-value pairs are attributes of the Title tag.

Style String Can be empty, "bold", "italic", or "italic bold". Defines
the style of the title.

Open boolean If true, the bookmark is open, showing its kids. If false, the end
user has to click the + sign in front of the bookmark to see the book-
marks of the sublevel.

Kids List A list with the Maps of the sublevel entries of this bookmark.

Action String Can be "GoTo", "GoToR", "URI", or "Launch". Due to their pos-
sibly complex nature, JavaScript actions aren’t shown.

Page String A destination on a page; see table 7.1 for the syntax; this entry occurs
in combination with GoTo and GoToR actions.

Named /
NamedN

String The name of a named destination; this entry occurs in combination
with GoTo and GoToR actions. Named is used when the name is
stored as a PdfString; NamedN is used for PdfNames.

File String A path to the file to open or execute; this entry occurs in combination
with GoToR and Launch actions.

NewWindow boolean Indicates whether the file to be opened must be opened in a new win-
dow; this entry occurs in combination with the GoToR action.

URI String The URL that will be opened if the end user clicks the bookmark. This
entry occurs in combination with an URI action.

Table 7.2 Possible keys for a bookmark entry (continued)

Key Value Description
Licensed to Bruno Lowagie <bruno@lowagie.com>

212 CHAPTER 7 Making documents interactive
 You can also use table 7.2 as a reference to create new bookmarks for an existing
document.

7.2.3 Adding bookmarks to an existing document

Suppose that you want to add bookmarks to the timetable PDF, as in figure 7.5.

There’s a top-level entry in the Bookmarks list for this timetable with the title “Calendar”.
Nothing happens if you click it; it’s just a structural element with eight children: one for
each festival day. If you click one of these dates, the corresponding page is opened. You
can create this outline tree and add it to an existing document using PdfStamper.

ArrayList<HashMap<String, Object>> outlines
 = new ArrayList<HashMap<String, Object>> ();
HashMap<String, Object> map = new HashMap<String, Object> ();
outlines.add(map);
map.put("Title", "Calendar");
ArrayList<HashMap<String, Object>> kids
 = new ArrayList<HashMap<String, Object>> ();
map.put("Kids", kids);
int page = 1;
List<Date> days = PojoFactory.getDays(connection);
for (Date day : days) {
 HashMap<String, Object> kid
 = new HashMap<String, Object> ();
 kids.add(kid);
 kid.put("Title", day.toString());
 kid.put("Action", "GoTo");
 kid.put("Page", String.format("%d Fit", page++));
}
PdfReader reader = new PdfReader(src);

Listing 7.16 BookmarkedTimeTable

Figure 7.15 Bookmarks added to an existing document

Creates new
bookmarks list

Creates top-
level entry

Creates second-
level entry
Licensed to Bruno Lowagie <bruno@lowagie.com>

213Adding bookmarks
PdfStamper stamper =
 new PdfStamper(reader, new FileOutputStream(dest));
stamper.setOutlines(outlines);
stamper.close();

You can use table 7.2 to create Maps with titles, kids, and actions. You can consult table 7.1
to create the destination for the Page value. You can use the setOutlines() method to
add the bookmarks to the stamper object. This also works for PdfCopy.

 You’ve concatenated documents with bookmarks in chapter 6, and found that all
your bookmarks were lost. We’ll see how to fix this in the next example.

7.2.4 Concatenating documents with bookmarks

For this example, you’ll take the timetable PDF you created in the previous example,
and concatenate it with the MovieHistory document you created in chapter 2. Both
documents have bookmarks, and you want these bookmarks to be merged as shown in
figure 7.6.

In this code sample, we concatenate bookmarks, but in listing 6.21, we concatenated
documents.

Document document = new Document();
PdfCopy copy = new PdfCopy(document, new FileOutputStream(dest));
document.open();
PdfReader reader;
int page_offset = 0;
int n;
ArrayList<HashMap<String, Object>> bookmarks
 = new ArrayList<HashMap<String, Object>>();
List<HashMap<String, Object>> tmp;

Listing 7.17 ConcatenateBookmarks

Adds bookmarks
list

Figure 7.15 Concatenated documents with concatenated bookmarks

Creates new
bookmarks list
Licensed to Bruno Lowagie <bruno@lowagie.com>

214 CHAPTER 7 Making documents interactive
for (int i = 0; i < src.length; i++) {
 reader = new PdfReader(src[i]);
 tmp = SimpleBookmark.getBookmark(reader);
 SimpleBookmark.shiftPageNumbers(tmp, page_offset, null);
 bookmarks.addAll(tmp);
 n = reader.getNumberOfPages();
 page_offset += n;
 for (int page = 0; page < n;) {
 copy.addPage(copy.getImportedPage(reader, ++page));
 }
}
copy.setOutlines(bookmarks);
document.close();

Just like in the PdfStamper example, you create an ArrayList for the bookmarks. You
could start adding new entries, but for this example you’ll get the bookmarks from the
existing documents. These bookmarks will work correctly for the first document, but a
bookmark that points at the first page in the second document won’t. It will point to
the first page of the first document in the concatenated PDF. That’s why you need to
shift the page numbers using the shiftPageNumbers() method B. After that’s done,
you add the bookmarks to the new list. You use setOutlines() to inject the new list of
bookmarks into the new document.

 One of the parameters in B was null. That’s because you want to shift the page
numbers of the bookmarks for all the pages. You can also pass an array with an even
number of int values that define page ranges for which you want to shift the page
numbers with the offset defined by the page_offset parameter. There’s also an elim-
inatePages() method that can be used to remove the bookmarks that point at spe-
cific page ranges. That’s an interesting method if you want to split existing documents
or remove a couple of pages.

 Now that you know everything there is to know about bookmarks in PDF, what
about creating bookmarks in HTML? With listing 7.3, you retrieved named destina-
tions; with listing 7.15, you retrieved bookmarks. Wouldn’t it be nice if you could use
that information to create a URL that can be used to open a PDF file in a browser at a
specific position? The next section will give you an overview of the open parameters
that can be used to achieve this.

7.2.5 Open parameters

When starting Adobe Reader from the command line, you can pass an open action
(/A) with different parameters. When opening a PDF in a browser using a URL, you
can achieve the same result by adding parameters after the # sign.

 The following line called from the command line opens the JavaScript API docu-
mentation on page 28:

AcroRd32.exe /A "page=28=OpenActions" c:/downloads/js_api_reference.pdf

The following URL opens the documentation about open actions on page 5 using a
magnifying factor that ensures that the complete page fits within the viewer window:

http://partners.adobe.com/public/developer/en/acrobat/

➥ PDFOpenParameters.pdf#page=5&view=Fit

Gets bookmarks from
existing document

Shifts page
numbersBAdds existing

bookmarks
to new list

Adds bookmarks
list to PdfCopy
Licensed to Bruno Lowagie <bruno@lowagie.com>

215Creating annotations
Table 7.3 lists the parameters that can be passed with the /A option, or that can be
added to a URL, involving named and explicit destinations. For more open parame-
ters, consult the Open Parameters for PDF document that can be found on the Adobe site
(see appendix B for the URL).

You’ve learned about destinations; you’ve learned about actions. You’ve used both
with Chunks; you’ve used both with PdfOutlines. But what really makes a document
interactive is annotations.

7.3 Creating annotations
According to Merriam-Webster’s Online Dictionary, an annotation is a note added by
way of comment or explanation. But an annotation in a PDF can be much more. It can
be a movie or a sound that will be played in the document. It can be a field with a
value that changes depending on other fields. It can be a shape that changes color if
you move over it with the mouse.

 But let’s not get ahead of ourselves; let’s start with the simplest type of annotation:
a text annotation aka a sticky note.

7.3.1 Text annotations

Figure 7.7 shows two documents with text annotations. The document in the back has
small icons in the form of a note; the document in the front has small text balloons. If
you move your mouse over such an icon, a tooltip appears. Double-click the icon, and
a sticky note window appears. That’s an open text annotation.

 The text annotations in the back are created using the Annotation class.

Table 7.3 Overview of the open parameters

Parameter and value Description

nameddest=name Jumps to a named destination with name name in the PDF.

page=pagenum Jumps to the page with page number pagenum. This number indicates the
actual page, not the label you may have given the page.

zoom=scale
zoom=scale,left,top

Sets the zoom and scroll factors. A scale value of 100 gives 100 percent
zoom; left and top are set in a coordinate system where the origin is the
top left of the visible page, regardless of the document rotation.

view=fit
view=fit,parameter

Sets the zoom factor based on the page size. The value for fit can be Fit,
FitH, FitV, FitB, FitBH, or FitVH. The parameter has the same meaning
as described in table 7.1. This isn’t supported with the command-line option.

viewrect=left,top,
width,height

Opens the file so that the rectangle specified with the parameters is visible.
This isn’t supported with the command-line option.
Licensed to Bruno Lowagie <bruno@lowagie.com>

216 CHAPTER 7 Making documents interactive
THE ANNOTATION CLASS

The Annotation class implements the Element interface (see chapter 2), so you can
add it to a Document using the add() method. The annotation will be added at the cur-
rent cursor position in the document.

Document document = new Document();
PdfWriter.getInstance(document, new FileOutputStream(filename));
document.open();
for (Movie movie : PojoFactory.getMovies(connection)) {
 document.add(new Phrase(movie.getMovieTitle()));
 document.add(new Annotation(movie.getTitle(),
 String.format(INFO,
 movie.getYear(), movie.getDuration())));
 document.add(PojoToElementFactory.getDirectorList(movie));
 document.add(PojoToElementFactory.getCountryList(movie));
}
document.close(;

You create a text annotation using two String values: a title and the contents of the
annotation. Note that the functionality of the Annotation class is rather limited. If you
want to change the appearance of the annotation, such as to change the color of the
open note, you need a more specialized class.

THE PDFANNOTATION CLASS

PdfAnnotation has a series of static methods that create specific types of annotations.
The method createText() is used to create a text annotation.

Listing 7.18 MovieAnnotations1

Figure 7.15 Text annotations containing more info about a movie

Adds text
annotation at
current position
Licensed to Bruno Lowagie <bruno@lowagie.com>

217Creating annotations
Phrase phrase;
Chunk chunk;
for (Movie movie : PojoFactory.getMovies(connection)) {
 phrase = new Phrase(movie.getMovieTitle());
 chunk = new Chunk("\u00a0");
 chunk.setAnnotation(
 PdfAnnotation.createText(writer, null,
 movie.getMovieTitle(), String.format(INFO,
 movie.getYear(), movie.getDuration()),
 false, "Comment"));
 phrase.add(chunk);
 document.add(phrase);
 document.add(PojoToElementFactory.getDirectorList(movie));
 document.add(PojoToElementFactory.getCountryList(movie));
}

The createText() method expects six parameters:

■ PdfWriter writer—An instance of PdfWriter; if you’re using PdfStamper, you
can use the stamper.getWriter() method to obtain a writer object.

■ Rectangle rect—The rectangle where you want the annotation to appear. In the
example, you don’t know in advance where the annotation will be added, so
you pass null. The rectangle will be defined as soon as iText renders the Chunk
to which the annotation will be added.

■ String title—A title for the annotations.
■ String contents—The content of the text annotation.
■ boolean open—A Boolean value indicating whether the annotation should be

open (true) or closed (false).
■ String icon—The icon that should be used. Possible values are "Comment",

"Key", "Note", "Help", "NewParagraph", "Paragraph", and "Insert".

Figure 7.8 illustrates the different types of icons you can use for text annotations. The
lower half of this figure shows the comments panel, which gives an overview of all the
text annotations present in the PDF document. It was opened by clicking the text bal-
loons at the left in the Adobe Reader window.

 The annotations in figure 7.8 were added to the document using a generic tag event
(see section 5.2.1). In this case, I used the addAnnotation() method to add the PdfAn-
notation object to the PdfWriter. That’s the most common way to add annotations.

A GENERIC WAY TO CREATE ANNOTATIONS

In the subsections that follow, you’ll discover several types of annotations that are
supported in iText. You’ll use convenience methods or classes to create link, stamp,
line, and other annotations. In chapter 16, we’ll discuss different types of rich media
annotations.

 If this still doesn’t meet your requirements, there’s a more generic way to create an
annotation—any type of annotation.

Listing 7.19 MovieAnnotations2

Adds a text annotation
to a Chunk
Licensed to Bruno Lowagie <bruno@lowagie.com>

218 CHAPTER 7 Making documents interactive
public void onGenericTag(PdfWriter writer, Document document,
 Rectangle rect, String text) {
 PdfAnnotation annotation = new PdfAnnotation(
 writer, new Rectangle(
 rect.getRight() + 10, rect.getBottom(),
 rect.getRight() + 30, rect.getTop()));
 annotation.put(PdfName.SUBTYPE, PdfName.TEXT);
 annotation.setTitle("Text annotation");
 annotation.put(PdfName.OPEN, PdfBoolean.PDFFALSE);
 annotation.put(PdfName.CONTENTS,
 new PdfString(String.format("Icon: %s", text)));
 annotation.put(PdfName.NAME, new PdfName(text));
 writer.addAnnotation(annotation);
}

In B, you create a generic annotation using a PdfWriter instance and a Rectangle.
In C, you tell iText that you want to create a text annotation.

 Suppose some new type of annotation is invented; for instance, a "Foobar" annota-
tion. You could create such an annotation like this:

annotation.put(PdfName.SUBTYPE, new PdfName("Foobar"));

PdfAnnotation is a subclass of PdfDictionary. Just like PdfAction, it’s a collection of
key-value pairs. The type of the annotation is defined by the /Subtype key. The other
entries of the annotation dictionary depend on this value.

NOTE You can find references to the annotation dictionaries in the /Annots
entry of the page dictionary. Visible annotations will always be rendered on
top of the other content. They aren’t part of the content stream of a page.

Listing 7.20 GenericAnnotations

Figure 7.15 Different types of icons for text annotations

B Creates generic
annotation

Defines type
of annotation

C

Sets title using
convenience classD

E
Sets different
properties

Adds annotation
to writer
Licensed to Bruno Lowagie <bruno@lowagie.com>

219Creating annotations
A number of keys, such as the title, will be present in many different types of annota-
tions. That’s why you’ll find methods such as setTitle() in the API of the PdfAnnota-
tion class D. For more exotic annotations, such as the (imaginary) Foobar
annotation, you’ll have to look at its (future) specification, and add PdfName and
PdfObject pairs using the put() method E.

NOTE There’s a complete range of annotations that are used to visualize text
edits: Caret annotations, StrikeThrough annotations, Squiggly annotations,
and so on. These annotations are typically added by a human reader using
Acrobat. You could add these annotations using iText, but that sort of defeats
the purpose of the library: iText is better suited to adding annotations in an
automated process. The examples that follow are based on my experience
and they’re selected to inspire, rather than to give a complete taxonomy.

For more info about annotations, please read section 12.5 of ISO-32000-1. There’s
a complete overview of all the possible annotations in section 12.5.6 of the ISO
specification.

ADDING ANNOTATIONS TO AN EXISTING PDF

Suppose you wanted to provide the timetable online so that people can print it, but
you want to add extra information that won’t be printed. This is shown in figure 7.9.

 To create the timetable in figure 7.9, you’ll use createText() once more using the
Help icon. With the setColor() method, you can make sure that the color of the
annotation corresponds with the festival category.

Figure 7.15 Text annotations added to the existing timetable
Licensed to Bruno Lowagie <bruno@lowagie.com>

220 CHAPTER 7 Making documents interactive
PdfReader reader = new PdfReader(src);
PdfStamper stamper =
 new PdfStamper(reader, new FileOutputStream(dest));
int page = 1;
Rectangle rect;
PdfAnnotation annotation;
Movie movie;
for (Date day : PojoFactory.getDays(connection)) {
 for (Screening screening :
 PojoFactory.getScreenings(connection, day)) {
 movie = screening.getMovie();
 rect = getPosition(screening);
 annotation = PdfAnnotation.createText(
 stamper.getWriter(), rect, movie.getMovieTitle(),
 String.format(INFO,
 movie.getYear(), movie.getDuration()),
 false, "Help");
 annotation.setColor(WebColors.getRGBColor(
 "#" + movie.getEntry().getCategory().getColor()));
 stamper.addAnnotation(annotation, page);
 }
 page++;
}
stamper.close();

In the previous example, you used the PdfWriter.addAnnotation() method to add
the annotation to the current page. When you add annotations to an existing page,
you need to use the PdfStamper.addAnnotation() method, and you have to specify
the page number of the page to which you want to add the annotation.

 In this section, text annotations were used to explain different annotations mecha-
nisms: how to create them, how to add them to newly created PDFs, and how to add
them to existing PDFs. Now let’s have a look at other types of annotations.

7.3.2 Link annotations

This isn’t the first time you’ve worked with annotations. Whenever you created links—
for instance, using the Anchor class (see section 2.3.1) or using the Chunk method
setAction() (see section 7.1.1)—you were creating a link annotation. In the next
couple of examples, you’ll create a clickable image and add clickable rectangles to
the timetable.

CLICKABLE IMAGES

If you compare figure 7.10 with figure 3.17, there’s one major difference: when you
move your mouse over a movie poster on the PDF that’s shown in figure 7.10, a tooltip
appears, revealing the URL of the corresponding movie on IMDB.

 If you click the movie poster, Adobe Reader will ask you if you want to open that
page in a browser window.

Listing 7.21 TimeTableAnnotations1

Creates text
annotation

Changes
color

Adds annotation
Licensed to Bruno Lowagie <bruno@lowagie.com>

221Creating annotations
Image img;
Annotation annotation;
float x = 11.5f;
float y = 769.7f;
for (Movie movie : PojoFactory.getMovies(connection)) {
 img = Image.getInstance(String.format(RESOURCE, movie.getImdb()));
 img.scaleToFit(1000, 60);
 img.setAbsolutePosition(x + (45 - img.getScaledWidth()) / 2, y);
 annotation = new Annotation(0, 0, 0, 0,
 String.format(IMDB, movie.getImdb()));
 img.setAnnotation(annotation);
 canvas.addImage(img);
 x += 48;
 if (x > 578) {
 x = 11.5f;
 y -= 84.2f;
 }
}

You use the simple Annotation class to create the link annotation. The first four
parameters are meant to pass the coordinates for the clickable area, but listing 7.22
shows how you can make the image clickable using the method Image.setAnnota-
tion(), so you don’t have to worry about coordinates. iText will set these parameters
so they correspond with the image location.

ADDING CLICKABLE AREAS TO AN EXISTING DOCUMENT

You can adapt listing 7.21 so that instead of adding text annotations with extra info
about each movie, it adds a link annotation that corresponds with each screening.

Listing 7.22 MoviePosters1

Figure 7.15 Link annotations have been added to all the images; see, for instance, the link to Donnie
Darko at IMDB

Creates link
annotationMakes image

clickable
Licensed to Bruno Lowagie <bruno@lowagie.com>

222 CHAPTER 7 Making documents interactive
int page = 1;
Rectangle rect;
PdfAnnotation annotation;
for (Date day : PojoFactory.getDays(connection)) {
 for (Screening screening :
 PojoFactory.getScreenings(connection, day)) {
 rect = getPosition(screening);
 annotation = PdfAnnotation.createLink(
 stamper.getWriter(), rect,
 PdfAnnotation.HIGHLIGHT_INVERT,
 new PdfAction(String.format(IMDB,
 screening.getMovie().getImdb()))
);
 stamper.addAnnotation(annotation, page);
 }
 page++;
}

Just as with createText(), you need to pass a PdfWriter and a Rectangle object to the
createLink() method. The third parameter should be one of the following values:

■ HIGHLIGHT_NONE—No highlighting (the default). The links created with
Anchor, Chunk.setAnchor(), or Chunk.setAction() aren’t highlighted when
you click them.

■ HIGHLIGHT_INVERT—Inverts the content of the annotation square when
clicked. That’s what is used in listing 7.23. If you click a movie block, the colors
will be inverted.

■ HIGHLIGHT_OUTLINE—Inverts the annotation border when clicked.
■ HIGHLIGHT_PUSH—Displays the annotation as if it were being pushed below the

surface of the page.

The destination of the link annotation can be a PdfAction, as in listing 7.23, a String
for a named destination, or a PdfDestination for an explicit destination.

 Now let’s continue our overview of “iText’s most popular annotations” with file
attachments.

7.3.3 File attachments

The document shown in figure 7.11 is almost identical to the documents shown in fig-
ure 7.7, but the annotation is visualized as a paperclip. This paperclip indicates that
an annotation with subtype /FileAttachment was added.

 If you click the paperclip icon in the left sidebar of Adobe Reader, you can get an
overview of all the files that are attached to the PDF. As you can see, the attachments are
a series of JPEG images with names in the form img_xyz.jpg, where xyz is the primary key
of a movie at IMDB. If you click a paperclip next to one of the movie titles, the poster
of that movie will be opened using the default image viewer on your computer. Note
that, depending on your security preferences, the PDF viewer may ask you if you’re sure
before opening another application. How was this PDF document created?

Listing 7.23 TimetableAnnotations2

Creates link
annotation

Adds annotation
to existing page
Licensed to Bruno Lowagie <bruno@lowagie.com>

223Creating annotations
Phrase phrase;
Chunk chunk;
PdfAnnotation annotation;
for (Movie movie : PojoFactory.getMovies(connection)) {
 phrase = new Phrase(movie.getMovieTitle());
 chunk = new Chunk("\u00a0\u00a0");
 annotation = PdfAnnotation.createFileAttachment(
 writer, null, movie.getMovieTitle(), null,
 String.format(RESOURCE, movie.getImdb()),
 String.format("img_%s.jpg", movie.getImdb()));
 annotation.put(PdfName.NAME,
 new PdfString("Paperclip"));
 chunk.setAnnotation(annotation);
 phrase.add(chunk);
 document.add(phrase);
 document.add(PojoToElementFactory.getDirectorList(movie));
 document.add(PojoToElementFactory.getCountryList(movie));
}

There are different ways to embed files. In section 16.2, you’ll learn how to create doc-
ument-level attachments and portable collections. For now, you’ll create a file attach-
ment annotation using the createFileAttachment() method and the following
parameters:

■ PdfWriter writer—An instance of PdfWriter.
■ Rectangle rect—The rectangle where you want the annotation to appear.
■ String contents—A description for the file attachment.
■ byte[] fileStore—The bytes of the file you want to attach to the PDF, or null

if the file parameter is a valid path to a file.

Listing 7.24 MovieAnnotations3

Figure 7.15 Movie list with file attachments

Creates file
attachment
annotation

B Defines name
for attachment

Adds annotation
to existing page
Licensed to Bruno Lowagie <bruno@lowagie.com>

224 CHAPTER 7 Making documents interactive
■ String file—The path to the file you want to attach. This path will be ignored if
fileStore isn’t null.

■ String fileDisplay—The (new) filename that will be given to the attached file.

In B, you set the name of the attachment to Paperclip. If you remove this line, every
paperclip shown in figure 7.11 will be replaced by a pushpin, which is the default
appearance of file attachments. Possible values for the name are "PushPin", "Paper-
clip", "Graph", and "Tag".

 Let’s finish this section with an example that combines three different types of
annotations.

7.3.4 Stamp, line, and rectangle annotations

Rubber stamp annotations are intended to look as if they were stamped on the page
with a rubber stamp: “Approved”, “Confidential”, “Draft”. In this section, you’ll use
the stamp named “NotForPublicRelease” to stamp an annotation on the press visions.

 As soon as you start selling tickets for the Foobar Film Festival, you’ll have to update
your timetable to inform customers which screenings are sold out. In this example,
you’ll use a line annotation to strike a white line through those screenings and a rect-
angle annotation with a dashed border to indicate for which screenings there are still
tickets available. There are examples of each of these annotation types in figure 7.12.

 The screening of the movie Leaving Las Vegas on October 18 is sold out. Just as
with text annotations, this information is shown when you move your mouse over the

Figure 7.15 Stamp, rectangle, and line annotations added to an existing document
Licensed to Bruno Lowagie <bruno@lowagie.com>

225Creating annotations
annotation. The annotation for the movie Amores Perros is open, because it’s been
double-clicked. The press screenings have an X stamped over them; they are not
open to the public.

int page = 1;
Rectangle rect;
float top;
PdfAnnotation annotation;
Movie movie;
for (Date day : PojoFactory.getDays(connection)) {
 for (Screening screening :
 PojoFactory.getScreenings(connection, day)) {
 rect = getPosition(screening);
 movie = screening.getMovie();
 if (screening.isPress()) {
 annotation = PdfAnnotation.createStamp(
 stamper.getWriter(), rect,
 "Press only", "NotForPublicRelease");
 annotation.setColor(BaseColor.BLACK);
 annotation.setFlags(PdfAnnotation.FLAGS_PRINT);
 }
 else if (isSoldOut(screening)) {
 top =
 reader.getPageSizeWithRotation(page).getTop();
 annotation = PdfAnnotation.createLine(
 stamper.getWriter(), rect, "SOLD OUT",
 top - rect.getTop(), rect.getRight(),
 top - rect.getBottom(), rect.getLeft());
 annotation.setTitle(movie.getMovieTitle());
 annotation.setColor(BaseColor.WHITE);
 annotation.setFlags(PdfAnnotation.FLAGS_PRINT);
 annotation.setBorderStyle(new PdfBorderDictionary(
 5, PdfBorderDictionary.STYLE_SOLID));
 }
 else {
 annotation = PdfAnnotation.createSquareCircle(
 stamper.getWriter(), rect,
 "Tickets available", true);
 annotation.setTitle(movie.getMovieTitle());
 annotation.setColor(BaseColor.BLUE);
 annotation.setFlags(PdfAnnotation.FLAGS_PRINT);
 annotation.setBorder(new PdfBorderArray(
 0, 0, 2, new PdfDashPattern()));
 }
 stamper.addAnnotation(annotation, page);
 }
 page++;
}

If you print the PDFs created in the previous examples, you won’t see any of the anno-
tations you’ve added showing up on paper. By using setFlags() with the
FLAGS_PRINT flag in this example, you’ve made the stamp, line, and rectangle visible

Listing 7.25 TimetableAnnotations3

Adds rubber stamp
annotation

C Adapts
coordinates
to rotation

D Defines
border style

Sets flag
to print

annotation

B

Adds line
annotation

B

BSets flag
to print

annotation

E Defines
border width

Adds rectangle
annotation

B

Licensed to Bruno Lowagie <bruno@lowagie.com>

226 CHAPTER 7 Making documents interactive
when printed. Note that this doesn’t include the sticky note. For instance, the opened
annotation saying that there are tickets available for Amores Perros won’t be printed;
only the dashed lines of the rectangle will be.

The width of the media box of a timetable page is smaller than its height, but you
define the annotation rectangle as if the page is in landscape orientation, because the
rotation of the page is 90 degrees. iText transforms this rectangle internally to make
sure it’s in the right place. To create a line annotation (or other annotations involving
coordinates, such as /Polygon and /PolyLine annotations), however, you need to pro-
vide extra coordinates. In this case, you have to perform the transformation yourself if
the media box is rotated.

You can change the border of the annotation using the setBorderStyle() method.
Using the BorderStyleDictionary object, you can create different border styles.

You can also change the border using the setBorder() method. This method expects
an object of type BorderArray.

NOTE The effect of D and E depends on the type of annotation, and even
on the viewer that is used. You’re not creating an appearance using graphics
state operators and operands in this example; it’s up to the viewer application
to decide how to render the annotation.

We could go on with more types of annotations and more properties, but this isn’t the
place or time to do so. This book doesn’t replace the PDF reference or ISO-32000-1,
and if we want to create interactive forms in the next chapter, we need to do a little bit
of JavaScript programming first.

7.4 JavaScript programming in PDF
You’ve already introduced JavaScript into your PDF files in section 7.1.3. You’ve added
document-level JavaScript, and you’ve created JavaScript actions triggered from a link
annotation or an event. But that isn’t the whole story. You didn’t know you were using
annotations at the time. Now that you do, you can do more cool things. At the end of
this section, you’ll even create a calculator application in a PDF. Along the way, you’ll
meet new types of annotations.

7.4.1 Triggering JavaScript from a button

The next chapter will be dedicated entirely to interactive forms. Forms consist of
fields, and fields are visualized using a special type of annotations: widget annotations.
In this section, we won’t create a fillable form yet, but we’ll experiment with the inter-
active features of widget annotations. In a first example, we’ll stamp the timetable PDF
once again. We’ll add two buttons at the bottom of the page to trigger menu actions.

PdfReader reader = new PdfReader(src);
int n = reader.getNumberOfPages();
PdfStamper stamper = new PdfStamper(reader, new FileOutputStream(dest));

Listing 7.26 ButtonsActions

C

D

E

Licensed to Bruno Lowagie <bruno@lowagie.com>

227JavaScript programming in PDF
PushbuttonField saveAs
 = new PushbuttonField(stamper.getWriter(),
 new Rectangle(636, 10, 716, 30), "Save");
saveAs.setBorderColor(BaseColor.BLACK);
saveAs.setText("Save");
saveAs.setTextColor(BaseColor.RED);
saveAs.setLayout(PushbuttonField.LAYOUT_LABEL_ONLY);
saveAs.setRotation(90);
PdfAnnotation saveAsButton = saveAs.getField();
saveAsButton.setAction(
 PdfAction.javaScript("app.execMenuItem('SaveAs')",
 stamper.getWriter()));
PushbuttonField mail = new PushbuttonField(stamper.getWriter(),
 new Rectangle(736, 10, 816, 30), "Mail");
mail.setBorderColor(BaseColor.BLACK);
mail.setText("Mail");
mail.setTextColor(BaseColor.RED);
mail.setLayout(PushbuttonField.LAYOUT_LABEL_ONLY);
mail.setRotation(90);
PdfAnnotation mailButton = mail.getField();
mailButton.setAction(
 PdfAction.javaScript("app.execMenuItem('AcroSendMail:SendMail')",
 stamper.getWriter()));
for (int page = 1; page <= n; page++) {
 stamper.addAnnotation(saveAsButton, page);
 stamper.addAnnotation(mailButton, page);
}
stamper.close();

You’re no longer using a static method of PdfAnnotation to create an instance.
Instead, you use a convenience class named PushbuttonField. This class allows you to
define the layout of the annotation in a programmer-friendly way. Once you’re done,
you use getField() to obtain the corresponding PdfAnnotation object, and you can
add a JavaScript action.

 The JavaScript method execMenuItem() executes a menu item in Adobe Reader. In
this case, clicking the buttons will have the same effect as if the user selected File > Save
a Copy, and File > Attach to Email.

 You’ve created buttons with a layout that only contained text (LAYOUT_LABEL_
ONLY). In the next example, we’ll look at how to introduce icons.

7.4.2 Showing and hiding an annotation

Do you also hate the aggressive advertisements that prevent you from viewing a web
page unless you click a button to make them disappear? If that’s the case, I have bad
news for you.

 I once talked to a manager responsible for a large newspaper group in a very small
country (Belgium). I bragged that The New York Times had used iText to publish news-
paper archives on the internet in the form of PDF documents. The manager said:
“Well, that’s nice, but we can’t do that. We have to make money with our content, and
it’s almost impossible to add ads to a PDF file. We can only do that in HTML.”

 I immediately created the PDF shown in figure 7.13 to prove him wrong.

Adds
annotations

Creates
pushbutton
object

Obtains
annotation

from
pushbutton
Licensed to Bruno Lowagie <bruno@lowagie.com>

228 CHAPTER 7 Making documents interactive
You’ll recognize the original PDF from chapter 4, but I’ve added a shameless ad to
promote this book on top of the existing content. The user can make it disappear by
clicking the top bar. The ad consists of two button fields.

Rectangle rect = new Rectangle(400, 772, 545, 792);
PushbuttonField button = new PushbuttonField(
 stamper.getWriter(), rect, "click");
button.setBackgroundColor(BaseColor.RED);
button.setBorderColor(BaseColor.RED);
button.setFontSize(10);
button.setText("Close this advertisement");
button.setImage(Image.getInstance(IMAGE));
button.setLayout(
 PushbuttonField.LAYOUT_LABEL_LEFT_ICON_RIGHT);
button.setIconHorizontalAdjustment(1);
PdfFormField menubar = button.getField();
String js = "var f1 = getField('click');

➥ f1.display = display.hidden;

➥ var f2 = getField('advertisement');

➥ f2.display = display.hidden;";
menubar.setAction(
 PdfAction.javaScript(js, stamper.getWriter()));
stamper.addAnnotation(menubar, 1);
rect = new Rectangle(400, 550, 545, 772);
button = new PushbuttonField(
 stamper.getWriter(), rect, "advertisement");
button.setBackgroundColor(BaseColor.WHITE);
button.setBorderColor(BaseColor.RED);
button.setText(
 "Buy the book iText in Action 2nd edition");
button.setTemplate(stamper.getImportedPage(ad, 1));
button.setLayout(
 PushbuttonField.LAYOUT_ICON_TOP_LABEL_BOTTOM);
PdfFormField advertisement = button.getField();
advertisement.setAction(
 new PdfAction("http://manning.com/lowagie2/"));
stamper.addAnnotation(advertisement, 1);

Listing 7.27 Advertisement

Figure 7.15
An advertisement
that can be clicked
away, added to an
existing document

B Sets text and
image as label
and icon

C Adds
JavaScript that
hides fields

D Sets text and
XObject as
label and icon

Adds link to book site
at Manning.com
Licensed to Bruno Lowagie <bruno@lowagie.com>

229JavaScript programming in PDF
In this example, you’re creating button fields with a label and an icon. You can use an
Image object for the icon B, or a PdfTemplate D (in this case, you’re using an
imported page). I’ve used this functionality in a real-world project to create online
examinations. Every question had a button that allowed the student to get a hint. If
that button was clicked, an annotation was made visible and a hidden field was set.
The value of this hidden field was posted together with the answers, so that the tutor
could see for which questions a hint was used.

 Some very simple JavaScript is used to hide (or reveal) the fields (or annotations) C.
You get a field instance with the getField() JavaScript method for interactive fields, or
with getAnnot() for ordinary annotations. Then you change the properties of these
objects as explained in the JavaScript reference. In this example, clicking the upper but-
ton (named click) hides both buttons. Clicking the lower button (named advertise-
ment) opens the web page dedicated to this book at Manning.com.

 Pushbuttons aren’t always meant to be pushed (or clicked). In the next example,
we’ll use pushbuttons as “hot areas” that trigger an action when the mouse moves over
them.

7.4.3 A popup triggered by a button that doesn’t need to be pushed

A popup annotation has no appearance stream or associated actions of its own. It’s
always associated with a parent annotation. Figure 7.14 shows a text annotation as a
popup. If you take a close look at the image, you’ll also see a widget annotation on top
of the Donnie Darko poster. If you move the mouse inside the borders of this widget
annotation, the popup with the text annotation will appear; if you move the mouse
pointer outside the widget annotation, the popup will disappear.

Figure 7.15 Text annotation in a popup using a button and its events
Licensed to Bruno Lowagie <bruno@lowagie.com>

230 CHAPTER 7 Making documents interactive
Here is the mechanism behind this custom-made tooltip.

public void addPopup(PdfStamper stamper, Rectangle rect,
 String title, String contents, String imdb)
 throws IOException, DocumentException {
 PdfAnnotation text = PdfAnnotation.createText(stamper.getWriter(),
 rect, title, contents, false, "Comment");
 text.setName(String.format("IMDB%s", imdb));
 text.setFlags(
 PdfAnnotation.FLAGS_READONLY | PdfAnnotation.FLAGS_NOVIEW);
 PdfAnnotation popup = PdfAnnotation.createPopup(stamper.getWriter(),
 new Rectangle(rect.getLeft() + 10, rect.getBottom() + 10,
 rect.getLeft() + 200, rect.getBottom() + 100), null, false);
 popup.put(PdfName.PARENT, text.getIndirectReference());
 text.put(PdfName.POPUP, popup.getIndirectReference());
 stamper.addAnnotation(text, 1);
 stamper.addAnnotation(popup, 1);
 PushbuttonField field = new PushbuttonField(stamper.getWriter(),
 rect, String.format("b%s", imdb));
 PdfAnnotation widget = field.getField();
 PdfAction enter =
 PdfAction.javaScript(String.format(JS1, imdb), stamper.getWriter());
 widget.setAdditionalActions(PdfName.E, enter);
 PdfAction exit =
 PdfAction.javaScript(String.format(JS2, imdb), stamper.getWriter());
 widget.setAdditionalActions(PdfName.X, exit);
 stamper.addAnnotation(widget, 1);
}

You create a text annotation for every movie. Each annotation has a unique name,
IMDBxyz, where xyz is a key in IMDB. You also set the annotation flags so that the text
area will be read-only and hidden.
You create a popup annotation using a rectangle that’s slightly different from the orig-
inal one for two reasons: it must be big enough so that it can show the text without
scrollbars, and it shouldn’t cover the entire movie poster.
You define the text annotation as the parent of the popup annotation. You tell the
text annotation that the popup annotation is ... its popup.
You add both annotations to the stamper—or to the writer if you’re creating a docu-
ment from scratch. So far, the text annotation isn’t visible.
You create a PushbuttonField and obtain the widget annotation using getField().
You add JavaScript actions to the widget annotation as additional actions.
You add the widget annotation to the stamper.
This listing doesn’t define a “push” action for the button, because you’re not looking
to trigger an action when the user clicks the button. Instead you’ve defined two
additional actions. One action is triggered when the mouse enters the area defined by
the button:

public static final String JS1 =
 "var t = this.getAnnot(this.pageNum, 'IMDB%1$s'); t.popupOpen = true;

➥ var w = this.getField('b%1$s'); w.setFocus();";

Listing 7.28 MoviePosters2

B

C

D

E

F

G

H

B

C

D

E

F

G

H

Licensed to Bruno Lowagie <bruno@lowagie.com>

231JavaScript programming in PDF
Another action is triggered when the mouse exits the area defined by the button:

public static final String JS2 =
 "var t = this.getAnnot(this.pageNum, 'IMDB%s'); t.popupOpen = false;";

In these snippets, you set the popupOpen property of the text annotation to true or
false depending on the additional action type you want. When the popup is opened,
you also set the focus to the corresponding button field.

 Enter (“E”) and exit (“X”) aren’t the only additional actions that can be defined
for widget annotations.

7.4.4 Additional actions

Table 7.4 lists the annotation events that are available. Most of these additional
actions are used to enhance the user experience while filling out a form. In the next
chapter, you’ll use JavaScript to change the content of a text field to uppercase, to

Table 7.4 Additional actions of an interactive form field

Entry PdfName Meaning The action will be performed when...

PdfName.E /E Enter ... the cursor enters the annotation’s active area.

PdfName.X /X Exit ... the cursor exits the annotation’s active area.

PdfName.D /D Down ... the mouse button is pressed inside the annotation’s
active area.

PdfName.U /U Up ... the mouse button is released inside the annotation’s
active area.

PdfName.FO /Fo Focus ... the annotation receives the input focus.

PdfName.BL /Bl Blurred ... the annotation loses the input focus.

PdfName.K /K Keystroke ... the user modifies the content of the field using a key-
stroke, or by selecting an entry in a list box.

PdfName.F /F Formatted ... the content of the field is about to be formatted.

PdfName.V /V Validate ... the field value has changed. This action can check the
new value for its validity.

PdfName.C /C Calculate ... the field needs to be recalculated.

PdfName.PO /PO Page
open

... the page containing the annotation is opened. The
action will be performed after the open action of the docu-
ment and after the PAGE_OPEN action if such an action is
defined (see section 7.1.4).

PdfName.PC /PC Page
close

... the page containing the annotation is closed. The action
will be performed before the PAGE_CLOSE action.

Pdfname.PV /PV Page
visible

... the page containing the annotation becomes visible in
the viewer application’s user interface.

PdfName.PI /PI Page
invisible

... the page containing the annotation is no longer visible in
the viewer application’s user interface.
Licensed to Bruno Lowagie <bruno@lowagie.com>

232 CHAPTER 7 Making documents interactive
validate a date field, and so on. But
we’ll finish this section as promised:
with a PDF calculator application writ-
ten in JavaScript.

7.4.5 A PDF calculator

Figure 7.15 looks like the number pad
of a simple calculator. In reality, it’s a
PDF file with buttons and text fields.

 Listing 7.29 contains the method
addTextField(). It creates a text field
that shows the “display” of the calcula-
tor (named result), and an extra text
field (named move). The content of this
second text field will change when you
move over the button fields.

public void addTextField(PdfWriter writer,
 Rectangle rect, String name) {
 PdfFormField field = PdfFormField
 .createTextField(writer, false, false, 0);
 field.setFieldName(name);
 field.setWidget(rect, PdfAnnotation.HIGHLIGHT_NONE);
 field.setQuadding(PdfFormField.Q_RIGHT);
 field.setFieldFlags(PdfFormField.FF_READ_ONLY);
 writer.addAnnotation(field);
}
public void addPushButton(PdfWriter writer,
 Rectangle rect, String btn, String script) {
 float w = rect.getWidth();
 float h = rect.getHeight();
 PdfFormField pushbutton
 = PdfFormField.createPushButton(writer);
 pushbutton.setFieldName("btn_" + btn);
 pushbutton.setWidget(rect, PdfAnnotation.HIGHLIGHT_PUSH);
 PdfContentByte cb = writer.getDirectContent();
 pushbutton.setAppearance(
 PdfAnnotation.APPEARANCE_NORMAL,
 createAppearance(cb, btn, BaseColor.GRAY, w, h));
 pushbutton.setAppearance(
 PdfAnnotation.APPEARANCE_ROLLOVER,
 createAppearance(cb, btn, BaseColor.RED, w, h));
 pushbutton.setAppearance(
 PdfAnnotation.APPEARANCE_DOWN,
 createAppearance(cb, btn, BaseColor.BLUE, w, h));
 pushbutton.setAdditionalActions(PdfName.U,
 PdfAction.javaScript(script, writer));
 pushbutton.setAdditionalActions(PdfName.E,

Listing 7.29 Calculator

Creates single line,
read-only, right-
aligned text field

Creates
button field

Sets different
appearances

Adds additional
actions

Figure 7.15 A calculator application in a
PDF demonstrating the use of annotations
and JavaScript
Licensed to Bruno Lowagie <bruno@lowagie.com>

233JavaScript programming in PDF
 PdfAction.javaScript(
 "this.showMove('" + btn + "');", writer));
 pushbutton.setAdditionalActions(PdfName.X,
 PdfAction.javaScript(
 "this.showMove(' ');", writer));
 writer.addAnnotation(pushbutton);
}
public PdfAppearance createAppearance(PdfContentByte cb,
 String btn, BaseColor color, float w, float h) {
 PdfAppearance app = cb.createAppearance(w, h);
 app.setColorFill(color);
 app.rectangle(2, 2, w - 4, h - 4);
 app.fill();
 app.beginText();
 app.setColorFill(BaseColor.BLACK);
 app.setFontAndSize(bf, h / 2);
 app.showTextAligned(
 Element.ALIGN_CENTER, btn, w / 2, h / 4, 0);
 app.endText();
 return app;
}

There are 17 buttons on the calculator: 10 digits, 4 operators, 1 equals sign, 1 button
to clear the display, and 1 button to clear the display and the memory. Observe that
listing 7.29 creates different appearances:

■ APPEARANCE_NORMAL—This appearance is used when the annotation is not inter-
acting with the user. It’s also used for printing the annotation.

■ APPEARANCE_ROLLOVER—This appearance is used when the user moves the cur-
sor into the annotation’s active area without pressing the mouse button.

■ APPEARANCE_DOWN—This appearance is used when the mouse button is pressed
or held down within the annotation’s active area.

In the calculator application, the buttons are gray when the document is opened. As
soon as you move over a button with the mouse, its color is changed to red. When you
click the button, it’s blue as long as you keep the mouse button down. This mecha-
nism is often used for link annotations, to show the end user that a specific area can
be clicked to go to another page or URL. The different appearances are created the
same way you created XObjects in chapter 3.

 You’ve used additional actions to change the value of the text field named move.
You can find the implementation of the showMove() function in listing 7.30. Clicking
a digit triggers the augment() method. The register() method is called when the
end user clicks an operator. The calculateResult() method corresponds to the
equals sign. The C and CE buttons trigger reset().

var previous = 0;
var current = 0;
var operation = '';

Listing 7.30 calculator.js

Adds additional
actions

Creates an
appearance
Licensed to Bruno Lowagie <bruno@lowagie.com>

234 CHAPTER 7 Making documents interactive
function showCurrent() {
 this.getField('result').value = current;
}
function showMove(s) {
 this.getField('move').value = s;
}
function augment(digit) {
 current = current * 10 + digit;
 showCurrent();
}
function register(op) {
 previous = current;
 current = 0;
 operation = op;
 showCurrent();
}
function calculateResult() {
 if (operation == '+')
 current = previous + current;
 else if (operation == '-')
 current = previous - current;
 else if (operation == '*')
 current = previous * current;
 else if (operation == '/')
 current = previous / current;
 showCurrent();
}
function reset(all) {
 current = 0;
 if(all) previous = 0;
 showCurrent();
}
showCurrent();

You compose a number by clicking the digits. This number is stored in the current
variable until you click an operator. Then it’s moved to the previous variable; the
operator that was clicked is stored in the operator variable. A new current number is
composed. Clicking the equals sign causes the current number to be updated with
the previous number using the operator.

 This was fun, wasn’t it? Let’s take a look at what we’ve done in this chapter.

7.5 Summary
In this chapter, we’ve explored different interactive features that can be added to a
document. You already knew that links are actions that jump to a destination, but now
you’ve learned how to create explicit destinations, how to retrieve named destinations
from an existing document, and how to preserve links and destinations when concate-
nating different PDF documents. You found out that there are other types of actions
besides link actions; for instance, JavaScript actions. You’ve used this knowledge to
create bookmarks. You also learned how to retrieve and manipulate bookmarks in
existing documents. For instance, how to combine the bookmarks of different PDF
documents that are concatenated.
Licensed to Bruno Lowagie <bruno@lowagie.com>

235Summary
 Then you discovered that the links you’ve been creating are a special type of anno-
tation. You used text annotations to get acquainted with the concept, and you’ve
experimented with file attachment, stamp, line, and rectangle annotations. Eventu-
ally, you were even able to create an application in a PDF using widget annotations and
JavaScript.

 In the next chapter, we’ll continue working with these widget annotations, and
we’ll discover how they’re related to interactive form fields. Instead of creating a form
using Open Office, as you did in the previous chapter, you’ll create a form using iText.
Licensed to Bruno Lowagie <bruno@lowagie.com>

Filling out
 interactive forms
Adobe products support two ways to create, view, and fill out interactive PDF forms.
One is based on AcroForm technology. These forms are defined using PDF objects that
correspond to subclasses of the PdfObject object in iText: PdfDictionary, PdfAr-
ray, and so on. We’ve already created a form like this with Open Office in chapter 6.

 The other type of form uses the XML Forms Architecture (XFA). These are created
with the Designer tool that ships with Acrobat. You’ll learn how to fill out an XFA form
in the second part of this chapter. First, we’ll have a closer look at AcroForms.

This chapter covers
■ Creating AcroForms using iText
■ Manipulating AcroForm fields
■ Manipulating XFA forms
■ Filling out Reader-enabled forms
236

Licensed to Bruno Lowagie <bruno@lowagie.com>

237Introducing AcroForms
8.1 Introducing AcroForms
You created form fields in the previous chapter. As you saw, you had to use the getAn-
not() method in JavaScript to get an annotation object from a specific page. But you
used getField() (without specifying a page) when the annotation corresponded to a
form field. The best way to explain the relationship between a widget annotation and
a form field is to quote the definition of a form field in ISO-32000-1:

Each field in a document’s interactive form shall be defined by a field dictionary. For
purposes of definition and naming, the fields can be organized hierarchically and can
inherit attributes from their ancestors in the field hierarchy. A field’s children in the
hierarchy may also include widget annotations that define its appearance on the page.

—ISO-32000-1, section 12.7.1

This definition tells us that fields and widget annotations are two different types of
objects. A field is an entry in a form; a widget annotation is its visual representation.
However,

As a convenience, when a field has only a single associated widget annotation, the
contents of the field dictionary and the annotation dictionary may be merged into a
single dictionary containing entries that pertain to both a field and an annotation.

—ISO-32000-1 section 12.5.6.19

That’s why the iText PdfFormField class extends PdfAnnotation, which is in turn a
subclass of PdfDictionary. We keep the field and widget information in one diction-
ary. As soon as you add a field dictionary to a PDF, iText creates a form:

An interactive form is a collection of fields for gathering information interactively from
the user. A PDF document may contain any number of fields appearing on any
combination of pages, all of which make up a single, global interactive form spanning
the entire document.

—ISO-32000-1 section 12.7.1

Each PDF document can contain one form, consisting of different types of fields. The
type of a field is defined by the /FT value in the field dictionary.

 AcroForms support four types of fields:

■ /Btn—Button fields
■ /Tx—Text fields
■ /Ch—Choice fields
■ /Sig—Signature fields

We’ll discuss button, text, and choice fields in the next three sections. We’ll deal with
signature fields in chapter 12.
Licensed to Bruno Lowagie <bruno@lowagie.com>

238 CHAPTER 8 Filling out interactive forms
8.2 Selecting states or trigger actions with button fields
You created buttons in the previous chapter: buttons with and without icons, buttons
with and without actions. Now we’re going to look at the different types of buttons
that are available:

■ Radio button fields—These contain a set of related buttons that can each be on
or off. Typically, at most one radio button in a set may be on at any given time,
and selecting any one of the buttons automatically deselects all the others.

■ Check boxes—These can toggle between two states, on and off.
■ Pushbuttons—These are purely interactive controls that respond immediately to

user input without retaining a permanent value.

Figure 8.1 shows examples of each type of button field.

In listing 7.29, you created a pushbutton field using the createPushButton() method.
There are more static methods for creating different form fields in the PdfFormField
class, but they’re mainly there for internal use by iText.

 In listings 7.26, 7.27, and 7.28, you used the convenience class PushbuttonField to
create pushbutton fields. You obtained an instance of the PdfFormField class using
getField(). The PushbuttonField class extends BaseField, and it has two siblings:
RadioCheckField and TextField. These classes help us shape the widget annotations
for the field in a programmer-friendly way. In the upcoming examples, you’ll learn how
to use the appropriate convenience class whenever possible. Creating widget annota-
tions for a radio field, for instance, is best done with the RadioCheckField class.

8.2.1 Radio fields and radio buttons

A radio button field is represented by a set of related buttons.

PdfContentByte canvas = writer.getDirectContent();
Font font = new Font(FontFamily.HELVETICA, 18);
Rectangle rect;
PdfFormField field;

Listing 8.1 Buttons.java

Figure 8.1 A PDF file with
different button fields
Licensed to Bruno Lowagie <bruno@lowagie.com>

239Selecting states or trigger actions with button fields
PdfFormField radiogroup
 = PdfFormField.createRadioButton(writer, true);
radiogroup.setFieldName("language");
RadioCheckField radio;
for (int i = 0; i < LANGUAGES.length; i++) {
 rect = new Rectangle(
 40, 806 - i * 40, 60, 788 - i * 40);
 radio = new RadioCheckField(
 writer, rect, null, LANGUAGES[i]);
 radio.setBorderColor(GrayColor.GRAYBLACK);
 radio.setBackgroundColor(GrayColor.GRAYWHITE);
 radio.setCheckType(RadioCheckField.TYPE_CIRCLE);
 field = radio.getRadioField();
 radiogroup.addKid(field);
 ColumnText.showTextAligned(canvas, Element.ALIGN_LEFT,
 new Phrase(LANGUAGES[i], font), 70, 790 - i * 40, 0);
}
writer.addAnnotation(radiogroup);

Radio buttons are an exception to the “use a convenience class” rule: the parent field
is created using the static method createRadioButton() B. You then use the
RadioCheckField class to shape the widgets C.

TYPES OF RADIO AND CHECK BOX WIDGET ANNOTATIONS

You can choose one of the types listed in table 8.1 as a parameter for setCheckType()
to let iText create appearances for the on and off states of the button. The second col-
umn in the table contains the character code for the ZapfDingbats character that’s used
to check the radio or check box widget (ZapfDingbats is one of the standard type 1 fonts
available in every PDF viewer).

The default for radio field widgets is TYPE_CIRCLE, so the line setting the type in list-
ing 8.1 was redundant. These types also apply to check boxes; the default for check
boxes is TYPE_CHECK.

 In listing 8.1, we used the LANGUAGES array containing five Strings to add five
radio fields on the same page. Adding radio buttons to different pages is more
complex.

Table 8.1 Different RadioCheckField types

Code char Description

TYPE_CHECK 4 A square with a check mark (when selected); the default for check boxes.

TYPE_CIRCLE 1 A circle with a bullet (when selected); the default for radio fields.

TYPE_CROSS 8 A square with an X (when selected).

TYPE_DIAMOND u A square with a diamond (when selected).

TYPE_SQUARE n A square with a filled square (when selected).

TYPE_STAR H A square with a five-pointed star (when selected).

B Creates
parent
radio field

C Creates radio
widget using
helper class

Creates radio
field child

Adds radio
parent to writer
Licensed to Bruno Lowagie <bruno@lowagie.com>

240 CHAPTER 8 Filling out interactive forms
FIELDS SPANNING DIFFERENT PAGES

To create all the children of the radio field in advance, define the page number where
they’ll appear B even before the page is created.

PdfFormField radiogroup
 = PdfFormField.createRadioButton(writer, true);
radiogroup.setFieldName("language");
Rectangle rect = new Rectangle(40, 806, 60, 788);
RadioCheckField radio;
PdfFormField radiofield;
for (int page = 0; page < LANGUAGES.length;) {
 radio = new RadioCheckField(writer, rect, null, LANGUAGES[page]);
 radio.setBackgroundColor(new GrayColor(0.8f));
 radiofield = radio.getRadioField();
 radiofield.setPlaceInPage(++page);
 radiogroup.addKid(radiofield);
}
writer.addAnnotation(radiogroup);
for (int i = 0; i < LANGUAGES.length; i++) {
 cb.beginText();
 cb.setFontAndSize(bf, 18);
 cb.showTextAligned(Element.ALIGN_LEFT, LANGUAGES[i], 70, 790, 0);
 cb.endText();
 document.newPage();
}

Adding check boxes is much easier, because each check box can only have two values:
it’s selected or not. There’s no need to differentiate between the field and its widgets.

8.2.2 Check boxes

In the previous examples, iText has created the appearance of the radio buttons based
on one of the types defined in table 8.1. This mechanism also works for check boxes.
If you don’t like the predefined appearances, you can also create custom appearances.
In listing 7.29, you created different PdfAppearance objects for a pushbutton. This is
how you create normal appearances for the On and Off states of a check box.

PdfAppearance[] onOff = new PdfAppearance[2];
onOff[0] = canvas.createAppearance(20, 20);
onOff[0].rectangle(1, 1, 18, 18);
onOff[0].stroke();
onOff[1] = canvas.createAppearance(20, 20);
onOff[1].setRGBColorFill(255, 128, 128);
onOff[1].rectangle(1, 1, 18, 18);
onOff[1].fillStroke();
onOff[1].moveTo(1, 1);
onOff[1].lineTo(19, 19);
onOff[1].moveTo(1, 19);
onOff[1].lineTo(19, 1);
onOff[1].stroke();

Listing 8.2 RadioButtons.java

Listing 8.3 Buttons.java

Creates parent
radio field

Creates radio widget
using helper class

Defines page
where child
will be addedB

Creates radio
field child

Adds radio
parent to writer

Creates array
with two
appearances
Licensed to Bruno Lowagie <bruno@lowagie.com>

241Selecting states or trigger actions with button fields
RadioCheckField checkbox;
for (int i = 0; i < LANGUAGES.length; i++) {
 rect = new Rectangle(
 180, 806 - i * 40, 200, 788 - i * 40);
 checkbox = new RadioCheckField(
 writer, rect, LANGUAGES[i], "on");
 field = checkbox.getCheckField();
 field.setAppearance(
 PdfAnnotation.APPEARANCE_NORMAL, "Off", onOff[0]);
 field.setAppearance(
 PdfAnnotation.APPEARANCE_NORMAL, "On", onOff[1]);
 writer.addAnnotation(field);
 ColumnText.showTextAligned(canvas, Element.ALIGN_LEFT,
 new Phrase(LANGUAGES[i], font), 210, 790 - i * 40, 0);
}

Note that "On" and "Off" are also the values that can be used to set the field when you
manipulate the form. If you don’t know which values are available because you didn’t
create the fields yourself, you need the getAppearanceStates() method.

PdfReader reader = new PdfReader(src);
PdfStamper stamper = new PdfStamper(reader, new FileOutputStream(dest));
AcroFields form = stamper.getAcroFields();
String[] radiostates = form.getAppearanceStates("language");
form.setField("language", radiostates[4]);
for (int i = 0; i > LANGUAGES.length; i++) {
 String[] checkboxstates = form.getAppearanceStates("English");
 form.setField(LANGUAGES[i], checkboxstates[i % 2 == 0 ? 1 : 0]);
}
stamper.close();

One of the problems of having plenty of iText examples available online is that many
developers copy and paste code snippets without really knowing what they’re doing.
For instance, they copy this:

form.setField("checkbox", "On");

This line works for this example, but only because On is the name of one of the possi-
ble states of the check box we want to check. Other check boxes could have other val-
ues, such as Yes, or true, or whatever was defined for the checked state of the field.

 Let’s finish our overview of button fields with some more information about
pushbuttons.

8.2.3 Pushbuttons

First you need to create a pushbutton.

rect = new Rectangle(300, 806, 360, 788);
PushbuttonField button
 = new PushbuttonField(writer, rect, "Buttons");

Listing 8.4 Buttons.java

Listing 8.5 Buttons.java

Creates check
box widget
using helper
class Creates check

box field

Sets normal
appearances

Adds check box
field to writer

Creates helper class
to create widget
Licensed to Bruno Lowagie <bruno@lowagie.com>

242 CHAPTER 8 Filling out interactive forms
button.setBackgroundColor(new GrayColor(0.75f));
button.setBorderColor(GrayColor.GRAYBLACK);
button.setBorderWidth(1);
button.setBorderStyle(
 PdfBorderDictionary.STYLE_BEVELED);
button.setTextColor(GrayColor.GRAYBLACK);
button.setFontSize(12);
button.setText("Push me");
button.setLayout(
 PushbuttonField.LAYOUT_ICON_LEFT_LABEL_RIGHT);
button.setScaleIcon(PushbuttonField.SCALE_ICON_ALWAYS);
button.setProportionalIcon(true);
button.setIconHorizontalAdjustment(0);
button.setImage(Image.getInstance(IMAGE));
field = button.getField();
field.setAction(
 PdfAction.javaScript("this.showButtonState()", writer));
writer.addAnnotation(field);

Clicking the pushbutton shown in figure 8.1 will trigger the showButtonState()
method. This method (which you should add as document-level JavaScript) opens an
alert box showing the state of the radio field and the check boxes.

BORDER STYLES

You’ve already defined colors with the methods setBackgroundColor() and setBor-
derColor() in listing 8.2. Now you can use setBorderWidth() and setBorderStyle()
to define the width and style of the border of a widget annotation. Possible values for
the style are:

■ STYLE_SOLID—A solid rectangle surrounding the annotation.
■ STYLE_DASHED—A dashed rectangle surrounding the annotation.
■ STYLE_BEVELED—A simulated embossed rectangle that appears to be raised

above the surface of the page.
■ STYLE_INSET—A simulated engraved rectangle that appears to be recessed

below the surface of the page.
■ STYLE_UNDERLINE—A single line along the bottom of the annotation rectangle.

You’ve already used methods with the same name in the previous chapter, when you
created annotations.

PUSHBUTTON LABELS AND ICONS

The content of the pushbutton consists of an icon and some text, because you
changed the layout using the setLayout() method in listing 8.5. Possible values for
specifying the layout are:

■ LAYOUT_LABEL_ONLY—No icon; caption only (the default).
■ LAYOUT_ICON_ONLY—No caption; icon only.
■ LAYOUT_ICON_TOP_LABEL_BOTTOM—Caption below the icon.
■ LAYOUT_LABEL_TOP_ICON_BOTTOM—Caption above the icon.
■ LAYOUT_ICON_LEFT_LABEL_RIGHT—Caption to the right of the icon.

Sets button
color and
style

Sets button
text

Sets button
icon

Creates
button field
Licensed to Bruno Lowagie <bruno@lowagie.com>

243Selecting states or trigger actions with button fields
■ LAYOUT_LABEL_LEFT_ICON_RIGHT—Caption to the left of the icon.
■ LAYOUT_LABEL_OVER_ICON—Caption overlaid directly on the icon.

Note that iText can change this parameter internally. If the icon doesn’t fit the button
rectangle, iText can decide to switch to LAYOUT_LABEL_ONLY.

 You can change the scaling behavior of the icon with setScaleIcon() and one of
the following values:

■ SCALE_ICON_ALWAYS—Always scale (the default).
■ SCALE_ICON_NEVER—Never scale.
■ SCALE_ICON_IS_TOO_BIG—Scale only when the icon is bigger than the

annotation.
■ SCALE_ICON_IS_TOO_SMALL—Scale only when the icon is smaller than the anno-

tation.

The aspect ratio of the icon can be preserved or unlocked when scaling by using the
setProportionalIcon() method.

 There are also two methods to adjust the position of the icon: setIconHorizonta-
lAdjustment() and setIconVerticalAdjustment(). The parameter is a float value
between 0 and 1 indicating the fraction of leftover space to allocate at the left (hori-
zontal adjustment) or at the bottom (vertical adjustment) of the icon. A value of 0
positions the icon at the left or bottom of the annotation rectangle. The default is 0.5,
which centers the icon.

 The PDF reference told you that pushbuttons don’t retain any permanent value.
That’s true, but you can also use buttons as placeholders for images. In listing 7.27,
you used a button to add an advertisement promoting this book to an existing PDF
document. But wouldn’t people prefer to see the nice woman on the cover instead of
me as Superman?

MANIPULATING A PUSHBUTTON

The AcroFields class you use to fill out fields also has a getNewPushbuttonFrom-
Field() method. With this method, you can obtain a new PushbuttonField object
with the same properties as an existing button in the form. After changing the proper-
ties of this object, you can replace the existing button with the new, altered one using
replacePushbuttonField().

PdfReader reader = new PdfReader(src);
PdfStamper stamper
 = new PdfStamper(reader, new FileOutputStream(dest));
AcroFields form = stamper.getAcroFields();
PushbuttonField ad
 = form.getNewPushbuttonFromField("advertisement");
ad.setLayout(PushbuttonField.LAYOUT_ICON_ONLY);
ad.setProportionalIcon(true);
ad.setImage(Image.getInstance(RESOURCE));
form.replacePushbuttonField("advertisement", ad.getField());
stamper.close();

Listing 8.6 ReplaceIcon.java

Replaces
pushbutton

Creates new
pushbutton

Changes some
properties
Licensed to Bruno Lowagie <bruno@lowagie.com>

244 CHAPTER 8 Filling out interactive forms
You’ll create more buttons in chapter 9, where you’ll learn how to submit the content
of a form to a server. For now, let’s continue our overview of the different types of
fields.

8.3 Filling in data with text fields
A text field is “a box or space for text fill-in data typically entered from a keyboard.
The text may be restricted to a single line or may be permitted to span multiple lines”
(ISO-32000-1 12.7.4.3). Figure 8.2 shows examples of such text boxes.

We’ll look at how to use the TextField class and the getTextField() method to
obtain a PdfFormField instance.

8.3.1 Creating text fields

The text fields in figure 8.2 were created using this code.

TextField text
 = new TextField(writer, rectangle, String.format("text_%s", tf));
text.setBackgroundColor(new GrayColor(0.75f));
switch(tf) {
case 1:
 text.setBorderStyle(PdfBorderDictionary.STYLE_BEVELED);
 text.setText("Enter your name here...");
 text.setFontSize(0);
 text.setAlignment(Element.ALIGN_CENTER);
 text.setOptions(TextField.REQUIRED);
 break;
case 2:
 text.setMaxCharacterLength(8);
 text.setOptions(TextField.COMB);
 text.setBorderStyle(PdfBorderDictionary.STYLE_SOLID);

Listing 8.7 TextFields.java

Figure 8.2 A PDF file with different text fields

Creates required
text field with
centered text

Creates text field to
which 8 characters
can be added
Licensed to Bruno Lowagie <bruno@lowagie.com>

245Filling in data with text fields
 text.setBorderColor(BaseColor.BLUE);
 text.setBorderWidth(2);
 break;
case 3:
 text.setBorderStyle(PdfBorderDictionary.STYLE_INSET);
 text.setOptions(TextField.PASSWORD);
 text.setVisibility(TextField.VISIBLE_BUT_DOES_NOT_PRINT);
 break;
case 4:
 text.setBorderStyle(PdfBorderDictionary.STYLE_DASHED);
 text.setBorderColor(BaseColor.RED);
 text.setBorderWidth(2);
 text.setFontSize(8);
 text.setText("Enter the reason why you want to win a free

➥ accreditation for the Foobar Film Festival");
 text.setOptions(TextField.MULTILINE | TextField.REQUIRED);
 break;
}
try {
 PdfFormField field = text.getTextField();
 if (tf == 3) {
 field.setUserName("Choose a password");
 }
 writer.addAnnotation(field);
}
catch(IOException ioe) {
 throw new ExceptionConverter(ioe);
}
catch(DocumentException de) {
 throw new ExceptionConverter(de);
}

In this listing, you’ll recognize several features you used earlier when defining but-
tons, but it also introduces some new methods.

TEXT PROPERTIES

Previously you used setTextColor(), setFontSize(), and setText() to define cap-
tions for pushbuttons. When the text didn’t fit a button, it was truncated. The behav-
ior is different for text fields. Three things can happen when an end user enters text
that doesn’t fit the text field rectangle:

■ The full text is present in the field, but it’s clipped by the annotation rectangle.
The end user has to scroll back and forth to see what has been entered.

■ The full text is shown, but the more characters that are added, the smaller the
font size gets. This is what happens if you set the font size to 0.

■ The end user can’t add more than the number of characters that was defined
with the setMaxCharacterLength() method.

The alignment of the text is set with the setAlignment() method. You use the same
parameters as you’ve used to define the alignment of paragraphs.

Creates text field to which 8
characters can be added

Creates
password
field

Creates
required,
multiline
text field
Licensed to Bruno Lowagie <bruno@lowagie.com>

246 CHAPTER 8 Filling out interactive forms
FAQ Why can’t I set the alignment to ALIGN_JUSTIFIED? If you check the PDF
reference, you’ll discover that justified text isn’t supported in AcroForm text
fields. It’s impossible to justify the text in a text box, unless you flatten the
form, using a technique that will be explained in section 8.5. Note that align-
ment is referred to as quadding in the PDF reference. There’s also a setQuad-
ding() method in the PdfFormField class.

Listing 8.7 uses the setVisibility() method to set some flags in the annotation
dictionary:

■ VISIBLE—The field is visible on screen and can be printed.
■ HIDDEN—The field is invisible.
■ VISIBLE_BUT_DOES_NOT_PRINT—The field is visible on screen, but is not

printed.
■ HIDDEN_BUT_PRINTABLE—The field is invisible on screen, but is printed.

When you created annotations, you needed to use setFlags() with the FLAGS_PRINT
parameter to make sure the annotation was printed. For widget annotations, iText
always uses VISIBLE as default.

FAQ How can I add a tooltip to a text field? You need to set the /TU key in the
field dictionary with the setUserName() method. This is an alternate name
that’s used in place of the actual field name wherever the field is identified in
the UI. This alternate field name will show up when the user moves the mouse
pointer over the field.

You can set flags in the field dictionary with the setOptions() method. You can or
('|') the following values:

■ READ_ONLY—The end user won’t be able to change the value of the field.
■ REQUIRED—The end user won’t be able to submit the form unless this field is

filled in.
■ MULTILINE—For text fields: the field can consist of multiple lines.
■ DO_NOT_SCROLL—Scrolling will be disabled for the field.
■ PASSWORD—The text entered in a text field will be obfuscated.
■ FILE_SELECTION—The field will be used to upload a file.
■ DO_NOT_SPELL_CHECK—Spell checking (when available) will be disabled.
■ EDIT—The values that are presented in a choice field can be edited.
■ MULTISELECT—The end user can select more than one value in a choice field.
■ COMB—An equal amount of space will be used for every character in the text in a

text field.

These are the field flags that can be set when you’re using a BaseField class to create
the form field. Note that some of the flags only make sense for specific classes.

 The COMB flag, for instance, is used in text fields to distribute the characters over a
fixed number of small boxes. In figure 8.2, these boxes are drawn by Adobe Reader
Licensed to Bruno Lowagie <bruno@lowagie.com>

247Filling in data with text fields
using the border style and properties of the widget annotation. COMB is often used to
enter data that needs to match boxes on preprinted forms; for example, bank forms
that can be used to wire money from one account to another.

 For every value in the BaseField options list, you’ll find a corresponding value in
the PdfFormField class. For instance, the value TextField.PASSWORD is equal to Pdf-
FormField.FF_PASSWORD. These were the original flags that could be set using the
setFieldFlags() method. There were also flags to define the field type. If you
wanted to create a pushbutton in earlier iText versions, you had to set the flag
FF_PUSHBUTTON, but nowadays this is implicitly done by the BaseField class.

8.3.2 Filling out text fields

You’ve already filled out text fields programmatically in section 6.3.5, but now you’ll
see not only how to change the value of a field, but also its properties.

PdfReader reader = new PdfReader(src);
PdfStamper stamper
 = new PdfStamper(reader, new FileOutputStream(dest));
AcroFields form = stamper.getAcroFields();
System.out.println(form.getField("text_4"));
form.setField("text_1", "Bruno Lowagie");
form.setFieldProperty("text_2", "fflags", 0, null);
form.setFieldProperty("text_2", "bordercolor", BaseColor.RED, null);
form.setField("text_2", "bruno");
form.setFieldProperty("text_3",
 "clrfflags", TextField.PASSWORD, null);
form.setFieldProperty("text_3",
 "setflags", PdfAnnotation.FLAGS_PRINT, null);
form.setField("text_3", "12345678", "xxxxxxxx");
form.setFieldProperty("text_4", "textsize", new Float(12), null);
form.regenerateField("text_4");
stamper.close();

You can retrieve the value of a field from an existing form with the getField()
method. In previous examples, you’ve used the setField() method to change this
value. Up until now, you’ve only used this method with two parameters: fieldname
and value.

 For text fields, it can also make sense to use a third parameter: display. This extra
String can be used to create the appearance of the text field. If you want to set the value
of a field to "1970-06-10" (because that’s the way my birthday is stored in your database
of dates to remember), but you want that value to be displayed as "10 Jun 1970" in the
form, you can use this line:

form.setField("birthday", "2007-06-10", "10 Jun 1970");

As soon as the user clicks the text field to change it, the actual value of the field will be
displayed.

Listing 8.8 TextFields.java
Licensed to Bruno Lowagie <bruno@lowagie.com>

248 CHAPTER 8 Filling out interactive forms
CHANGING THE FLAGS IN THE ANNOTATION OR FLAG DICTIONARY

The annotation and field flag can be changed using the setFieldProperty()
method. The first parameter refers to the field name, and the second is one of the val-
ues in table 8.2.

If the second parameter is "flags", "setflags", or "clrflags", the third parameter
is one of the flags that can be found in the PdfAnnotation class. For instance, adding
FLAGS_PRINT to the password field will change the visibility of that field from Text-
Field.VISIBLE_BUT_DOES_NOT_PRINT to TextField.VISIBLE.

 If the second parameter is "fflags", "setfflags", or "clrfflags", the third
parameter should be one of the BaseField options (or a PdfFormField constant start-
ing with FF_). For instance, removing the TextField.PASSWORD flag will change the
password field into an ordinary text field.

 The fourth parameter wasn’t used in listing 8.8; you just passed null. If the field
was represented by more than one widget (as is the case for radio fields), you could
pass an array of int values, to sum up the indexes of the widgets for which you want to
change the property. Passing null means you want to process all the widgets associ-
ated with the field.

CHANGING THE PROPERTIES OF WIDGET ANNOTATIONS IN EXISTING FORMS

There’s also a setFieldProperty() method to change the other properties of a field.
Pass the field name as the first parameter. Table 8.3 explains the meanings of the sec-
ond and third parameters. The fourth parameter has the same meaning as for the
setFieldProperty() method that was used to change flags.

FAQ I’ve changed the properties of a field, yet I don’t see any changes. Why not? iText
only creates new appearances for fields when the field value has changed. For
example, you change the font size of the field "text_4" in listing 8.8, but you
don’t change its value. If you want to see the font size change, you also have to
use the regenerateField() method.

Table 8.2 Changing the flags in the annotation or flag dictionary

Property Description

"flags" Replaces all the flags of the widget annotation.

"setflags" Sets one or more flags of the widget annotation.

"clrflags" Removes one or more flags of the widget annotation.

"fflags" Replaces all the flags of the form field.

"setfflags" Sets one or more flags of the form field.

"clrfflags" Removes one or more flags of the form field.
Licensed to Bruno Lowagie <bruno@lowagie.com>

249Filling in data with text fields
Up until now, we’ve avoided one property in the examples: you haven’t used set-
Font() yet, nor have you changed the "textfont" property.

8.3.3 Text fields and fonts

Figure 8.3 shows three different PDF files with a text field. The text added for the
three text fields is identical.

As you can see, the Chinese names are missing in the upper example; they’re present
in the second and third PDFs, but different fonts are used. The code used to create the
three different PDFs doesn’t differ much.

public void createPdf(
 String filename, boolean appearances, boolean font)
 throws IOException, DocumentException {
 Document document = new Document();
 PdfWriter writer
 = PdfWriter.getInstance(document, new FileOutputStream(filename));

Table 8.3 Changing the properties of a field

Property Value Description

"textfont" BaseFont Changes the font used in the field.

"textcolor" BaseColor Changes the text color.

"textsize" Float Changes the font size.

"bgcolor" BaseColor Changes the background color.

"bordercolor" BaseColor Changes the border color.

Listing 8.9 TextFieldFonts.java

Figure 8.3 Creating text fields containing Unicode characters
Licensed to Bruno Lowagie <bruno@lowagie.com>

250 CHAPTER 8 Filling out interactive forms
 document.open();
 writer.getAcroForm().setNeedAppearances(appearances);
 TextField text = new TextField(writer,
 new Rectangle(36, 806, 559, 780), "description");
 text.setOptions(TextField.MULTILINE);
 if (font) {
 BaseFont unicode = BaseFont.createFont(
 "c:/windows/fonts/arialuni.ttf",
 BaseFont.IDENTITY_H, BaseFont.EMBEDDED);
 text.setExtensionFont(BaseFont.createFont());
 ArrayList<BaseFont> list = new ArrayList<BaseFont>();
 list.add(unicode);
 text.setSubstitutionFonts(list);
 }
 text.setText(TEXT);
 writer.addAnnotation(text.getTextField());
 document.close();
}

So far you’ve been creating forms without B and C. This worked because you were
only using Western characters. The Chinese characters in the TEXT aren’t shown in the
appearance of the text field because iText doesn’t know where to find a font file con-
taining those characters.

 You can work around this by setting the NeedAppearances flag B. When set, this
flag instructs the PDF viewer to create the appearances for the widget annotations.
This way you pass the responsibility for rendering the text correctly to the application
that’s used to view the PDF. The same mechanism is triggered when the end user clicks
the text field to change the text. This won’t work on all systems: the PDF viewer needs
to have access to a font with the Chinese glyphs.

 C offers another workaround. With the setExtensionFont() method, you define
the main font that should be used for the field. In this case, the default font Helvetica.
Helvetica doesn’t know how to draw Chinese characters, so you use the setSubstitu-
tionFonts() method to add Arial Unicode. Whenever iText detects a character that
can’t be rendered with the extension font, it will go through the list of substitution
fonts. The first font that has a glyph definition for the needed character will be used
(see the third window in figure 8.3). In this case, iText will embed a subset of Arial
Unicode in the PDF file.

ADDING UNICODE TO TEXT FIELDS

As soon as you try to fill out the form with other Asian characters than the ones that
were in the TEXT string, you’ll run into trouble. That’s shown in the first and third win-
dows of figure 8.4, which replace the English-Chinese text with a text containing some
Korean characters. The upper three windows correspond to the three windows from
figure 8.3. As you can see, the workaround B still works (for me, on my OS), but C
fails because iText doesn’t know where to find a font containing the Korean glyphs.

 Again there are two ways to work around this.

Sets Need-
Appearances
flag if trueB

C Defines fonts
for text field
Licensed to Bruno Lowagie <bruno@lowagie.com>

251Filling in data with text fields
public void manipulatePdfFont1(String src, String dest)
 throws IOException, DocumentException {
 PdfReader reader = new PdfReader(src);
 PdfStamper stamper
 = new PdfStamper(reader, new FileOutputStream(dest));
 AcroFields form = stamper.getAcroFields();
 BaseFont unicode = BaseFont.createFont(
 "HYSMyeongJoStd-Medium", "UniKS-UCS2-H",
 BaseFont.NOT_EMBEDDED);
 form.setFieldProperty(
 "description", "textfont", unicode, null);
 form.setField("description", BINJIP);
 stamper.close();
}
public void manipulatePdfFont2(String src, String dest)
 throws IOException, DocumentException {
 PdfReader reader = new PdfReader(src);
 PdfStamper stamper
 = new PdfStamper(reader, new FileOutputStream(dest));
 AcroFields form = stamper.getAcroFields();
 BaseFont unicode = BaseFont.createFont(
 "c:/windows/fonts/arialuni.ttf",
 BaseFont.IDENTITY_H, BaseFont.EMBEDDED);
 form.addSubstitutionFont(unicode);
 form.setField("description", BINJIP);
 stamper.close();
}

In the first workaround, you change the "textfont" property B. I’m using a CJK font
(see chapter 11) because I want to render Korean characters, and CJK fonts don’t
need to be embedded. If I had used Arial Unicode, iText would have embedded the

Listing 8.10 TextFieldFonts.java

Figure 8.4 Filling out
text fields containing
Unicode characters

B Sets font
for field

C Adds substitution
font
Licensed to Bruno Lowagie <bruno@lowagie.com>

252 CHAPTER 8 Filling out interactive forms
complete font file, which would have resulted in a huge file size. It’s important to
choose your font wisely.

 In the second workaround, you add a substitution font C. This is similar to the
workaround you used when creating the text field, and it has the same disadvantage:
as soon as the end user starts typing something else in the text field, you depend
entirely on the fonts that are available to the viewer application on the OS.

 We’ll conclude this section about text fields with an example that uses JavaScript to
validate and adapt the content that was entered by an end user.

8.3.4 Validating text fields

Table 7.4 contained an overview of all the additional actions that could be added to an
interactive form field. You’ve used some of these actions to write an application in
PDF, but their primary use is to enhance the user experience when filling out a form.

TextField date =
 new TextField(writer, new Rectangle(36, 806, 126, 780), "date");
date.setBorderColor(new GrayColor(0.2f));
PdfFormField datefield = date.getTextField();
datefield.setAdditionalActions(
 PdfName.V, PdfAction.javaScript(
 "AFDate_FormatEx('dd-mm-yyyy');", writer));
writer.addAnnotation(datefield);
TextField name
 = new TextField(writer, new Rectangle(130, 806, 256, 780), "name");
name.setBorderColor(new GrayColor(0.2f));
namefield.setAdditionalActions(
 PdfName.K, PdfAction.javaScript(
"event.change = event.change.toUpperCase();", writer));
writer.addAnnotation(namefield);

The first action B is triggered after the end user has filled in the date field. Adobe
Reader comes with canned functions that let you validate and format dates, times, cur-
rencies, and so on. The method AFDate_FormatEx() is one them. For instance, if you
enter "10 Jun 1970", it will be converted to "10-06-1970". If you enter something that
can’t be recognized as a date, the field is cleared.

 The second action C is performed upon every keystroke. You change the key that
was pressed to uppercase using the event object.

 With what you learned in chapter 7, you can create every validation script you
need, but now we’ll continue with another type of field that can be created using the
TextField class.

8.4 Selecting options with choice fields
Choice fields are defined in section 12.7.4.4 of ISO-32000-1. A choice field contains
several text items, one or more of which shall be selected as the field value. The items
may be presented to the user in one of the following two forms:

Listing 8.11 TextFieldActions.java

B Formats date
using pattern
"dd-mm-yyyy"

C Makes every
character
uppercase
Licensed to Bruno Lowagie <bruno@lowagie.com>

253Selecting options with choice fields
■ A scrollable list box—The end user can select one or more values from a fixed list.
■ A combo box—A drop-down list. The combo box may be accompanied by an edit-

able text box in which the user can type a value other than the predefined
choices.

Figure 8.5 demonstrates the different types of choice fields.

The first two are list boxes. As soon as you click the word “French” next to “Language
of the movie,” a scrollbar appears. The second list box was made big enough that scroll-
bars aren’t needed. The lower two choice fields are combo boxes. If you click the arrow
to the right, the full list of choices is shown. Let’s find out how these fields were created.

8.4.1 Creating lists and combo boxes

The fields shown in figure 8.5 were created using this code.

TextField text = new TextField(writer, rectangle,
 String.format("choice_%s", cf));
try {
 switch(cf) {
 case 1:
 text.setChoices(LANGUAGES);
 text.setChoiceExports(EXPORTVALUES);
 text.setChoiceSelection(2);
 writer.addAnnotation(text.getListField());
 break;
 case 2:
 text.setChoices(LANGUAGES);
 text.setBorderColor(BaseColor.GREEN);
 text.setBorderStyle(PdfBorderDictionary.STYLE_DASHED);
 text.setOptions(TextField.MULTISELECT);

Listing 8.12 ChoiceFields.java

Figure 8.5 A PDF file with different choice fields

B Creates
list box

C Creates
multiple
select list
boxes
Licensed to Bruno Lowagie <bruno@lowagie.com>

254 CHAPTER 8 Filling out interactive forms
 ArrayList<Integer> selections = new ArrayList<Integer>();
 selections.add(0);
 selections.add(2);
 text.setChoiceSelections(selections);
 PdfFormField field = text.getListField();
 writer.addAnnotation(field);
 break;
 case 3:
 text.setBorderColor(BaseColor.RED);
 text.setBackgroundColor(BaseColor.GRAY);
 text.setChoices(LANGUAGES);
 text.setChoiceExports(EXPORTVALUES);
 text.setChoiceSelection(4);
 writer.addAnnotation(text.getComboField());
 break;
 case 4:
 text.setChoices(LANGUAGES);
 text.setOptions(TextField.EDIT);
 writer.addAnnotation(text.getComboField());
 break;
 }
}
catch(IOException ioe) {
 throw new ExceptionConverter(ioe);
}
catch(DocumentException de) {
 throw new ExceptionConverter(de);
}

Observe that you’re using the TextField convenience class once again. This is an
iText design decision, based on the fact that drawing the appearance of a list or
combo box isn’t all that different from drawing the appearance of a text box. Instead
of using getTextField() to obtain a PdfFormField instance, you now have to use the
methods getListField() or getComboField(). You can use the same methods to set
properties as you used for the text field widgets.

 The values that are shown to the end user are set with the method setChoices().
In listing 8.12, the LANGUAGES array consists of five languages. In B and D, you use
setExportValues(), passing the EXPORTVALUES array. That array looks like this:

String[] EXPORTVALUES = { "EN", "DE", "FR", "ES", "NL" };

Every export value has to correspond with an option in the choice array. When the
form is submitted to a server, the export value will be used. For instance, if the end
user selects "English" and submits the form, the corresponding export value "EN"
will be submitted. Note that these export values aren’t used when you preselect an
option—the setChoiceSelection() method expects an int. For multiple select lists,
you can also use the setChoiceSelections() method with a list of integers.

 You don’t define export values in C and E; in this case, the full language name
will be sent to the server. In E, you set the EDIT flag, so the end user filling out the
form can even add languages that aren’t present in the LANGUAGES array.

 Now let’s find out how to manipulate the values of the choices in an existing PDF
document.

C Creates
multiple
select list
boxes

D Creates
combo box

E Creates editable
combo box
Licensed to Bruno Lowagie <bruno@lowagie.com>

255Refining the form-filling process
8.4.2 Manipulating lists and combo boxes

Let’s take the PDF you created in section 8.4.1 and pretend that you forgot which
options and export values are available in the choice fields of the form. How could
you retrieve those values? And how would you change the selection?

PdfReader reader = new PdfReader(src);
PdfStamper stamper = new PdfStamper(reader, new FileOutputStream(dest));
AcroFields form = stamper.getAcroFields();
form.setField("choice_1", "NL");
form.setListSelection("choice_2",
 new String[]{"German", "Spanish"});
String[] languages
 = form.getListOptionDisplay("choice_3");
String[] exportvalues
 = form.getListOptionExport("choice_3");
int n = languages.length;
String[] new_languages = new String[n + 2];
String[] new_exportvalues = new String[n + 2];
for (int i = 0; i < n; i++) {
 new_languages[i] = languages[i];
 new_exportvalues[i] = exportvalues[i];
}
new_languages[n] = "Chinese";
new_exportvalues[n] = "CN";
new_languages[n + 1] = "Japanese";
new_exportvalues[n + 1] = "JP";
form.setListOption("choice_3",
 new_exportvalues, new_languages);
form.setField("choice_3", "CN");
form.setField("choice_4", "Japanese");
stamper.close();

You already know the setField() method, but now you can also use the setListSe-
lection() method to choose more than one value in a multiple-select list box. You
can use the methods getListOptionDisplay() and getListOptionExport() to deter-
mine the available options. If you’re not happy with the available options, you can use
the setListOption() method to replace the sets of existing display and export values
with new arrays. Or, if the field is an editable combo box, you can set a value that isn’t
present in the choice field.

 Now that you know all the types of fields that can be used in an interactive form,
let’s have a look at issues you may encounter when filling out form fields.

8.5 Refining the form-filling process
Up until now, you’ve used field names without any structure. In this section, you’ll learn
how to create a field hierarchy. We’ll also look at ways to speed up the form-filling pro-
cess and to get more control over the flattening process.

 Figure 8.6 shows a form with four fields: a name, a login, a password, and a field for
extra info.

Listing 8.13 ChoiceFields.java (continued)

Selects one
option in
choice

Selects two options in
multiple-select choice

Gets options and
export values

Adds two languages
to choice

Selects option that
wasn’t in the choice
Licensed to Bruno Lowagie <bruno@lowagie.com>

256 CHAPTER 8 Filling out interactive forms
On the outside, there’s no significant difference between this form and the forms
we’ve created before, but when you start manipulating this form with iText, you’ll
notice that something is different on the inside: the fields have dots in their names.

8.5.1 Choosing field names

In previous examples, the fields had no (or almost no) hierarchy. The only exception
was for radio fields: the parent field had different unnamed children, one for every
possible value of the field. A similar hierarchy exists in the form shown in figure 8.6.
An empty field was created like this:

PdfFormField personal = PdfFormField.createEmpty(writer);
personal.setFieldName("personal");

This is a purely structural element. It’s not one of the types of fields we’ve discussed so
far in this chapter. It’s the parent of a series of child fields that are “adopted” and posi-
tioned in a cell event.

public class ChildFieldEvent implements PdfPCellEvent {
 protected PdfFormField parent;
 protected PdfFormField kid;
 protected float padding;
 public ChildFieldEvent(PdfFormField parent,
 PdfFormField kid, float padding) {
 this.parent = parent;
 this.kid = kid;
 this.padding = padding;
 }
 public void cellLayout(PdfPCell cell,
 Rectangle rect, PdfContentByte[] cb) {
 try {
 parent.addKid(kid);
 kid.setWidget(new Rectangle(
 rect.getLeft(padding), rect.getBottom(padding),
 rect.getRight(padding), rect.getTop(padding)),
 PdfAnnotation.HIGHLIGHT_INVERT);
 } catch (Exception e) {
 throw new ExceptionConverter(e);
 }
 }
}

Listing 8.14 ChildFieldEvent.java

Figure 8.6
Before: a form
with four fields
Licensed to Bruno Lowagie <bruno@lowagie.com>

257Refining the form-filling process
Here, the names of the kids you’re adding to the form are "name", "loginname",
"password", and "reason". These are the partial names of the field. When you fill out
the form using iText, you need the fully qualified name, which is constructed from the
partial field names of the field and all of its ancestors. The names are separated by a
period. In the simple form in figure 8.6, the parent element "personal" has four
children: "personal.name", "personal.loginname", "personal.password", and
"personal.reason".

 You can have two different fields with the same partial name, such as "name", pro-
vided they have a different parent, such as "sender.name" and "receiver.name".
Fully qualified field names are unique in the sense that fields with the same fully qual-
ified name must have the same field type, value, and default value. You can have dif-
ferent representations of fields with the same fully qualified name, provided that they
have the same parent, have no children of their own, and differ only in properties that
specify their visual appearance.

 This is important as soon as you start to fill out the form using iText.

8.5.2 Optimizing the filling process

When you filled out the movie data sheet in chapter 6, iText inspected the same
form 120 times—once for every movie in the database. Part of that work was redun-
dant. When filling out the same form multiple times, you can optimize the process
significantly by allowing iText to reuse objects that would otherwise have to be cre-
ated from scratch every time the form is filled out with different data.

FILLING OUT THE SAME FORM MULTIPLE TIMES

In this example, the form in figure 8.6 is filled out three times.

public static void main(String[] args)
 throws IOException, DocumentException {
 Subscribe subscribe = new Subscribe();
 subscribe.createPdf(FORM);
 HashMap<String,TextField> fieldCache
 = new HashMap<String,TextField>();
 subscribe.manipulatePdf(FORM, String.format(RESULT, 1),
 fieldCache, "Bruno Lowagie", "blowagie");
 subscribe.manipulatePdf(FORM, String.format(RESULT, 2),
 fieldCache, "Paulo Soares", "psoares");
 subscribe.manipulatePdf(FORM, String.format(RESULT, 3),
 fieldCache, "Mark Storer", "mstorer");
}
public void manipulatePdf(String src, String dest,
 HashMap<String,TextField> cache, String name, String login)
 throws IOException, DocumentException {
 PdfReader reader = new PdfReader(src);
 PdfStamper stamper
 = new PdfStamper(reader, new FileOutputStream(dest));
 AcroFields form = stamper.getAcroFields();
 form.setFieldCache(cache);

Listing 8.15 Subscribe.java

B Creates field
cache

Fills out form
three times

Tells form to
use field cache

C

Licensed to Bruno Lowagie <bruno@lowagie.com>

258 CHAPTER 8 Filling out interactive forms
 form.setExtraMargin(2, 0);
 form.removeField("personal.password");
 form.setField("personal.name", name);
 form.setField("personal.loginname", login);
 form.renameField(
 "personal.reason", "personal.motivation");
 form.setFieldProperty("personal.loginname",
 "setfflags", TextField.READ_ONLY, null);
 stamper.setFormFlattening(true);
 stamper.partialFormFlattening("personal.name");
 stamper.close();
}

Every time you fill out a form, you need to create new PdfStamper and AcroFields
instances. Inside the AcroFields object, iText will create a TextField object for every
text and choice field that’s encountered. This is an expensive operation: the original
form is read and every property is copied into the new TextField object.

 You can get a significant speed advantage if you create an empty HashMap B and
use it as a cache for these objects with the setFieldCache() method C. The first time
iText has to fill a form, an entry will be added to the cache for every text or choice
field that’s filled. This entry will be a key-value pair consisting of the field name and a
TextField object. The next time the form is filled out, iText will fetch that TextField
object, which will then be used to create a new appearance based on the new value
that was filled in with setField().

 In some cases, it may be necessary to adjust the appearance of a text field.

ADJUSTING THE OFFSET OF A TEXT FIELD

Appearances created by iText are an approximation of the way Adobe Reader renders
the content of a text field. Depending on the tool used to create the form and the
viewer used to open the form, the appearance created by iText won’t always corre-
spond to the appearance of the field when you click on it. This can be a serious prob-
lem when you want to flatten a form; there could be a consistent discrepancy of the
baseline and the X-offset for all of the text fields.

 You can work around this problem by using the setExtraMargin() method D,
which corrects the offset in X and Y directions by specifying extra margins to be
applied to every text field in the form.

 There’s more going on in listing 8.15: you’re also removing and renaming fields.
Moreover the form is flattened, but only partially.

8.5.3 Partial form flattening

In section 6.3.5, you created a template using Open Office. The fields were used as
placeholders; once they were filled in, you were no longer interested in the form. You
didn’t have the intention to change the data. With the setFormFlattening() method,
you threw away the internal form structure. Only the content of the fields was kept; it
was added at the absolute positions defined in the template. You won’t want this to
happen if you’re going to use iText to prefill a form, but you may want to make part of
the form read-only.

Applies extra margin
for all text fieldsDRemoves

field

Renames field

Makes field
read-only

Flattens form
partially
Licensed to Bruno Lowagie <bruno@lowagie.com>

259Refining the form-filling process
Suppose that the form shown in figure 8.6 is one of your standard forms. The first
time an end user is confronted with it, he or she has to enter a name, login name,
password, and motivation to get an accreditation for the festival. The form is then sub-
mitted to the server. The username and password are checked, and if the credentials
are correct, you want to allow the end user to change the motivation entry, but not the
name and login name. You also don’t need the user’s password anymore. You want the
form to look like figure 8.7.

 The form resembles the form shown in figure 8.6, with a few exceptions:

■ The password field is removed.
■ Internally, one of the field names has been changed.
■ The values of the name and loginname fields are still visible, but the end user

can no longer change them.

Let’s look at the different methods that can be used to achieve this.

REMOVING OR RENAMING FIELDS

There are three different methods that allow you to remove a field:

■ removeFieldFromPage(int page)—Removes all field widgets from a page.
Fields are removed if they have no other widgets on at least one other page.

■ removeField(String name, int page)—Removes the widgets from the field
with name name from page page. The field isn’t removed entirely if it has wid-
gets on another page.

■ removeField(String name)—Removes the entire field and all its widgets.

In this example, it’s better to remove the password field instead of flattening it because
it doesn’t make sense to print a series of stars where the password field used to be. You
don’t want to remove the field named "personal.reason", you only want to reuse it. In
section 6.4.3, you used renameField() before concatenating forms, and you can also use
this method to change "reason" into "motivation", but there are some caveats:

■ You can only use this method for fields that don’t have named children. The
following line won’t work:

form.renameField("personal", "sender");

■ If you rename a field, you can only change the partial name; the first part of the
fully qualified name has to be identical. This line won’t work either:

form.renameField("personal.reason", "motivation");

Figure 8.7 After: a
form with two fields
Licensed to Bruno Lowagie <bruno@lowagie.com>

260 CHAPTER 8 Filling out interactive forms
There are two ways to make a field read-only. Which is the better way to do it depends
on your requirements.

MAKING A FIELD READ-ONLY

In figure 8.7, you made the login name read-only with the setFieldProperty()
method. You set the flag TextField.READ_ONLY, and as a result the end user can no
longer change the login name in the form. The field isn’t flattened: you can still ask
the form for the content of this field. The following line will return "blowagie" when
used on the form shown in figure 8.7:

System.out.println(form.getField("personal.loginname"));

Note that it’s possible to remove the read-only flag with iText, Acrobat, or another
tool. You can even remove it using a JavaScript action executed in the PDF viewer.

 If you want the field to be removed, but you want to keep the content, you can use
setFormFlattening() but restrict the flattening process to a limited number of fields.
Only those fields will be flattened for which partialFormFlattening() was used. Flat-
tening will remove the field structure, so the following line will return null when used
on the form shown in figure 8.7:

System.out.println(form.getField("personal.name"));

Suppose that the way iText flattens PDF forms doesn’t meet your needs, in spite of the
tips and tricks we’ve looked at so far. You can work around this by taking control over
the flattening process.

8.5.4 Customized form flattening

I was once asked to work on a project that involved ads for used cars that had to
appear in newspapers and magazines. The design of the advertisement was always the
same: it contained the logo and the address of the company that sold used cars, but
the main part of the ad consisted of photos, descriptions, and the prices of cars that
were on sale that week. That content changed every week, because cars were con-
stantly being bought and sold.

CREATING AN ADVERTISEMENT

I’ve made a simplified version of that assignment using the movie database for the
Foobar Film Festival. See figure 8.8.

 Two forms are involved in this example. Take a look at figure 8.9. The form in the
back was created using Open Office. The form consists of a nice background and a
number of rectangular fields.

 The second form is the PDF shown in the foreground of figure 8.9. It’s a rectangle
with three fields. The upper field is used for an image: a picture of a used car in the
real-world example, a movie poster in our example. The middle field is used for text:
a description of the car or information about the film. The lower field could be filled
with the car price or the production year.
Licensed to Bruno Lowagie <bruno@lowagie.com>

261Refining the form-filling process
Figure 8.8 Advertisement for the Foobar Film Festival

Figure 8.9
Forms involved in
the Foobar Film
Festival ad
Licensed to Bruno Lowagie <bruno@lowagie.com>

262 CHAPTER 8 Filling out interactive forms
COMBINING WHAT YOU ALREADY KNOW

If we combine all the knowledge you’ve learned so far in chapters 6 to 8, we should be
able to get close to a solution that looks like the PDF in figure 8.8.

Document document = new Document();
PdfSmartCopy copy = new PdfSmartCopy(
 document, new FileOutputStream(RESULT));
document.open();
PdfReader reader;
PdfStamper stamper = null;
ByteArrayOutputStream baos = null;
AcroFields form = null;
int count = 0;
for (Movie movie : PojoFactory.getMovies(connection)) {
 if (count == 0) {
 baos = new ByteArrayOutputStream();
 reader = new PdfReader(RESOURCE);
 stamper = new PdfStamper(reader, baos);
 stamper.setFormFlattening(true);
 form = stamper.getAcroFields();
 }
 count++;
 PdfReader ad = new PdfReader(
 movieAds.fillTemplate(TEMPLATE, movie));
 PdfImportedPage page = stamper.getImportedPage(ad, 1);
 PushbuttonField bt =
 form.getNewPushbuttonFromField("movie_" + count);
 bt.setLayout(PushbuttonField.LAYOUT_ICON_ONLY);
 bt.setProportionalIcon(true);
 bt.setTemplate(page);
 form.replacePushbuttonField(
 "movie_" + count, bt.getField());
 if (count == 16) {
 stamper.close();
 reader = new PdfReader(baos.toByteArray());
 copy.addPage(copy.getImportedPage(reader, 1));
 count = 0;
 }
}
if (count > 0) {
 stamper.close();
 reader = new PdfReader(baos.toByteArray());
 copy.addPage(copy.getImportedPage(reader, 1));
}
document.close();

There’s no new functionality in listing 8.16, except that you haven’t learned yet what
the fillTemplate() method is about. You use this method in B and you can assume
that it returns a document containing information about a single movie as a byte[].
You create a PdfReader instance with this small PDF and use it as an icon for one of
the 16 buttons on the larger template C. Once 16 movies have been added, the large

Listing 8.16 MovieAds.java

BCreates single
movie ad

Creates final
document using
PdfSmartCopy

D

C Creates
one page
of final
document
Licensed to Bruno Lowagie <bruno@lowagie.com>

263Refining the form-filling process
template is full. You add the full page to a new document using PdfSmartCopy D, and
you continue on the next page.

 This may look like a complex example, but this is the code that was written for the
used cars advertisement. The fillTemplate() method is the only piece missing from
the puzzle.

THE MISSING PIECE OF THE PUZZLE

The field with the information about the used car (in our case, the movie informa-
tion) is a multiline text field. It’s impossible to fill such a field using different font
styles (normal, bold, italic), nor can text be left and right justified. You’ll also want the
font size to adapt to the length of the description. Because of all these specific require-
ments, it’s necessary to bypass the automatic form flattening.

public byte[] fillTemplate(String filename, Movie movie)
 throws IOException, DocumentException {
 ByteArrayOutputStream baos = new ByteArrayOutputStream();
 PdfReader reader = new PdfReader(TEMPLATE);
 PdfStamper stamper = new PdfStamper(reader, baos);
 AcroFields form = stamper.getAcroFields();
 BaseColor color = WebColors.getRGBColor(
 "#" + movie.getEntry().getCategory().getColor());
 PushbuttonField bt
 = form.getNewPushbuttonFromField(POSTER);
 bt.setLayout(PushbuttonField.LAYOUT_ICON_ONLY);
 bt.setProportionalIcon(true);
 bt.setImage(Image.getInstance(
 String.format(IMAGE, movie.getImdb())));
 bt.setBackgroundColor(color);
 form.replacePushbuttonField(POSTER, bt.getField());
 PdfContentByte canvas = stamper.getOverContent(1);
 float size = 12;
 FieldPosition f
 = form.getFieldPositions(TEXT).get(0);
 while (
 addParagraph(
 createMovieParagraph(movie, size), canvas, f, true)
 && size > 6) {
 size -= 0.2;
 }
 addParagraph(
 createMovieParagraph(movie, size), canvas, f, false);
 form.setField(YEAR, String.valueOf(movie.getYear()));
 form.setFieldProperty(YEAR, "bgcolor", color, null);
 form.setField(YEAR, String.valueOf(movie.getYear()));
 stamper.setFormFlattening(true);
 stamper.close();
 return baos.toByteArray();
}
public boolean addParagraph(
 Paragraph p, PdfContentByte canvas, FieldPosition f, boolean simulate)
 throws DocumentException {

Listing 8.17 MovieAds.java (continued)

B Replaces
POSTER button

C Fills out
TEXT field

D Fills out
YEAR field
Licensed to Bruno Lowagie <bruno@lowagie.com>

264 CHAPTER 8 Filling out interactive forms
 ColumnText ct = new ColumnText(canvas);
 ct.setSimpleColumn(f.position.getLeft(2), f.position.getBottom(2),
 f.position.getRight(2), f.position.getTop()); ct.addElement(p);
 return ColumnText.hasMoreText(ct.go(simulate));
}

There’s nothing new in B and D, but let’s take a look at C. You grab a direct content
layer using the method getOverContent(). You try adding a paragraph with the movie
information to a rectangle obtained with the getFieldPositions() method. First you
try a 12 pt font size, and you add the content using ColumnText in simulation mode. If
the paragraph doesn’t fit, you try with font size 11.8 pt, and so on. You continue until
the complete text fits the rectangle, or until the font has decreased to 6 pt (in which
case you truncate the content).

 The getFieldPositions() method returns a List of FieldPosition objects. Each
contains the page number (f.page), and the Rectangle object defining the coordi-
nates of a widget (f.position).

 With this example, we’ve explored the limits of what is possible with AcroForms.
It’s time to have a look at the other type of forms supported in PDF: forms based on
the XML Forms Architecture.

8.6 Introducing the XML Forms Architecture (XFA)
In this section, you’ll be introduced to the XML structure that’s used to define an XFA
form, and we’ll try out different alternatives to fill out different types of XFA forms.

 If you look at figure 8.10, it’s hard to see any difference between it and the forms
you’ve created and used in previous examples. End users won’t notice this is a differ-
ent kind of form.

With the next listing, you can inspect the PDF from the inside, and you’ll find out it’s
an XFA form.

public void readFieldnames(String src, String dest)
 throws IOException {
 PrintStream out = new PrintStream(new FileOutputStream(dest));
 PdfReader reader = new PdfReader(src);

Listing 8.18 XfaMovie.java

Figure 8.10 A static XFA form
Licensed to Bruno Lowagie <bruno@lowagie.com>

265Introducing the XML Forms Architecture (XFA)
 AcroFields form = reader.getAcroFields();
 XfaForm xfa = form.getXfa();
 out.println(
 xfa.isXfaPresent() ? "XFA form" : "AcroForm");
 Set<String> fields = form.getFields().keySet();
 for (String key : fields) {
 out.println(key);
 }
 out.flush();
 out.close();
}

In this method, you use the method isXfaPresent() to find out if the form is an XFA
form or an AcroForm. You also list the names of the fields.

 This is the content of the text file with the results:

XFA form
movies[0].movie[0].imdb[0]
movies[0].movie[0].duration[0]
movies[0].movie[0].title[0]
movies[0].movie[0].original[0]
movies[0].movie[0].year[0]

iText tells us that this is an XFA form B, and it returns a list of fields with square brack-
ets in their name C. These square brackets are typical for XFA. When listing 8.18 gen-
erates a result like this, your PDF contains two different form descriptions: one using
XFA technology and one using AcroForm technology. You can conclude that this is a
static XFA form.

8.6.1 Static XFA forms

Let’s pretend you don’t know you’re working with a static XFA form, and fill in the
form using the AcroFields class and the setField() method. This code will work cor-
rectly for most of the forms you’ll encounter.

public void fillData1(String src, String dest)
 throws IOException, DocumentException {
 PdfReader reader = new PdfReader(src);
 PdfStamper stamper
 = new PdfStamper(reader, new FileOutputStream(dest));
 AcroFields form = stamper.getAcroFields();
 form.setField("movies[0].movie[0].imdb[0]", "1075110");
 form.setField("movies[0].movie[0].duration[0]", "108");
 form.setField("movies[0].movie[0].title[0]", "The Misfortunates");
 form.setField("movies[0].movie[0].original[0]",
 "De helaasheid der dingen");
 form.setField("movies[0].movie[0].year[0]", "2009");
 stamper.close();
}

iText will fill out the AcroForm (as it did in all previous examples), and it will make
a fair attempt at filling out the XFA form simultaneously. In most cases, this works

Listing 8.19 XfaMovie.java (continued)

Checks if form
is XFA form

Lists field
names

B

C

Licensed to Bruno Lowagie <bruno@lowagie.com>

266 CHAPTER 8 Filling out interactive forms
transparently: you don’t even notice that the two different technologies exist next to
each other. However, if you look at figure 8.11, you’ll see that this is an example
where iText fails. Although you provided values for the year, duration, and the IMDB
ID, the corresponding fields remain empty.

 I deliberately created the three fields in a way that isn’t supported by iText. This
way I can explain the mechanism of XFA form filling with iText. There are different
workarounds to deal with this problem, but let’s inspect the XFA form first.

XFA FORMS: INTERNAL STRUCTURE

When creating an AcroForm using iText, you implicitly create PdfDictionary, PdfAr-
ray, and other PdfObject instances. XFA forms are totally different; they aren’t
defined using PDF objects. XFA forms are described in an XML stream that’s embed-
ded in the PDF file.

 You can extract this XML into a separate file.

public void readXfa(String src, String dest)
 throws IOException, ParserConfigurationException, SAXException,
 TransformerFactoryConfigurationError, TransformerException {
 FileOutputStream os = new FileOutputStream(dest);
 PdfReader reader = new PdfReader(src);
 XfaForm xfa = new XfaForm(reader);
 Document doc = xfa.getDomDocument();
 Transformer tf
 = TransformerFactory.newInstance().newTransformer();
 tf.setOutputProperty(OutputKeys.ENCODING, "UTF-8");
 tf.setOutputProperty(OutputKeys.INDENT, "yes");
 tf.transform(new DOMSource(doc), new StreamResult(os));
 reader.close();
}

Note that the Document in this code snippet isn’t a com.itextpdf.text.Document
object, but an instance of org.w3c.dom.Document. Transforming this Document into
an XML file is done using different classes from the javax.xml.transform package.

 This is a shortened version of the resulting file.

Listing 8.20 XfaMovie.java (continued)

Figure 8.11 Partially filled-in form

Creates XfaForm
instance

Gets org.w3c.dom.Document instance

Transforms
Document
to XML file
Licensed to Bruno Lowagie <bruno@lowagie.com>

267Introducing the XML Forms Architecture (XFA)
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<xdp:xdp>
 <config>...</config>
 <template>...</template>
 <xfa:datasets>
 <xfa:data>
 <movies>
 <movie duration="" imdb="" year="">
 <title/>
 </movie>
 </movies>
 </xfa:data>
 <dd:dataDescription>
 <movies>
 <movie dd:maxOccur="-1"
 dd:reqAttrs="duration imdb year"
 duration="" imdb="" year="">
 <title/>
 <original dd:minOccur="0" dd:nullType="exclude"/>
 </movie>
 </movies>
 </dd:dataDescription>
 </xfa:datasets>
</xdp:xdp>

If you want to understand the full XML file that was extracted, you’ll need to consult
the XFA specification for more info about the elements that can be found inside an
XFA form:

■ config, localeSet, xmp, ... —The XFA XML can contain application-defined
information and XFA grammar: configuration information, localization info,
metadata, information about web connections, and so on. Except for the con-
fig tag, I’ve omitted these tags, because they’re outside the scope of this book.

■ template—This is where the appearance and behavior of the form is defined.
■ datasets—This contains all the sets of data used with the form.
■ data—Contains the data held by fields in the form.
■ dataDescription—Defines the schema for the data.

As you can see, XFA separates data from the XFA template, which allows greater flexi-
bility in the structure of the data supported and allows data to be packaged separately
from the form.

FAQ Can I use iText to change the properties and appearance of an XFA form? Yes
and no. In the previous sections of this chapter, you’ve used iText to manipu-
late the appearance of AcroForm fields, but none of these examples will
change the XML definition inside the XFA stream. Changing an XFA form has
to be done using XML tools. First extract the XFA XML from the PDF. Then
add, remove, and update the tags and attributes between the <template> and
</template> tags. Once this is done, use iText to replace the existing XFA
stream with the updated one.

Listing 8.21 movie_xfa.xml
Licensed to Bruno Lowagie <bruno@lowagie.com>

268 CHAPTER 8 Filling out interactive forms
The template specification is described in about 300 pages in the XFA reference. It would
lead us too far off topic to get into the details of manipulating an XFA form, but we’ll
look at how to replace the full XFA XML in the next example, after changing the data.

THE DATA SPECIFICATION

The datasets section of the XFA form consists of a data and a dataDescription ele-
ment. You can use any schema you want for the data. This is one of the major advan-
tages of choosing the XFA approach instead of using AcroForms.

 The dataDescription specification comprises 16 pages in the XFA reference.
Here’s the introduction:

The XFA data description syntax is more concise and readable than XML Schema but
does not do as much. XFA data descriptions do not include defaults and do not support
validation of text content. They do, however, fully describe the namespaces, element
names, attribute names, and the hierarchy which joins them.

—XML Forms Architecture (XFA) Specification Version 3.1 Part 2 Chapter 21

Let’s take a look at the changes made by iText to the data element to find out why
three fields weren’t filled out in figure 8.11. We’ll reuse listing 8.20 on the resulting
PDF file to have a look at the data element that was filled by iText.

<movies>
 <movie duration="" imdb="" year="">
 <title>The Misfortunates</title>
 <imdb>1075110</imdb>
 <duration>108</duration>
 <original>De helaasheid der dingen</original>
 <year>2009</year>
 </movie>
</movies>

The data description in listing 8.21 expects the content of the fields "imdb", "dura-
tion", and "year" to be added as attributes of the movie tag. When you filled the form
using listing 8.19, iText used a shortcut: it wrongly assumed that all data should be added
between tags, not as attributes. There are three workarounds for this problem:

■ Change the form—Make sure the form doesn’t expect data added as attributes.
This may not be an option, because you want the data inside the XFA form to be
an identical match with the XML files you’re using in your business process.

■ Use XML tools to fill out the data—This is the most elegant solution. We’ll discuss
two possible ways to achieve this. In listing 8.23 we’ll replace the complete XFA
XML; then, in section 8.6.2, we’ll let iText replace the data element in a pro-
grammer-friendly way.

■ Remove the XFA form, keep the AcroForm—This is your only option if you want to
flatten the form. The resulting form will no longer contain XFA technology—
the result will be a pure AcroForm.

Listing 8.22 movie_filled.xml
Licensed to Bruno Lowagie <bruno@lowagie.com>

269Introducing the XML Forms Architecture (XFA)
The first option should be done with the tool that was used to create the form in the
first place. Replacing the XML data can be done the hard way or the easy way; let’s
look at the hard way first.

REPLACING THE XFA STREAM

Suppose that you’ve updated the XFA XML manually and saved it in a file named xml.
Now you want to take the XFA form src and replace the XFA stream with the new XFA
form dest as a result.

public void fillData2(String src, String xml, String dest)
 throws IOException, DocumentException,
 ParserConfigurationException, SAXException {
 PdfReader reader = new PdfReader(src);
 PdfStamper stamper
 = new PdfStamper(reader, new FileOutputStream(dest));
 XfaForm xfa = new XfaForm(reader);
 DocumentBuilderFactory fact = DocumentBuilderFactory.newInstance();
 fact.setNamespaceAware(true);
 DocumentBuilder db = fact.newDocumentBuilder();
 Document doc = db.parse(new FileInputStream(xml));
 xfa.setDomDocument(doc);
 xfa.setChanged(true);
 XfaForm.setXfa(xfa, stamper.getReader(), stamper.getWriter());
 stamper.close();
}

For this example, I’ve changed the XFA XML manually. I’ve replaced the XML snippet
shown in listing 8.22 with this one.

<movies>
 <movie duration="108" imdb="1075110" year="2009">
 <title>The Misfortunates</title>
 <original>De helaasheid der dingen</original>
 </movie>
</movies>

The result is shown in figure 8.12. All the fields are now filled in correctly.

Listing 8.23 XfaMovie.java (continued)

Listing 8.24 xfa.xml

Reads XFA XML file
into DOM Document

Replaces XFA stream in
existing PDF document

Figure 8.12 Correctly filled-out XFA form
Licensed to Bruno Lowagie <bruno@lowagie.com>

270 CHAPTER 8 Filling out interactive forms
The code in listing 8.23 is rather complex. We’ll find a better way to replace only the data
XML in section 8.6.2. You can use this method, however, if you want to change other parts
of the XFA form. For instance, if you want to change the appearance of the form.

 Note that iText doesn’t parse what’s inside the template tag. One of the conse-
quences is that you have to use an XML tool to apply changes to the form. Another
consequence is that iText can’t flatten a pure XFA form; iText can’t translate the XFA
syntax to draw a form field, captions, and lines into PDF syntax. A form can only be
flattened with iText if it’s also defined using AcroForm technology.

CHANGING AN XFA FORM INTO AN ACROFORM

If a form is defined twice, once using XFA technology once as an AcroForm, you can
choose to remove the XFA technology with the removeXfa() method.

public void fillData3(String src, String dest)
 throws IOException, DocumentException {
 PdfReader reader = new PdfReader(src);
 PdfStamper stamper
 = new PdfStamper(reader, new FileOutputStream(dest));
 AcroFields form = stamper.getAcroFields();
 form.removeXfa();
 form.setField("movies[0].movie[0].imdb[0]", "1075110");
 ...
 stamper.close();
}

If you run listing 8.18 on the resulting form, you get the following output:

AcroForm
movies[0].movie[0].title[0]
movies[0].movie[0].duration[0]
movies[0].movie[0].imdb[0]
movies[0].movie[0].year[0]
movies[0].movie[0].original[0]

After this operation, you can use all the iText functionality discussed in sections 8.2
to 8.5. That’s an advantage. The disadvantage is that you lose all the benefits you can
have from XFA. This only works for static XFA forms with an AcroForm counterpart;
it won’t work for dynamic XFA forms.

8.6.2 Dynamic XFA forms

One of the major advantages of XFA is you can define forms that can grow dynami-
cally. In traditional PDF files, the layout of the content is fixed: the coordinate of every
dot, every line, every glyph on the page is known in advance. PDF was created because
there was a need for a document format that was predictable. When you create a doc-
ument containing three pages, you don’t want it to be rendered as a document with
two or four pages when opened on another OS or using a different viewer application.
XFA makes an exception to this rule. A dynamic XFA form can grow dynamically
depending on the data that’s entered.

Listing 8.25 XfaMovie.java (continued)

Removes XFA
technology
Licensed to Bruno Lowagie <bruno@lowagie.com>

271Introducing the XML Forms Architecture (XFA)
XML DATA

Suppose that your movie data is stored as an XML file using this XML schema.

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
 elementFormDefault="qualified">
 <xs:element name="movies">
 <xs:complexType><xs:sequence>
 <xs:element maxOccurs="unbounded" ref="movie"/>
 </xs:sequence></xs:complexType>
 </xs:element>
 <xs:element name="movie">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="title"/>
 <xs:element minOccurs="0" ref="original"/>
 <xs:element ref="directors"/>
 <xs:element ref="countries"/>
 </xs:sequence>
 <xs:attribute name="duration" use="required" type="xs:string"/>
 <xs:attribute name="imdb" use="required" type="xs:string"/>
 <xs:attribute name="year" use="required" type="xs:string"/>
 </xs:complexType>
 </xs:element>
 <xs:element name="title" type="xs:string"/>
 <xs:element name="original" type="xs:string"/>
 <xs:element name="directors">
 <xs:complexType><xs:sequence>
 <xs:element maxOccurs="unbounded" ref="director"/>
 </xs:sequence></xs:complexType>
 </xs:element>
 <xs:element name="director" type="xs:string"/>
 <xs:element name="countries">
 <xs:complexType><xs:sequence>
 <xs:element maxOccurs="unbounded" ref="country"/>
 </xs:sequence></xs:complexType>
 </xs:element>
 <xs:element name="country" type="xs:string"/>
</xs:schema>

Here is a shortened example of an XML file that follows this schema. The full version
contains 120 movies.

<?xml version="1.0" encoding="UTF-8" ?>
<movies>
 <movie duration="141" imdb="0062622" year="1968">
 <title>2001: A Space Odyssey</title>
 <directors><director>Kubrick, Stanley</director></directors>
 <countries>
 <country>United Kingdom</country>

Listing 8.26 movies.xsd

Listing 8.27 movies.xml
Licensed to Bruno Lowagie <bruno@lowagie.com>

272 CHAPTER 8 Filling out interactive forms
 <country>United States</country>
 </countries>
 </movie>
 ...
</movie>

If you want to create a form that can be filled with all the information in this XML file,
regardless of the number of movies, the number of directors per movie, and the num-
ber of countries per movie, you need to use Adobe LiveCycle Designer.

CREATING A DYNAMIC XFA FORM

Adobe LiveCycle Designer can be started as a separate product, but as it’s shipped
with Acrobat, you can also start it from the Acrobat menu: Forms > Start Form Wizard.

 You want to create a form from scratch, so select No Existing Form (Create an
Adobe Form from Scratch or from a Template). A dialog box opens, assisting you in
creating the form by offering the following options:

■ Getting Started—Choose the Use a Blank Form option.
■ Document Setup—Choose the defaults and click Next.

This is shown in figure 8.13. Observe the difference between Acrobat in the back-
ground and Adobe LiveCycle Designer in the foreground.

 You could start adding text boxes manually, but that’s a lot of work. It’s easier to
create a new data connection: File > New Data Connection. A dialog box opens, and

Figure 8.13 Creating a new form with Adobe LiveCycle Designer
Licensed to Bruno Lowagie <bruno@lowagie.com>

273Introducing the XML Forms Architecture (XFA)
you can import the XSD from listing 8.26: XML Schema > movies.xsd > Finish. You can
see the result in the Data View panel to the left in figure 8.14.

 The next step is easy. You can drag the movies tree from the Data View panel to
your form. Designer will automatically create a form with all the text fields you need.
The form consists of fields that are organized in subforms.

 The yellow triangle in the upper-right corner of the rectangle enclosing the fields
indicates that there’s an inconsistency between the top-level subform and the underly-
ing subforms. You can solve this problem by selecting the outer rectangle correspond-
ing with the top-level subform. Right-click and choose Palettes > Object. An extra
panel will open. Checking the Allow Page Breaks within Content check box will
remove the warning.

 Let’s reorganize the fields. In the Object panel at the bottom right, change the
Content setting of the top-level subform from Positioned to Flowed. Then select the
subform named movie and set that Content value to Positioned. You can now move
around the fields. If you lose the overview, select the Hierarchy panel that’s shown on
the left in figure 8.15.

 If you want the form to start a new page if a movie doesn’t fit on the current page,
you have to uncheck the Allow Page Breaks within Content check box in the Object
panel. Now save this form as a dynamic form, and you’ll get a PDF as shown in figure 8.16.

 Running listing 8.18 with this form as resource will give you the following result:

XFA form

Figure 8.14 Using an XSD as a data connection to create the form
Licensed to Bruno Lowagie <bruno@lowagie.com>

274 CHAPTER 8 Filling out interactive forms
The form you’ve just created is a pure XFA form. There are no AcroForm fields inside
the PDF.

FILLING A DYNAMIC XFA FORM

The PDF shown in figure 8.16 is a dynamic form, so when you fill it with an XML file
containing 120 movies, you’d expect it to look like figure 8.17.

 The original form only had one page, but the resulting PDF counts 23 pages!
Because the form is dynamic, the movie subform is repeated 120 times. Observe that
the same goes for the lists with the directors and countries. If there are two direc-
tors, the director field is duplicated; if there are two countries, the country field
is duplicated.

Figure 8.15 Reorganizing the fields in the form

Figure 8.16 Empty dynamic XFA form
Licensed to Bruno Lowagie <bruno@lowagie.com>

275Preserving the usage rights of Reader-enabled forms
You can use iText to fill such a dynamic PDF form.

public void manipulatePdf(String src, String xml, String dest)
 throws IOException, DocumentException {
 PdfReader reader = new PdfReader(src);
 PdfStamper stamper =
 new PdfStamper(reader, new FileOutputStream(dest));
 AcroFields form = stamper.getAcroFields();
 XfaForm xfa = form.getXfa();
 xfa.fillXfaForm(new FileInputStream(XMLDATA));
 stamper.close();
}

In this example, XMLDATA is the path to the XML file from listing 2.27. As you can see,
XFA technology is very powerful. This is a simple example, containing only text fields,
but this code also works with barcode fields, check boxes, and so on. A good graphical
designer skilled at creating forms with Adobe LiveCycle Designer can create very com-
plex dynamic forms. All you need to do to fill them out is inject an XML stream using
the fillXfaForm() method. There’s one major caveat: if your form is Reader-enabled,
filling it out will break the Reader-enabling.

8.7 Preserving the usage rights of Reader-enabled forms
With what you’ve learned so far, you can use iText to fill out PDF forms created with
Open Office, Adobe Acrobat, LiveCycle Designer, or other tools. When creating a
form using Adobe products, the form’s designer can enable usage rights that unlock

Listing 8.28 XfaMovies.java

Figure 8.17 Dynamic XFA form filled with movie XML

Injects XML data
into dynamic form
Licensed to Bruno Lowagie <bruno@lowagie.com>

276 CHAPTER 8 Filling out interactive forms
extra functionality when the form is opened in Adobe Reader. This section explains
how to preserve these rights.

 Figure 8.18 shows a PDF form that’s significantly different from the forms we’ve
dealt with before. There’s a strip below the toolbar with the text: “Please fill out the
following form. You can save data typed into this form.”

 Up until now, we’ve only worked with forms that showed the following message:
“Please fill out the following form. You can’t save data typed into this form. Please
print your completed form if you would like a copy for your records.”

FAQ Can I fill out any PDF form and save it locally using Adobe Reader? No, you
can only save forms filled out manually with Adobe Reader if they have been
“Reader-enabled.”

If you provide a PDF form in a web application, people can fill out the form in their
browser and submit the data to your server. We’re going to look at how to do this in
the next chapter. If you want to allow people to save the data locally before submitting
the form, you need to enable your form using the LiveCycle Reader Extensions or the
full Acrobat.

8.7.1 Reader-enabling a form using Adobe Acrobat

Choose Advanced > Extend Features in Adobe Acrobat. A dialog box titled Enable
Usage Rights in Adobe Reader will open, explaining which features will become avail-
able in the free Adobe Reader: saving a form locally, but also commenting, signing,
and so on.

FAQ Can I create a Reader-enabled form using iText? The technology that’s used
to enable a form is based on public-key cryptography, where the viewer of the
document (in this case Adobe Reader) has the public key and the authoring
software for the document has the private key. Because iText (or any other
non-Adobe software) has no access to Adobe’s private key, you can only
enable documents using Adobe products.

Once you’ve made the form Reader-enabled, you can prefill it using iText; but you have
to be aware that users risk being confronted with the alert box shown in figure 8.19.

Figure 8.18 A Reader-enabled form can be filled out and saved in Adobe Reader
Licensed to Bruno Lowagie <bruno@lowagie.com>

277Preserving the usage rights of Reader-enabled forms
The full text of the warning tells you exactly what happened:

This document enabled extended features in Adobe Reader. The document has been
changed since it was created and use of extended features is no longer available. Please
contact the author for the original version of this document.

When making a document Reader-enabled using Acrobat, a hash of the content was
signed with Adobe’s private key. Adobe Reader decrypts this embedded hash and
compares it with the current content. If the content hasn’t changed, there’s a match,
and the additional usage rights are active. When filling out a form, iText changes the
document structure, and therefore breaks Reader-enabling.

8.7.2 Filling out Reader-enabled forms using iText

If you don’t want to confront your end users with this warning, you can remove the
usage rights. You’ll end up with a “normal” form, without the extra features. Or, you
can use PdfStamper in append mode. The result of these two workarounds is shown in
figure 8.20. The code for both workarounds is in listing 8.29.

 The form in the background can no longer be saved locally. The extended features
of the form in the foreground remain intact.

Figure 8.19 Filling out a form programmatically can break Reader-enabling

Figure 8.20 Two workarounds to fill out a Reader Enabled form
Licensed to Bruno Lowagie <bruno@lowagie.com>

278 CHAPTER 8 Filling out interactive forms
public void manipulatePdf(String src, String dest,
 boolean remove, boolean preserve)
 throws IOException, DocumentException {
 PdfReader reader = new PdfReader(src);
 if (remove)
 reader.removeUsageRights();
 PdfStamper stamper;
 if (preserve)
 stamper = new PdfStamper(
 reader, new FileOutputStream(dest), '\0', true);
 else
 stamper = new PdfStamper(reader, new FileOutputStream(dest));
 }
 AcroFields form = stamper.getAcroFields();
 form.setField(
 "movie[0].#subform[0].title[0]", "The Misfortunates");
 form.setField(
 "movie[0].#subform[0].original[0]", "De helaasheid der dingen");
 form.setField("movie[0].#subform[0].duration[0]", "108");
 form.setField("movie[0].#subform[0].year[0]", "2009");
 stamper.close();
}

The meaning of the parameters remove and preserve is explained in table 8.4.

Although a static XFA form is used in this example, this also works for plain old
AcroForms.

8.8 Summary
In this chapter, we’ve explored the two types of interactive forms that are supported in
the PDF specification.

 One of these technologies uses PDF objects to define a form; these forms are called
AcroForms, and they can easily be created and manipulated using iText. You learned
how to create different types of button, text, and choice fields. At the same time, you
found out how to change the properties of these fields in an existing PDF document.

Listing 8.29 ReaderEnabledForm.java

Table 8.4 Filling out a Reader-enabled form

remove preserve Result

false false You fill out the form as before. This breaks Reader-enabling and causes a
scary warning.

true false You fill out the form as before, with removal of the usage rights. With
Reader-enabling gone, there’s also no more scary warning.

false true You fill out the form, but not as before. By using a different constructor
for PdfStamper, you’ll create the new PDF in append mode. This
means that iText will keep the original PDF intact and append all the
changes instead of reorganizing the internal structure.

Removes
usage rights

Preserves
usage rights
Licensed to Bruno Lowagie <bruno@lowagie.com>

279Summary
 We focused on filling out forms. Form fields can be organized hierarchically, which
changes how forms are filled out. You learned to optimize the process using a field
cache. We also looked at flattening a form partially and taking over the flattening pro-
cess altogether.

 Then we looked at the other type of form. XFA forms are based on the XML Forms
Architecture, and they come in two flavors: static XFA forms and dynamic XFA forms.
Most of the static XFA forms can be filled with iText in the same way as AcroForms,
using the same code. But when we inspected what an XFA form looks like on the
inside, you discovered that there were exceptions. You created a dynamic XFA form
using Adobe LiveCycle Designer, and you used iText to inject an XML data file into
that form.

 Finally, you learned more about Reader-enabled forms. Filling such a form with
iText can break the extra features that are added to the form, but you learned how to
avoid this.

 This chapter concludes the second part of this book about manipulating existing
PDF files. You had an overview of the different manipulation classes in chapter 6; you
added links, bookmarks, and annotations to existing documents in chapter 7; and
you’ve learned almost everything about filling out interactive forms in this chapter.

 In the next chapter, you’ll discover how to integrate the standalone examples
we’ve looked at so far in a Java servlet; for instance, how to integrate a PDF form in a
web application.

Licensed to Bruno Lowagie <bruno@lowagie.com>

Licensed to Bruno Lowagie <bruno@lowagie.com>

Part 3

Essential iText skills

Parts 1 and 2 showed you how to build a standalone application that is able to
create or manipulate a PDF document in black and white, using standard fonts,
and so on. The four chapters in part 3 will show you how to integrate such an
application into a web application, how to create images and colors, how to
choose and use different fonts, and how to protect your document.

Licensed to Bruno Lowagie <bruno@lowagie.com>

Licensed to Bruno Lowagie <bruno@lowagie.com>

Integrating iText
 in your web applications
Every month, I visit Google Analytics to look at the statistics for my different sites; I
click Export > PDF and save a printable report for my archives. When I want to
travel by train or by plane, I can download a ticket or a boarding pass from a web-
site. When you download an eBook from Manning, your email address is automati-
cally stamped on every page. Most of these reports, vouchers, stamped books, and
so on, are “powered by iText.” iText was one of the first libraries that combined ease
of use with speed, and that’s why it’s omnipresent in applications generating PDFs
for the web.

 Let’s take a look at how these applications work and see how easy it is to inte-
grate iText in a Java servlet.

This chapter covers
■ Making interactive forms “web ready”
■ Converting HTML and XML to PDF
■ Using iText in servlets
283

Licensed to Bruno Lowagie <bruno@lowagie.com>

284 CHAPTER 9 Integrating iText in your web applications
9.1 Creating a PDF from a servlet
Up until now, you’ve only worked with standalone examples. You compiled them
using the javac command and executed them with java, resulting in one or more
PDF documents.

 For this chapter, you need to install an application server. If you’ve written and
deployed Java servlets before, you shouldn’t have any problem setting up the exam-
ples. If you don’t have any experience with J2EE applications, please consult a book
about writing web applications in Java, as this is outside the scope of this book.

 I use Tomcat in combination with Eclipse. This allows me to choose Run As > Run
on Server instead of Run As > Java Application. Eclipse will start up an instance of
Tomcat, and a browser window opens inside my IDE. If I’m pleased with the result, I
deploy the application on my web server. See figure 9.1. The window at the lower right
in the foreground is Eclipse; the windows in the background are browser windows:
Firefox, Google Chrome, Microsoft Internet Explorer (MSIE).

 To get to this result, you need to integrate the five steps in the PDF creation process
in a servlet.

9.1.1 The five steps of PDF creation in a web application

When we discussed step 2 in the PDF creation process, writing a simple Hello World
example to a FileOutputStream, you learned that we could have used any other Out-
putStream. For instance, a ServletOutputStream obtained from the HttpServletRe-
sponse with the getOutputStream() method.

Figure 9.1 Hello World servlet opened in Eclipse, Firefox, Chrome, and MSIE
Licensed to Bruno Lowagie <bruno@lowagie.com>

285Creating a PDF from a servlet
public class Hello extends HttpServlet {
 protected void doGet(
 HttpServletRequest request, HttpServletResponse response)
 throws ServletException, IOException {
 response.setContentType("application/pdf");
 try {
 Document document = new Document();
 PdfWriter.getInstance(document, response.getOutputStream());
 document.open();
 document.add(new Paragraph("Hello World"));
 document.add(new Paragraph(new Date().toString()));
 document.close();
 } catch (DocumentException de) {
 throw new IOException(de.getMessage());
 }
 }
}

The difference between this and the standalone “Hello World” example from chap-
ter 1 is that here you subclass HttpServlet and override the doGet() or doPost()
method, or both. You copy and paste the five steps into this method:

■ B Create the Document.
■ C Create an instance of PdfWriter and use response.getOutputStream() for

the second parameter.
■ D Open the Document.
■ E Add content.
■ F Close the Document.

This is probably the simplest iText servlet you can write.
 If you want to deploy it in a web application, you have to adapt the web.xml config-

uration file of your application. Note that most IDEs have a wizard that updates this
XML file for you. I made my web.xml file using a wizard in Eclipse.

<?xml version="1.0" encoding="UTF-8"?>
<web-app id="WebApp_ID" version="2.4" ...>
 <display-name>book</display-name>
 <servlet>
 <description></description>
 <display-name>Hello</display-name>
 <servlet-name>Hello</servlet-name>
 <servlet-class>part3.chapter09.Hello</servlet-class>
 </servlet>
 <servlet-mapping>
 <servlet-name>Hello</servlet-name>
 <url-pattern>/hello.pdf</url-pattern>
 </servlet-mapping>
</web-app>

Listing 9.1 Hello.java

Listing 9.2 web.xml

Sets Content-
Type to PDF

B
C

D
E

F

Licensed to Bruno Lowagie <bruno@lowagie.com>

286 CHAPTER 9 Integrating iText in your web applications
You’ll put all the examples from this chapter in a web application named book. As you
move on, you’ll have to add more servlet and servlet-mapping tags to this file.

 You’ll use /hello.pdf as the URL pattern for your first servlet. The URL to run the
servlet on the localhost will look like this: http://localhost:8080/book/hello.pdf. You
can also see the servlet in action on http://itextpdf.org:8180/book/hello.pdf; that’s
where I deployed the WAR file of the application. You can use the ANT files that come
with the examples to create your own WAR file if you want to test this functionality on
your own server.

 The screenshots in figure 9.1 prove that this servlet works for recent versions of the
most common browsers and PDF viewers, but you may experience problems that are
not iText-related with specific browser and viewer combinations. How can you deter-
mine whether a problem is caused by the browser, by the server, or by (the wrong use
of) iText?

9.1.2 Troubleshooting web applications

Let’s start with rules of thumb that can save you from a lot of frustration when trying
to get your PDF servlet online. These rules may seem trivial, but they’re very impor-
tant.

■ Always begin writing code that runs as a standalone example. If the example doesn’t
work in its standalone version, it won’t work in a web application either, but at
least you can rule out all problems related to the server or the browser.

■ Start with simple code samples based on the examples in this book. Gradually add
complexity until something goes wrong. Look at the stack trace in the server
logs. Most of the time, the error messages will tell you exactly what to do. If
not, post the stack-trace to the iText mailing list, and don’t forget to mention
what application server you’re using, as well as the Java version and the iText
release number.

■ Always test your application on different machines, using different browsers, even if there
isn’t any problem. Some web applications won’t show any problems when tested
on one type of browser, but will fail when using another browser.

■ Create a file on the server’s filesystem if no file appears in the browser. An easy way to
find out if a problem is caused by iText or by the browser is to replace the Serv-
letOutputStream in step C with a FileOutputStream (for debugging reasons
only). If the file is generated correctly on your server, you can rule out iText as
the cause of the problem.

By following this last rule, you should be able to determine whether the problem is a
client-side or a server-side problem.

SERVER-SIDE PROBLEMS

Throughout the years, I’ve compiled a list of things that can go wrong on the server
side, based on what other users have posted on the mailing list.
Licensed to Bruno Lowagie <bruno@lowagie.com>

http://itextpdf.org:8180/book/hello.pdf

287Creating a PDF from a servlet
■ Bad Exception handling The first thing you shouldn’t like about listing 9.1 is the
way the DocumentException is handled. If something goes wrong in the try
block, an IOException is thrown, resulting in an internal server error. If you’re
using Tomcat, an HTML page with the header “HTTP Status 500” is sent to the
browser, showing (part of) the stack trace of the exception. That’s not some-
thing you want to show to the visitors of your site. You’re probably used to pro-
viding error pages that are less technical than the one generated by Tomcat, but
remember that you’re creating PDFs. If you send HTML to a PDF viewer, it will
throw an error saying “the file doesn’t begin with %PDF.”

■ Mixing HTML and PDF syntax Be careful not to mix HTML error messages in a
stream of PDF bytes. If a PDF viewer is already opened as a browser plug-in, it
will tell you that the PDF is corrupt because it can’t interpret the HTML code.
The best way to debug problems like this is by saving the stream that is sent to
the browser as a file. First try opening it in Adobe Reader. If it doesn’t open cor-
rectly, have a look at it in a text editor that preserves binary characters. Don’t
forget to scroll down beyond the %EOF end of file marker (if possible). I’ve seen
web applications that were adding a stream of plain HTML to the PDF file.
Newer versions of the Adobe Reader plug-in may ignore the HTML, but older
versions will complain that the file is corrupt.

■ The blank-page problem If you don’t find HTML syntax, but you see an unusual
amount of question marks inside blocks marked with stream and endstream,
the problem is server-related. The question marks should be binary characters.
You’ll probably be able to open the PDF in the browser plug-in because the page
structure of the PDF is OK, but you’ll only see blank pages because the content
of the pages is corrupted. This can happen when your server flattens all bytes
with a value higher than 127. Consult your web (or application) server manual
to find out how to make sure binary data is sent correctly to the browser.

■ Problems with JARs For instance, a ClassNotFoundException is thrown. Check
whether you have added all the JARs you need to the classpath of your web
application. If an iText class is missing, make sure you don’t have more than
one version of the iText.jar in the classpath; for instance, one version in the lib
directory of your web application, and a different version in the lib directory of
the application server. Different versions can lead to conflicts. Finally, check
whether the application is compiled with the correct compiler. iText is com-
piled with Java 5, you can’t run it on a server that is running in an older Java
Runtime Environment (JRE).

■ A resource can’t be found Many server-related problems are caused by an image,
a font, or another resource that can’t be found. A file that was available for the
standalone example might not be available for the web application. Normally, the
exception will give you an indication where to look. Maybe the working directory
of the servlet is different from what you expected. The problem can also be caused
by permission issues, or simply by the fact that a resource isn’t present on the
Licensed to Bruno Lowagie <bruno@lowagie.com>

288 CHAPTER 9 Integrating iText in your web applications
server. If the cause isn’t obvious, try reproducing the problem in a servlet that
doesn’t involve iText. For instance, read the bytes of the resource file, and write
them to the ServletInputStream. If this fails, your problem isn’t iText-related.

If the file generated on the server side is OK, or if none of the situations mentioned so
far matches your problem, chances are that your problem is browser-related.

THE BROWSER DOESN’T RECOGNIZE THE FILE AS A PDF

When an end user installs Adobe Reader, the browsers on the user’s OS should be
detected and configured automatically. When a browser is installed, it should detect
Adobe Reader if it’s present. If there’s no PDF viewer on the end user’s system, or if
the PDF viewer isn’t configured correctly, the user will see content that looks like gib-
berish starting with %PDF-1.4 %âãÏÓ.

 If this “gibberish problem” only occurs for a handful of end users, not for all your
users, you’ll have to ask these people to install or reinstall their PDF viewer. If all users
experience the same problem, the problem is caused on the server side. The viewer
receives the PDF syntax, but shows it as if it were plain text. Maybe you didn’t set the
content type correctly, in which case you need to add this line to your servlet:

response.setContentType("application/pdf");

Old versions of MSIE ignore the content type; they only look at the file extension. PDFs
ending with .pdf are rendered fine, but if you use a different URL pattern, the
browser plug-in isn’t opened. The most elegant way to solve this problem is by using a
URL pattern as shown in listing 9.2. If this is not an option, you could add a parameter
ending in .pdf. For instance,

http://myserver.com/servlet/MyServlet?dummy=dummy.pdf;

Use this solution as a last recourse. A better solution is to set the content disposition in
the response header:

response.setHeader("Content-Disposition", " inline; filename=\"my.pdf\"");

Note that not every version of every browser deals with this header correctly.

THE PDF IS CORRUPT FOR ONLY A COUPLE OF BROWSERS

When no content length is specified in the header of your dynamically generated file,
the browser reads blocks of bytes sent by the web server. Most browsers detect when
the stream is finished and use the correct size of the dynamically generated file. Some
browsers are known to have problems truncating the stream to the right size—the real
size of the PDF is smaller than the size assumed by the browser. The surplus of bytes
can contain gibberish, and this can cause the viewer plug-in to show an error message
saying the file is corrupt.

 If you can’t ask the end user to upgrade to a more recent browser and reader
combination, there’s only one solution. You have to specify the content length of the
PDF file in the response header. Setting this header has to be done before any con-
tent is sent. Unfortunately, you only know the length of the file after you’ve created
it. This means you can’t send the PDF to the ServletOutputStream obtained with
response.getOutputStream() right away. Instead, you must create the PDF on your
Licensed to Bruno Lowagie <bruno@lowagie.com>

289Creating a PDF from a servlet
filesystem or in memory first (the next listing), so you can retrieve the length, add
it to the response header, and send the PDF. This is also true for some other binary
file formats.

protected void service(
 HttpServletRequest request, HttpServletResponse response)
 throws ServletException, IOException {
 try {
 String text = request.getParameter("text");
 if (text == null || text.trim().length() == 0) {
 text = "You didn't enter any text.";
 }
 Document document = new Document();
 ByteArrayOutputStream baos
 = new ByteArrayOutputStream();
 PdfWriter.getInstance(document, baos);
 document.open();
 document.add(new Paragraph(String.format(
 "You have submitted the following text

➥ using the %s method:",
 request.getMethod())));
 document.add(new Paragraph(text));
 document.close();
 response.setHeader("Expires", "0");
 response.setHeader("Cache-Control",
 "must-revalidate, post-check=0, pre-check=0");
 response.setHeader("Pragma", "public");
 response.setContentType("application/pdf");
 response.setContentLength(baos.size());
 OutputStream os = response.getOutputStream();
 baos.writeTo(os);
 os.flush();
 os.close();
 }
 catch(DocumentException e) {
 throw new IOException(e.getMessage());
 }
}

Mailing list subscribers have shared their experience with the community and told us
that it’s also safe to set extra response header values B. These headers make sure that
the end user always gets the most recent version of the PDF, and not a PDF that is
loaded from the cache on the client side. This is important if the content of the PDF
changes frequently, which would happen if it reports about real-time data.

 C solves the problem caused by old browser and PDF viewer configurations. Note
that there are several serious downsides to this solution. When you need to generate
large files, you risk an OutOfMemoryException on the server side, and a timeout on the
client side. You can work around the server-side problem by writing the PDF to a
temporary file on the server and asking the end user to fetch the file when it’s fin-
ished. Don’t forget to delete the file once it’s served to the browser.

Listing 9.3 PdfServlet.java

Creates PDF
in memory

B Adds extra
response headers

Sets content type

Sets
content
lengthC

Writes PDF to
OutputStream
Licensed to Bruno Lowagie <bruno@lowagie.com>

290 CHAPTER 9 Integrating iText in your web applications
 The second problem, avoiding a browser timeout, can be solved by moving the five
steps of the PDF creation process to a separate thread. You can add your Runnable
implementation as an attribute to the HttpSession object. As long as the PDF docu-
ment isn’t ready, send an HTML page to the browser that is refreshed on a regular
basis, such as every three seconds. Check the thread with every hit; serve the PDF as
soon as the document is closed. Not only does this solution solve the technical time-
out problem, it also works on a psychological level. People tend to be impatient. They
don’t like to wait for that internet page to come, not knowing if the connection got
lost, whether or not they should hit the reload button, or if the server went down...
Give them feedback—if possible, a progress bar showing the percentage of data that
has been processed—and time seems to go a lot faster!

 Usually, I implement the doPost() method to accept parameters and to set up the
thread; then I cause a redirect to trigger the doGet() method that serves the HTML
and eventually the finished PDF.

GET VERSUS POST

A trivial problem, but one that is easily overlooked, is what happens when people
bookmark pages that are the result of a POST action. When they want to return to that
page using the bookmark, they initiate a GET request, getting a result that differs from
what they expect. You can do the experiment with the example from listing 9.3.

 Figure 9.2 shows the URL http://itextpdf.org:8180/book/ opened in a Firefox
window. This page contains two simple forms: one that uses the GET method, the other

Figure 9.2 PDFs created with GET and POST actions
Licensed to Bruno Lowagie <bruno@lowagie.com>

http://itextpdf.org:8180/book/

291Creating a PDF from a servlet
using the POST method. Recall that neither doGet() nor doPost() were implemented
in listing 9.3. Instead you overrode the service() method that works in both cases.

 We’ll conclude the list of client-side issues with the “multiple-hit” problem.

PROBLEMS CAUSED BY MULTIPLE HITS

In web analytics, a hit is when an end user requests a page from your web server and
this page is sent to the user’s browser directly. For example, when you enter the URI
http://itextpdf.org:8180/book/hello.pdf in the location bar, one PDF file opens in
your browser window using a PDF viewer plug-in. If I look in my server logs, I should
see one line corresponding with this hit. This is true for most browsers, but some
browsers hit the server several times for every dynamically generated binary file. You
can’t predict how many hits a single request will generate; it could be two or three
hits, or occasionally just one.

 If you want to avoid this multiple-hit problem, you can try setting the cache param-
eters like this:

response.setHeader("Cache-control",
 "must-revalidate, post-check=0, pre-check=0");

Another way to solve the multiple-hit problem is to embed the PDF in an HTML page
using the embed tag.

<html>
<body leftMargin="0" topMargin="0" scroll="No">
 <embed src="/book/hello.pdf" width="100%" height="100%"
 type="application/pdf" fullscreen="yes" />
</body>
</html>

If you skip to section 9.3, you’ll also find an example of how to embed a PDF in an
HTML page using the object tag.

 Using the tips and tricks summed up in this section, you should be able to tackle
all the problems that can occur when writing a servlet that produces a PDF document.
Writing a JSP page generating a PDF is another story.

9.1.3 Generating a PDF from a JSP page

It’s a bad idea to use JSP to generate binary content. That’s considered improper use
of the technology. JSP wasn’t created to produce images, PDF files, or any other binary
file type.

 But that doesn’t mean it’s impossible. Go to http://itextpdf.org:8180/book/hel-
loworld.jsp and you’ll see a JSP page in action.

<%@
page import="java.io.*, com.itextpdf.text.*, com.itextpdf.text.pdf.*"
%><%

Listing 9.4 embedded.html

Listing 9.5 helloworld.jsp
Licensed to Bruno Lowagie <bruno@lowagie.com>

http://itextpdf.org:8180/book/hello.pdf
http://itextpdf.org:8180/book/helloworld.jsp
http://itextpdf.org:8180/book/helloworld.jsp

292 CHAPTER 9 Integrating iText in your web applications
response.setContentType("application/pdf");
Document document = new Document();
ByteArrayOutputStream buffer = new ByteArrayOutputStream();
PdfWriter.getInstance(document, buffer);
document.open();
document.add(new Paragraph("Hello World"));
document.close();
DataOutput output = new DataOutputStream(response.getOutputStream());
byte[] bytes = buffer.toByteArray();
response.setContentLength(bytes.length);
for(int i = 0; i < bytes.length; i++) { output.writeByte(bytes[i]); }
%>

Please take my advice and don’t use this example. I’m only including it because the
question, “How can I produce a PDF from a JSP page?” turns up on the mailing list on
a regular basis. Let me explain why that is a bad idea, using this (working!) example.

 Several things can go wrong if you ignore my advice and deploy the code from list-
ing 9.5 on your server. If you write the bytes of the ByteArrayOutputStream to a file
on the server, the PDF will be OK, but this doesn’t mean that the PDF will be OK when
you send the same bytes to the browser. These are some potential problems:

■ The blank page problem for JSP pages It’s possible that the PDF opens when served
on the client, showing nothing but blank pages. Some servers assume that JSP
output isn’t binary, and every byte higher than 127 will show up as a ques-
tion mark.

■ Whitespace corrupting the binary data JSP pages are compiled to a servlet inter-
nally. If you think writing a PDF servlet is more difficult than writing a PDF JSP
page, think again. If you copy listing 9.5 and start working from there, you’ll
probably add indentation, newlines, spaces, and carriage returns, inside as well
as outside the <% and %> marks to make the JSP file more readable. Although
this is good practice when you write JSP that produces HTML, it can be deadly if
you want to generate binary content. If you look at the code of the servlet that is
automatically generated based on the JSP file, you’ll see that the whitespace
characters outside these marks are written to the OutputStream. This has the
same effect as when you would open a JPG in a text editor and insert whitespace
characters in arbitrary places.

■ OutputStream opened twice Your JSP code may go wrong even before you get the
chance to corrupt your PDF file. If you’ve added whitespace before invoking
response.getOutputStream(), an exception will be thrown, saying “getOut-
putStream() has already been called for this response.” Calling this method
was done implicitly the moment the first unwanted whitespace characters
appeared, and it’s forbidden to call that method a second time.

If you take all these warnings into consideration, you might be able to write a PDF-pro-
ducing JSP page, but sooner or later you’ll run into troubles. Maybe a colleague will
open that JSP in an IDE that automatically formats the code to make it more readable.
While debugging problems like this, you’ll probably end up inspecting the servlet that
Licensed to Bruno Lowagie <bruno@lowagie.com>

293Making a form “web ready”
is generated, and eventually, you may want to replace the JSP page with a servlet.
That’s why it’s better to stay away from JSP in the first place if you want to produce
a PDF document. Write a servlet, and you’ll save time not only for yourself, but also
for your employer. Maybe you can use this argument if using JSP is a requirement in
your project.

 Enough about JSP already. Let’s continue with servlets that involve PDF forms.

9.2 Making a form “web ready”
Now that you know how to integrate iText in a web application, you can combine this
knowledge with what you learned about interactive PDF forms in the previous chapter.
In this section, you’ll add buttons to submit the data entered in a PDF form to the server;
then you’ll interpret this data and create a new PDF (pre)filled with the submitted data.
Note that most of the functionality discussed in this section is AcroForm-specific; it
won’t work for XFA forms.

9.2.1 Adding a submit button to an existing form

Figure 9.3 shows a form you created in section 8.5 (see figure 8.6) opened with the
Adobe Reader plug-in in Google Chrome. I’ve manually filled out the form with my
name, login, and the most obvious reason why I want to visit the Foobar Film Festival.
I’ve also added buttons to the form that will allow you to submit this data to a server.

 There are four ways to submit this data:

■ As an HTML form—The server will receive a query string
■ As FDF—This is the Forms Data Format
■ As XFDF—This is the XML version of the Forms Data Format
■ As PDF—The full PDF, including the data that was entered, is sent to the server

Sending the form as a full PDF is only possible if the end user is filling out the form in
the full Acrobat, so there’s no button for that option in figure 9.3. In this example,
we’re only looking at the first three options. The fourth button in the form, Reset, can
be used to reset the data that was entered manually.

Figure 9.3 Adding
submit buttons to
an existing form
Licensed to Bruno Lowagie <bruno@lowagie.com>

294 CHAPTER 9 Integrating iText in your web applications
PdfReader reader = new PdfReader(src);
PdfStamper stamper = new PdfStamper(reader,
 new FileOutputStream(dest));
PushbuttonField button1 = new PushbuttonField(
 stamper.getWriter(),
 new Rectangle(90, 660, 140, 690), "post");
button1.setText("POST");
button1.setBackgroundColor(new GrayColor(0.7f));
button1.setVisibility(
 PushbuttonField.VISIBLE_BUT_DOES_NOT_PRINT);
PdfFormField submit1 = button1.getField();
submit1.setAction(PdfAction.createSubmitForm(
 "/book/request", null, PdfAction.SUBMIT_HTML_FORMAT
 | PdfAction.SUBMIT_COORDINATES));
stamper.addAnnotation(submit1, 1);
PushbuttonField button2 = new PushbuttonField(
 stamper.getWriter(),
 new Rectangle(200, 660, 250, 690), "FDF");
button2.setBackgroundColor(new GrayColor(0.7f));
button2.setText("FDF");
button2.setVisibility(
 PushbuttonField.VISIBLE_BUT_DOES_NOT_PRINT);
PdfFormField submit2 = button2.getField();
submit2.setAction(PdfAction.createSubmitForm(
 "/book/request", null,
 PdfAction.SUBMIT_EXCL_F_KEY));
stamper.addAnnotation(submit2, 1);
PushbuttonField button3 = new PushbuttonField(
 stamper.getWriter(),
 new Rectangle(310, 660, 360, 690), "XFDF");
button3.setBackgroundColor(new GrayColor(0.7f));
button3.setText("XFDF");
button3.setVisibility(
 PushbuttonField.VISIBLE_BUT_DOES_NOT_PRINT);
PdfFormField submit3 = button3.getField();
submit3.setAction(PdfAction.createSubmitForm(
 "/book/request", null, PdfAction.SUBMIT_XFDF));
stamper.addAnnotation(submit3, 1);
PushbuttonField button4 = new PushbuttonField(
 stamper.getWriter(),
 new Rectangle(420, 660, 470, 690), "reset");
button4.setBackgroundColor(new GrayColor(0.7f));
button4.setText("RESET");
button4.setVisibility(
 PushbuttonField.VISIBLE_BUT_DOES_NOT_PRINT);
PdfFormField reset = button4.getField();
reset.setAction(PdfAction.createResetForm(null, 0));
stamper.addAnnotation(reset, 1);
stamper.close();

NOTE There’s one button missing in figure 9.3 and listing 9.6: a button that
submits the form using the option PdfAction.SUBMIT_PDF. This was a deliber-
ate choice, because this button won’t work if the end user only has Adobe
Reader, not the full Acrobat.

Listing 9.6 SubmitForm.java

Button to
POST as HTML

Button to
POST as FDF

Button to
POST as XFDF

Button to reset
the form
Licensed to Bruno Lowagie <bruno@lowagie.com>

295Making a form “web ready”
You’ll recognize the methods to create and shape the PushbuttonField and to obtain
the corresponding PdfFormField. The key methods in this code snippet are two static
methods from the PdfAction class we haven’t discussed before.

■ createSubmitForm()—Expects three parameters. The first parameter is a
String representing a URL. In listing 9.6, you specify the path /book/request.
This is a path to a servlet in the book application. We’ll have a look at this servlet
in listing 9.7. The second parameter is an array of Object values. You can pass
an array of String values with field names, or an array of PdfAnnotation values
representing fields. This can be used to limit the data that is sent to the server.
The third parameter defines the submit method and extra options.

■ createResetForm()—Expects two parameters. The first parameter has the
same meaning as the second parameter of the createSubmitForm() method.
The second parameter is a flag, specifying whether the fields in the array should
be included (0) or excluded (1). The use of null and 0 in listing 9.6 will reset
all the fields.

Before discussing the different submit methods and options, we’ll take a look at what
happens on the server side if you use the /request URL pattern. This pattern corre-
sponds with this ShowData servlet.

public class ShowData extends HttpServlet {
 protected void doGet(
 HttpServletRequest request, HttpServletResponse response)
 throws ServletException, IOException {
 response.setContentType("text/plain");
 PrintWriter out = response.getWriter();
 Enumeration<String> parameters
 = request.getParameterNames();
 String parameter;
 while (parameters.hasMoreElements()) {
 parameter = parameters.nextElement();
 out.println(String.format("%s: %s",
 parameter, request.getParameter(parameter)));
 }
 }
 protected void doPost(
 HttpServletRequest request, HttpServletResponse response)
 throws ServletException, IOException {
 response.setContentType("text/plain");
 OutputStream os = response.getOutputStream();
 InputStream is = request.getInputStream();
 byte[] b = new byte[256];
 int read;
 while ((read = is.read(b)) != -1) {
 os.write(b, 0, read);
 }
 }
}

Listing 9.7 ShowData.java

Shows parameters/
values sent with GET

Shows request sent
to server with POST
Licensed to Bruno Lowagie <bruno@lowagie.com>

296 CHAPTER 9 Integrating iText in your web applications
This is an interesting servlet for debugging web applications. If you send a GET request
to it, you’ll get an overview of the query string parameters and values that are received
on the server side. If you use the POST method, the servlet returns the byte stream that
was received by the request. We can use this servlet to inspect the data that is sent to
the server from the PDF form.

SUBMITTING A PDF FORM AS HTML POST

If you create a submit button with the flag PdfAction.SUBMIT_HTML_FORMAT, the form
will be submitted as if the PDF document were an HTML form. It will use the POST
method. Figure 9.4 shows what the ShowData servlet received.

 You’ll recognize the fields personal.loginname, personal.name, personal.pass-
word, and personal.reason, as well as two unexpected fields: post.x and post.y. You
created a submit button with the name post, measuring 50 pt x 30 pt. You also added
the PdfAction.SUBMIT_COORDINATES option. As a result, the server receives the X and
Y coordinates of the position you’ve clicked inside the 50 pt x 30 pt rectangle. Using
this option turns your button into a clickable map.

NOTE The PDF specification also provides the option to submit the data
using the GET method (adding the option PdfAction.SUBMIT_HTML_GET), but
I don’t advise you to do so (just like with using JSP, use this at your own risk).

The default submit option for AcroForms is submit as FDF.

SUBMITTING A PDF FORM AS FDF

When you click the second button shown in figure 9.3, the request servlet will return a
file in the FDF. See figure 9.5.

 FDF is based on PDF; it uses the same syntax and the same file structure. This for-
mat is used to export form data to standalone files that can be stored, transmitted
electronically, and imported back into the corresponding PDF interactive form. In the
next section, you’ll take an FDF file similar to the one shown in figure 9.5 and you’ll
use iText to import the data embedded in the FDF file into a form. FDF is an interest-
ing and compact format if you want to take the data that was posted by end users and
save it on the filesystem on server side.

Figure 9.4 InputStream of the HttpServletRequest (POST)
Licensed to Bruno Lowagie <bruno@lowagie.com>

297Making a form “web ready”
You don’t need to set any flags to create a submit button that posts an FDF file; just use
0 if you don’t need any options. In listing 9.6, you set the option PdfAction.
SUBMIT_EXCL_F_KEY. If you omit this option, the URL of the original form (for
instance, http://127.0.0.1:8080/book/submit_me.pdf) will be added to the FDF docu-
ment. There are some other options, but most of them only work if the end user has
the full Acrobat; they don’t work with Adobe Reader.

 There’s also a limited XML implementation of the FDF: XFDF.

SUBMITTING A PDF FORM AS XFDF

If you look at figure 9.6, you’ll see that the XFDF result is more human readable than
what was returned in figure 9.5.

Figure 9.5 InputStream of the HttpServletRequest (FDF)

Figure 9.6 InputStream of the HttpServletRequest (XFDF)
Licensed to Bruno Lowagie <bruno@lowagie.com>

298 CHAPTER 9 Integrating iText in your web applications
The value of the personal.name field can be found in the value tag that is nested
inside the field tags with names personal and name.

 This concludes the overview of the submit methods. In the upcoming examples,
you’ll use these methods to submit data to a servlet that fills out a form on the server
side.

9.2.2 Filling out a form on the server side

Typically, you won’t use iText to create interactive forms, but Acrobat, Open Office, or
another authoring tool. You’ll use iText to automatically fill out forms that were
designed manually. In section 9.1.1, we’ve integrated the five steps of PDF creation in a
servlet; now we’ll do the same with a PDF manipulation example.

public class FormServlet extends HttpServlet {
 protected void doPost(
 HttpServletRequest request, HttpServletResponse response)
 throws ServletException, IOException {
 response.setContentType("application/pdf");
 try {
 InputStream is = getServletContext()
 .getResourceAsStream("/subscribe.pdf");
 PdfReader reader = new PdfReader(is, null);
 ByteArrayOutputStream baos = new ByteArrayOutputStream();
 PdfStamper stamper = new PdfStamper(reader, baos);
 AcroFields fields = stamper.getAcroFields();
 fields.setFieldProperty(
 "personal.password", "clrfflags",
 TextField.PASSWORD, null);
 Set<String> parameters
 = fields.getFields().keySet();
 for (String parameter : parameters) {
 fields.setField(parameter,
 request.getParameter(parameter));
 }
 stamper.setFormFlattening(true);
 stamper.close();
 OutputStream os = response.getOutputStream();
 baos.writeTo(os);
 os.flush();
 } catch (DocumentException e) {
 throw new IOException(e.getMessage());
 }
 }
}

This example accepts parameters that correspond with the fields in the subscribe.pdf
form you created in section 8.5. This form is in the root of the book web application. B
creates an InputStream to read the original form from the WAR file, or from the book
subdirectory of the webapps folder of your Tomcat installation. You can use this Input-
Stream to construct a PdfReader instance C. The second parameter in this constructor

Listing 9.8 FormServlet.java

Uses a
stream
to create
PdfReader

C
B Gets

PDF as a
stream

D Manipulates
form
Licensed to Bruno Lowagie <bruno@lowagie.com>

299Making a form “web ready”
is reserved for the password of the PDF. Since you’re not using a password-protected file,
you can pass null. From here on, you can use all the functionality that was discussed in
the previous chapter. In D, you use the input sent to the request to fill out the form. You
also clear the password flag from the password field and flatten the form.

 In your application, you could get info from the database, and use that data to
prefill the form. That’s just a matter of combining what you learned in chapter 8
with the tips and tricks from section 9.1.2. We’ll continue with examples that use FDF
and XFDF as formats to store and transmit data from the client to the server, and
vice versa.

9.2.3 FDF and XFDF in web applications

Suppose you’re working for the Foobar Film Festival, and you need to create a form
that allows people to subscribe, but you also need to ask them to post a photograph of
the applicant. Figure 9.7 shows the original subscribe.pdf form with an extra field that
allows the end user to upload a file. In the example, I added a picture of myself from
the c:\TEMP\pdf\ directory. You can see the uploaded picture in the resulting PDF at
the bottom of figure 9.7.

Figure 9.7 Uploading a file using FDF
Licensed to Bruno Lowagie <bruno@lowagie.com>

300 CHAPTER 9 Integrating iText in your web applications
If you submit this form as HTML, the server will receive a multipart/form-data request.
Processing such a request increases the complexity of your servlet. It may be a better
idea to post the data as FDF—the uploaded file will be embedded inside the FDF docu-
ment as an attachment.

TRANSMITTING DATA AS FDF

There are benefits to this approach.

public class FDFServlet extends HttpServlet {
 protected void doGet(
 HttpServletRequest request, HttpServletResponse response)
 throws ServletException, IOException {
 response.setContentType("application/pdf");
 try {
 InputStream is
 = getServletContext().getResourceAsStream("/subscribe.pdf");
 PdfReader reader = new PdfReader(is, null);
 ByteArrayOutputStream baos = new ByteArrayOutputStream();
 PdfStamper stamper = new PdfStamper(reader, baos);
 PushbuttonField button = new PushbuttonField(
 stamper.getWriter(),
 new Rectangle(90, 660, 140, 690), "submit");
 button.setText("POST");
 button.setBackgroundColor(new GrayColor(0.7f));
 button.setVisibility(
 PushbuttonField.VISIBLE_BUT_DOES_NOT_PRINT);
 PdfFormField submit = button.getField();
 submit.setAction(PdfAction.createSubmitForm(
 "/book/fdf", null, 0));
 stamper.addAnnotation(submit, 1);
 TextField file = new TextField(
 stamper.getWriter(),
 new Rectangle(160, 660, 470, 690), "image");
 file.setOptions(TextField.FILE_SELECTION);
 file.setBackgroundColor(new GrayColor(0.9f));
 PdfFormField upload = file.getTextField();
 upload.setAdditionalActions(PdfName.U,
 PdfAction.javaScript(
 "this.getField('image').browseForFileToSubmit();"
 + "this.getField('submit').setFocus();",
 stamper.getWriter()));
 stamper.addAnnotation(upload, 1);
 stamper.close();
 OutputStream os = response.getOutputStream();
 baos.writeTo(os);
 os.flush();
 } catch (DocumentException e) {
 throw new IOException(e.getMessage());
 }
 }

 protected void doPost(

Listing 9.9 FDFServlet.java

Defines FDF
submit button

Defines file-
selection
text field

Sets action
to select file
Licensed to Bruno Lowagie <bruno@lowagie.com>

301Making a form “web ready”
 HttpServletRequest request, HttpServletResponse response)
 throws ServletException, IOException {
 response.setContentType("application/pdf");
 response.setHeader("Content-Disposition",
 "inline; filename=\"your.pdf\"");
 try {
 FdfReader fdf
 = new FdfReader(request.getInputStream());
 InputStream is
 = getServletContext().getResourceAsStream("/subscribe.pdf");
 PdfReader reader = new PdfReader(is, null);
 ByteArrayOutputStream baos = new ByteArrayOutputStream();
 PdfStamper stamper = new PdfStamper(reader, baos);
 AcroFields fields = stamper.getAcroFields();
 fields.setFields(fdf);
 stamper.setFormFlattening(true);
 try {
 Image img = Image.getInstance(
 fdf.getAttachedFile("image"));
 img.scaleToFit(100, 100);
 img.setAbsolutePosition(90, 590);
 stamper.getOverContent(1).addImage(img);
 }
 catch(IOException ioe) {
 ColumnText.showTextAligned(stamper.getOverContent(1),
 Element.ALIGN_LEFT, new Phrase("No image posted!"), 90, 660, 0);
 }
 stamper.close();
 OutputStream os = response.getOutputStream();
 baos.writeTo(os);
 os.flush();
 } catch (DocumentException e) {
 throw new IOException(e.getMessage());
 }
 }
}

In the doGet() part of listing 9.9, you add a submit button and a text field that will act
as an <input type="File"> field in an HTML form. You also add an additional action
that opens a “browse for file” dialog box. That way, the end user doesn’t have to enter
the file path manually.

 The doPost() method is more interesting. In listing 9.7, you sent the FDF bytes
back to the browser; now you use them to create an instance of FdfReader B. You
could use FdfReader to retrieve the data with the getFieldValue() method. For
instance,

fields.setField("personal.name", fdf.getField("personal.name"));

But it’s easier to set the fields all at once with the setFields() method C. This
method loops over all the fields in the FDF document and sets the value of the corre-
sponding fields in the AcroForm. D demonstrates how easy it is to extract the
uploaded file from the FDF stream. You use it to create an Image that will be added to
the form.

Specifies filename
of resulting PDF

B Reads FDF
from request

Uses shortcut
to set fields

C

D Gets uploaded
file from FDF
Licensed to Bruno Lowagie <bruno@lowagie.com>

302 CHAPTER 9 Integrating iText in your web applications
This is a useful FDF example if you want to transmit data from the browser to the
server. You can also benefit from FDF if you want to store data on a filesystem.

STORING DATA AS FDF

Suppose you’re organizing a conference. People who want to register need to enter
data into an HTML form on your site. As soon as they’ve paid the conference fee, you
have to print a configuration letter that will be sent by snail mail. You can put all the
registrations in a database, but depending on your requirements, storing the data on
the filesystem as a series of FDF documents (one per subscriber) may be a valid alter-
native. The window on the left in figure 9.8 shows a simple HTML form where I’ve
added information about myself. Let’s submit that form. Instead of storing the data
on the server side, we’ll use a servlet that sends the FDF back to the client. See the
download bar on the bottom of the Google Chrome window with the button labeled
“subscribe.fdf”. If you open that file, it will try to find the form that corresponds with
the data, open that form, and fill it out with the data from the FDF. This is shown in
the left window of figure 9.8.

public class CreateFDF extends HttpServlet {
 protected void service(
 HttpServletRequest request, HttpServletResponse response)
 throws ServletException, IOException {
 response.setContentType(
 "application/vnd.adobe.fdf");
 response.setHeader("Content-Disposition",
 "attachment; filename=\"subscribe.fdf\"");
 FdfWriter fdf = new FdfWriter();
 fdf.setFieldAsString(
 "personal.name", request.getParameter("name"));
 fdf.setFieldAsString("personal.loginname",
 request.getParameter("loginname"));

Listing 9.10 CreateFDF.java

Figure 9.8 Creating FDF based on data sent from an HTML form

B Sets content
type

C Forces download
dialog

Creates FDF
document
Licensed to Bruno Lowagie <bruno@lowagie.com>

303Making a form “web ready”
 fdf.setFieldAsString("personal.password",
 request.getParameter("password"));
 fdf.setFieldAsString("personal.reason",
 request.getParameter("reason"));
 fdf.setFile("subscribe.pdf");
 fdf.writeTo(response.getOutputStream());
 }
}

Up until now, you’ve used the application/pdf content type. For FDF files, you need
to use application/vnd.adobe.fdf B. You want the end user to download the file, so
you’re also setting the Content-Disposition header. As opposed to the previous
example, you use the word attachment (instead of inline) to force the browser to
download the file locally (instead of showing it in the browser window) C. You create
the FDF document with the FdfWriter class. The contents of the file will be kept in
memory until you write the file to an OutputStream.

 You can set fields in different ways. Listing 9.10 uses setFieldAsString(), but it’s
also possible to use setFieldAsName(). The former method stores the field value as a
PdfString object; the latter stores it as a PdfName. There are also different set-
Fields() methods to which you can pass an AcroFields object, a PdfReader, or an
FdfReader instance.

 An FDF file can contain a reference to a PDF document containing a form that
accepts the FDF data. If you save the file subscribe.fdf in the same directory as sub-
scribe.pdf, clicking the FDF file will open the PDF file as shown in the left window of
figure 9.8. Note that you can also use a URL to open the form online, but this can
cause security issues, depending on the version of the PDF viewer.

 iText doesn’t offer a class to create XFDF files, but it’s easy to write your own server-
side script to transform the key-value pairs from an HTML submit into an XFDF file.

TRANSMITTING DATA AS XFDF

If you create a button to submit data using the XFDF format, you can read the incom-
ing stream with the XfdfReader class.

protected void doPost(
 HttpServletRequest request, HttpServletResponse response)
 throws ServletException, IOException {
 response.setContentType("application/pdf");
 try {
 XfdfReader xfdf = new XfdfReader(request.getInputStream());
 InputStream is
 = getServletContext().getResourceAsStream("/subscribe.pdf");
 PdfReader reader = new PdfReader(is, null);
 ByteArrayOutputStream baos = new ByteArrayOutputStream();
 PdfStamper stamper = new PdfStamper(reader, baos);
 AcroFields fields = stamper.getAcroFields();
 fields.setFields(xfdf);
 stamper.close();

Listing 9.11 XFDFServlet.java

Creates FDF
document
Licensed to Bruno Lowagie <bruno@lowagie.com>

304 CHAPTER 9 Integrating iText in your web applications
 OutputStream os = response.getOutputStream();
 baos.writeTo(os);
 os.flush();
 } catch (DocumentException e) {
 throw new IOException(e.getMessage());
 }
}

Note that XFDF is more limited than FDF. For example, you can’t upload files with
XFDF. Another limitation of both FDF and XFDF is that they are based on AcroForm
technology; these examples won’t work for XFA forms.

 We have one web example left involving forms.

9.3 JavaScript communication between HTML and PDF
In this section, we’ll write an example that demonstrates how to establish communica-
tion between JavaScript in an HTML page and JavaScript inside a PDF document.

 Imagine the following situation: you have a catalog with thousands of items stored
in a database. People can purchase these items online using a PDF form. How will you
create that form? Surely you don’t want to embed your complete article database in a
choice field inside your PDF. It would be much easier to provide browse or search
functionality in an HTML page, then find a way to pass this data from the HTML pages
to the PDF form.

 Figure 9.9 shows an HTML page with a form and an embedded PDF document. The
HTML form has two fields and a button. If you fill out a name and login and click
the button, the values entered in the fields are passed as a message to the PDF docu-
ment. The PDF document accepts these values and fills out the corresponding fields in
the AcroForm.

Figure 9.9 JavaScript communication between HTML and PDF
Licensed to Bruno Lowagie <bruno@lowagie.com>

305JavaScript communication between HTML and PDF
Passing the values in the opposite direction is also possible. If you change the name
and login in the PDF form, and click the Post To HTML button, the entries are passed
from the PDF form to the HTML form.

EMBEDDING A PDF DOCUMENT AS AN HTML OBJECT

Let’s start by looking at the HTML side of this functionality. This example shows the
JavaScript needed to accept the data from the PDF, and how to embed the PDF inside
the HTML page.

<html>
<head>
 <script language="javascript">
 function createMessageHandler() {
 var PDFObject = document.getElementById("myPdf");
 PDFObject.messageHandler = {
 onMessage: function(msg) {
 document.personal.name.value = msg[0];
 document.personal.loginname.value = msg[1];
 },
 onError: function(error, msg) {
 alert(error.message);
 }
 }
 }
 function sendToPdf() {
 var PDFObject = document.getElementById("myPdf");
 if(PDFObject!= null){
 PDFObject.postMessage(
 [document.personal.name.value,
 document.personal.loginname.value]);
 }
 }
 </script>
</head>
<body onLoad="createMessageHandler();">
 <form name="personal">
 <table>
 <tr>
 <td>Name:</td>
 <td><input type="Text" name="name"></td>
 <td>Login:</td>
 <td><input type="Text" name="loginname"></td>
 <td><input type="Button" value="Send to PDF"
 onClick="return sendToPdf();"></td>
 </tr>
 </table>
 </form>
 <object id="myPdf" type="application/pdf"
 data="javascript.pdf"
 height="100%" width="100%"></object>
</body>
</html>

Listing 9.12 javascript.html

JavaScript to
get data from
PDF

B

JavaScript
to send data
to PDF

C

HTML form

Embedding PDF
as object
Licensed to Bruno Lowagie <bruno@lowagie.com>

306 CHAPTER 9 Integrating iText in your web applications
In listing 9.4, you used the embed tag to embed a PDF document inside an HTML file.
In listing 9.12, the PDF is treated as an object. If you give it an id, such as myPdf, you
can create a variable using document.getElementById("myPdf"). You use this variable
in B to accept data from the PDF, and in C to send data to the PDF.

HTML TO PDF COMMUNICATION

The JavaScript sendToPdf() method is triggered when the end user clicks the button
in the HTML form. It passes a message to the PDF object. This message is an array of
String values. It will only be accepted if the PDF is disclosed and if there’s a message
handler in place. The JavaScript code shown next was added as an Open action to the
javascript.pdf document.

this.disclosed = true;
if (this.external && this.hostContainer) {
 function onMessageFunc(stringArray) {
 var name = this.myDoc.getField("personal.name");
 var login
 = this.myDoc.getField("personal.loginname");
 try{
 name.value = stringArray[0];
 login.value = stringArray[1];
 }
 catch(e){
 onErrorFunc(e);
 }
 }
 function onErrorFunc(e) {
 console.show();
 console.println(e.toString());
 }
 try {
 if(!this.hostContainer.messageHandler);
 this.hostContainer.messageHandler = new Object();
 this.hostContainer.messageHandler.myDoc = this;
 this.hostContainer.messageHandler.onMessage
 = onMessageFunc;
 this.hostContainer.messageHandler.onError
 = onErrorFunc;
 this.hostContainer.messageHandler.onDisclose
 = function(){
 return true;
 };
 }
 catch(e){
 onErrorFunc(e);
 }
}

JavaScript communication between documents is only possible if the document is
disclosed B. You also need to check if the document is opened in an external window.

Listing 9.13 post_from_html.js

Discloses PDF documentB

Checks if PDF is opened
in host containerC

Handles
incoming
messages

D

E Handles
errors

Creates
message
handler

F

Licensed to Bruno Lowagie <bruno@lowagie.com>

307Creating basic building blocks from HTML and XML
If so, you need access to the host container C. In this case, the host container is the
web browser.

NOTE The hostContainer property doesn’t work on Mac OS X. Because of that
limitation, this example may not work for you or for a segment of your customers.

F creates a message handler for the host container. It also defines a function to han-
dle messages D and errors E. The postMessage() method in the HTML passes a mes-
sage to the onMessage method of the messageHandler. In this implementation, the
first entry in the message array is used to fill in the personal.name field, the second
entry to fill in the personal.loginname field.

 Now let’s take a look at the communication in the opposite direction.

PDF TO HTML COMMUNICATION

When an end user clicks the Post to HTML button in the PDF document, this
JavaScript snippet is executed.

if(this.hostContainer) {
 var names = new Array();
 names[0] = this.getField("personal.name").value.toString();
 names[1] = this.getField("personal.loginname").value.toString();
 try{
 this.hostContainer.postMessage(names);
 }
 catch(e){
 app.alert(e.message);
 }
}

In the example, you check whether the PDF is opened in a host container. If it is, you
put the values you want to transmit to the HTML JavaScript in an array and use the post-
Message() method of the host container. This message will only be accepted if there’s
a message handler in place for the PDF object. This message handler is created in the
createMessageHandler() (B in listing 9.12) that was triggered when the HTML page
was loaded; see the onLoad attribute of the body tag. This method is similar to what you
did in listing 9.13. The onMessage:function accepts an array of String values. In this
implementation, these values are used to fill out fields in the HTML form.

 This example was a little bit out of scope for a book about iText. You’ll find more
information about HTML to PDF communication (and vice versa) in the JavaScript for
Acrobat API Reference. We’ll continue looking at web-related functionality with examples
that convert HTML snippets and XML files into a sequence of iText building blocks.

9.4 Creating basic building blocks from HTML and XML
You created many different basic building blocks through code in chapters 2 and 4.
You’ve written createObject() methods and a PojoToElementFactory class for your
convenience. In this section, you’ll learn how to take a shortcut, and to let iText create
these objects for you.

Listing 9.14 post_to_html.js
Licensed to Bruno Lowagie <bruno@lowagie.com>

308 CHAPTER 9 Integrating iText in your web applications
 In section 9.4.1, we’ll take HTML as the source to create objects, in section 9.4.2,
we’ll use XML.

9.4.1 Parsing HTML

One of the frequently asked questions on the iText mailing list is, “Does iText provide
HTML2PDF functionality?” The official answer is no. Usually you’ll get advice to use
another product; for instance, xhtmlrenderer, aka Flying Saucer—a project that is
built on top of iText. You can find the URL of that project in appendix B.

 In some cases, you don’t need a full-blown HTML renderer. Many web applications
come with a small HTML editor that allows users to post messages with limited
markup. For example, perhaps only and <i> tags are allowed. Often these HTML
snippets are stored in a database or somewhere on the filesystem. The initial question
for HTML to PDF functionality could be rephrased as: “Can we insert those HTML
snippets into a PDF file using iText?” The answer is yes; you can do this with iText if you
use HTMLWorker.

HTML SNIPPETS

You can use the method parseToList() to parse a snippet of HTML into a List of
iText Elements.

List<Movie> movies = PojoFactory.getMovies(connection);
String snippet;
for (Movie movie : movies) {
 snippet = createHtmlSnippet(movie);
 out.println(snippet);
 List<Element> objects =
 HTMLWorker.parseToList(new StringReader(snippet),
 styles, providers);
 for (Element element : objects)
 document.add(element);
}

The method createHtmlSnippet() returns a very simple HTML snippet containing
information about a movie. If you want to know what it looks like, you can open the
file movies_1.html that is generated simultaneously with the PDF file (the out object is
an instance of a PrintStream). It has entries like this:

Little Miss Sunshine

 <li class="country">United States

Year: <i>2006 minutes</i>

Duration: <i>101 minutes</i>

 Dayton, Jonathan
 Faris, Valerie

Listing 9.15 HtmlMovies1.java

Takes HTML
snippet

Parses to List
of Element
objects

Adds Elements
to Document
Licensed to Bruno Lowagie <bruno@lowagie.com>

309Creating basic building blocks from HTML and XML
HTMLWorker will parse this snippet to a java.util.List of Paragraph and com.itext-
pdf.text.List objects. Figure 9.10 compares the HTML file opened in Firefox with
the corresponding PDF opened in Adobe Reader.

 Note that the content is rendered differently. That’s to be expected: HTML wasn’t
designed to define the exact layout of a document. You can tune the way an object is
created by using the StyleSheet object and by creating a HashMap with providers.

DEFINING STYLES

The styles and providers parameters were null in the previous example. You’ll
reuse listing 9.15 in the next example, but this time you’ll create instances for these
parameters.

HtmlMovies2 movies = new HtmlMovies2();
StyleSheet styles = new StyleSheet();
styles.loadTagStyle("ul", "indent", "10");
styles.loadTagStyle("li", "leading", "14");
styles.loadStyle("country", "i", "");
styles.loadStyle("country", "color", "#008080");
styles.loadStyle("director", "b", "");
styles.loadStyle("director", "color", "midnightblue");
movies.setStyles(styles);
HashMap map = new HashMap();
map.put("font_factory", new MyFontFactory());
map.put("img_provider", new MyImageFactory());
movies.setProviders(map);

Listing 9.16 HtmlMovies2.java

Figure 9.10 HTML snippets converted to PDF without using styles
Licensed to Bruno Lowagie <bruno@lowagie.com>

310 CHAPTER 9 Integrating iText in your web applications
With the loadTagStyle() method, you can adapt the style of specific tags. In listing 9.16,
you change the indentation of unordered lists and reduce the leading of the list items.
The method loadStyle() is used to change the style of the tags with a class attribute.
The style for country elements is changed to italic; the style is changed to bold for the
director class. The color is changed too. The result is shown in figure 9.11.

 Observe that, although you didn’t specify a font face or size in the StyleSheet,
another font was used. You could change the font using loadTagStyle() or load-
Style(). For instance,

styles.loadTagStyle("li", "face", "courier");
styles.loadStyle("country", "size", "10pt");

For this example, you can use a custom FontProvider instead.

IMPLEMENTING THE FONTPROVIDER INTERFACE

The next listing is a simple example of how you can implement the two methods of
the FontProvider interface. The getFont() method returns a Times-Roman font, no
matter what font is defined in the HTML snippet or the StyleSheet.

public static class MyFontFactory implements FontProvider {
 public Font getFont(String fontname,
 String encoding, boolean embedded, float size,
 int style, BaseColor color) {
 return new Font(FontFamily.TIMES_ROMAN, size, style, color);
 }
 public boolean isRegistered(String fontname) {
 return false;
 }
}

Listing 9.17 HtmlMovies2.java

Figure 9.11 HTML
snippets converted
to PDF using styles
Licensed to Bruno Lowagie <bruno@lowagie.com>

311Creating basic building blocks from HTML and XML
Another implementation of the FontProvider interface can be found in iText’s
source code. If you don’t define a font_factory, HTMLWorker will use the class Font-
FactoryImp, which is much more elaborate than this simple MyFontFactory example.
This class will be discussed in more detail in chapter 11.

 Figure 9.11 also shows that the HTML snippet used in this second HTML example is
a tad more complex than the snippet used in the first one. It now involves a <table>
tag that will result in a PdfPTable object and an tag that should result in an
Image object.

IMPLEMENTING THE IMAGEPROVIDER INTERFACE

The tag, more specifically its src attribute, can cause a problem when you’re
using relative paths for the images. You’re creating an HTML file with the HTML snip-
pets in the ./results/part3/chapter09/ directory, but you’re referring to images that
are in the ./resources/posters/ folder. This is an example of such an tag:

If you use HTMLWorker without an ImageProvider, iText won’t be able to find this
image because it will be looking for it in the directory ../../../resources/posters/
instead of in the ./resources/posters/ folder. You can resolve this by defining an
img_provider in listing 9.16. Here is the implementation.

public static class MyImageFactory implements ImageProvider {
 public Image getImage(String src, HashMap h,
 ChainedProperties cprops, DocListener doc) {
 try {
 return Image.getInstance(String.format("resources/posters/%s",
 src.substring(src.lastIndexOf("/") + 1)));
 } catch (DocumentException e) {
 e.printStackTrace();
 } catch (IOException e) {
 e.printStackTrace();
 }
 return null;
 }
}

We’re working with HTML snippets in these examples. We haven’t defined at which
point a snippet becomes a complete HTML page. If you inspect the source code of the
HtmlMovies2 example, you’ll see that there’s also a createPdf() method that parses the
complete HTML file. It’s certainly possible to use iText to parse larger HTML files, but
remember that iText wasn’t designed for this kind of work. It’s not a full-blown HTML
parser; there are better tools available if converting HTML to PDF is your main purpose.

 The same goes for parsing XML. When talking about XML and PDF, people often
refer to Formatting Objects (FO), and Formatting Objects Parsers (FOP), such as
Apache FOP. But that doesn’t mean you can’t use iText to convert XML to PDF, as
you’ll see in the next section.

Listing 9.18 HtmlMovies2.java
Licensed to Bruno Lowagie <bruno@lowagie.com>

312 CHAPTER 9 Integrating iText in your web applications
9.4.2 Parsing XML

In chapter 8, you injected an XML file containing information about movies into an
XFA form. Here you’re going to use the same XML file to create a PDF document from
scratch. The XML file is shown on the right in figure 9.12. The result is shown in the
Adobe Reader window to the left.

The schema used for the movie information is custom made; iText doesn’t know what
the tags movie, title, directors, and so on, mean. You’ll have to tell iText how to
interpret these tags by writing your own XML handler.

WRITING AN XML HANDLER

You need to extend org.xml.sax.helpers.DefaultHandler and implement at least
three methods:

■ The characters() method—To put all the characters that are encountered
between the tags of the XML file into a Chunk object.

■ The startElement() method—To create specific TextElementArray objects that
correspond with each tag that is encountered. You can also inspect the attri-
butes to define the properties of the basic building blocks. Once a Text-
ElementArray is created, you can push it to a Stack, where it will wait for
further processing.

■ The endElement() method—To update or flush the Stack.

A possible implementation for the XML file shown in figure 9.12 can be found in the
next example.

Figure 9.12 An XML file converted to PDF
Licensed to Bruno Lowagie <bruno@lowagie.com>

313Creating basic building blocks from HTML and XML
protected Document document;
protected Stack<TextElementArray> stack =
 new Stack<TextElementArray>();
protected Chunk currentChunk = null;

protected String year = null;
protected String duration = null;
protected String imdb = null;

public XmlHandler(Document document) {
 this.document = document;
}

public void characters(char[] ch, int start, int length)
 throws SAXException {
 String content = new String(ch, start, length);
 if (content.trim().length() == 0)
 return;
 if (currentChunk == null) {
 currentChunk = new Chunk(content.trim());
 }
 else {
 currentChunk.append(" ");
 currentChunk.append(content.trim());
 }
}

public void startElement(String uri, String localName,
 String qName, Attributes attributes) throws SAXException {
 try {
 if ("directors".equals(qName)
 || "countries".equals(qName)) {
 stack.push(new List(List.UNORDERED));
 }
 else if ("director".equals(qName)
 || "country".equals(qName)) {
 stack.push(new ListItem());
 }
 else if ("movie".equals(qName)) {
 flushStack();
 Paragraph p = new Paragraph();
 p.setFont(new Font(
 FontFamily.HELVETICA, 14, Font.BOLD));
 stack.push(p);
 year = attributes.getValue("year");
 duration = attributes.getValue("duration");
 imdb = attributes.getValue("imdb");
 }
 else if ("original".equals(qName)) {
 stack.push(new Paragraph("Original title: "));
 }
 } catch (Exception e) {
 e.printStackTrace();
 }
}

Listing 9.19 XmlHandler.java

Adds characters
to current Chunk

Adds List to Stack
for directors and
countries

Adds ListItems
for director or
country

Adds Paragraph
to Stack for
movie title

Keeps track
of attributes

Pushes Paragraph
with some text to
Stack
Licensed to Bruno Lowagie <bruno@lowagie.com>

314 CHAPTER 9 Integrating iText in your web applications
public void endElement(String uri, String localName,
 String qName) throws SAXException {
 try {
 updateStack();
 if ("directors".equals(qName)) {
 flushStack();
 Paragraph p = new Paragraph(String.format(
 "Year: %s; duration: %s; ", year, duration));
 Anchor link = new Anchor("link to IMDB");
 link.setReference(String.format(
 "http://www.imdb.com/title/tt%s/", imdb));
 p.add(link);
 stack.push(p);
 }
 else if ("countries".equals(qName)
 || "title".equals(qName)) {
 flushStack();
 }
 else if ("original".equals(qName)
 || "movie".equals(qName)) {
 currentChunk = Chunk.NEWLINE;
 updateStack();
 }
 else if ("director".equals(qName)
 || "country".equals(qName)) {
 ListItem listItem = (ListItem) stack.pop();
 List list = (List) stack.pop();
 list.add(listItem);
 stack.push(list);
 }
 } catch (Exception e) {
 e.printStackTrace();
 }
}

The helper method updateStack() adds the current Chunk to the top TextElementA-
rray on the Stack. If the Stack is empty, a Paragraph is created and added to the
Stack. The helper method flushStack() will try to compose elements on the Stack;
for instance, adding Phrase objects to a Paragraph. It will try to add TextElementAr-
rays to the Document as soon as possible.

PARSING THE XML FILE USING THE HANDLER

Once you’ve written your XmlHandler implementation, creating the PDF is a matter of
a handful of lines. All it takes is a servlet that reads the XML from the server and serves
a PDF to the browser.

public class MovieServlet extends HttpServlet {
 protected void doGet(
 HttpServletRequest request, HttpServletResponse response)
 throws ServletException, IOException {
 try {

Listing 9.20 MovieServlet.java

Adds extra info
after directors
List

Flushes Stack
after countries
and title

Adds Chunk.NEWLINE
after original and movie

Adds ListItems
to List
Licensed to Bruno Lowagie <bruno@lowagie.com>

315Summary
 Document document = new Document();
 PdfWriter.getInstance(document, response.getOutputStream());
 document.open();
 InputStream is
 = getServletContext().getResourceAsStream("/movies.xml");
 SAXParser parser = SAXParserFactory.newInstance().newSAXParser();
 parser.parse(new InputSource(is), new XmlHandler(document));
 document.close();
 } catch (DocumentException e) {
 throw new IOException(e.getMessage());
 } catch (ParserConfigurationException e) {
 throw new IOException(e.getMessage());
 } catch (SAXException e) {
 throw new IOException(e.getMessage());
 }
 }
}

This may not be the easiest way to create a PDF document, but as soon as you’ve
gained experience implementing the different DefaultHandler methods, you can
create very powerful XML converters. I’ve frequently used this functionality in projects
where the XML schema is unlikely to change, but the XML content changes fre-
quently; for instance, in projects where the content of a letter is described in XML.
The structure of the letter—defined in the XML schema—is always the same, but
because of changing rules and laws, some of the clauses have to be adapted on a regu-
lar basis. For this situation, I wrote the XmlHandler once upon a time, very long ago,
but I’m asked to change the content of the XML file on a regular basis.

 Up until now, HTML and XML to PDF conversion hasn’t been part of the core busi-
ness of iText because there are plenty of other tools that have made it their specialty.
But as we’re moving more and more toward XFA, you’ll probably see more activity on
the iText XML front in the years to come. For now, let’s summarize what we’ve done in
this chapter.

9.5 Summary
Generating PDFs for the web isn’t all that different from generating PDFs in a stand-
alone application. That’s what could be concluded after the first example in this chap-
ter, where you integrated the five steps of the PDF creation process in a servlet.
Nevertheless, there are different pitfalls that have been reported on the mailing list
over the years. You can benefit from the experience of other developers by following
some simple rules of thumb. When in need, you’ll be able to fall back on the section
about troubleshooting web applications. Generating PDFs using JSP isn’t impossible,
but it’s not done.

 In the previous chapter, you created interactive PDF forms. In this chapter, you
learned how to make these forms “web ready” by adding buttons that allow end users
to submit data to a server in different formats. You filled a form on the server-side
using data that was submitted as an HTML POST, but you also explored the possibilities
of the FDF. You used FDF as a means to transmit data, including file uploads. You also
Licensed to Bruno Lowagie <bruno@lowagie.com>

316 CHAPTER 9 Integrating iText in your web applications
found out that you can use FDF and XFDF to store data on the filesystem. You used a
PDF form to demonstrate how to establish the communication between a PDF docu-
ment and its host container, the web browser, and you sent messages back and forth
between an HTML page and a PDF document.

 Finally, you learned how to use HTMLWorker to convert HTML snippets to basic
building blocks, and eventually to PDF. You also converted XML to PDF using a custom-
made XmlHandler.

 In the next chapter, we’ll look at another aspect that we discussed in previous parts
but that needs to be discussed in more detail: images and colors.
Licensed to Bruno Lowagie <bruno@lowagie.com>

Brightening
 your document

 with color and images
You’ve already used color and images in previous chapters. You set the background
and changed the font color of a Chunk using the BaseColor class in chapter 2. You
used setColorFill() and setColorStroke() methods when you painted movie
blocks on a calendar sheet in chapter 3. But that doesn’t mean we’ve talked about
everything. One could write an entire book about color.

 The same goes for images. We looked at the Image class in chapter 2, but there
are many other classes involved when creating an Image object: Jpeg, GifImage,
TiffImage, and so on. It would lead us too far astray to go into too much detail
about color and images, but this chapter will help you if you need more color or
image functionality than we covered in part 1.

This chapter covers
■ Using color in PDF documents
■ Introducing transparency
■ Using images in PDF documents
317

Licensed to Bruno Lowagie <bruno@lowagie.com>

318 CHAPTER 10 Brightening your document with color and images
10.1 Working with the iText color classes
Colors are defined using values, and these values are interpreted according to a color
space. Color spaces are expressed as PDF dictionaries, and there are eleven different
color spaces available in PDF. You can find a reference to these dictionaries in the
resources entry of a PDF stream. This is explained in great detail in the PDF reference;
but don’t worry, iText provides color classes that hide the complex theory.

 The most common group of color spaces is the device color space family.

10.1.1 Device colors

Device colors enable a conforming writer to control color precisely for a particular
device. The family consists of three color spaces:

■ DeviceRGB—The iText BaseColor class defines an RGB color. This is an additive
color: red, green, and blue light is used to produce the other colors. If you add
red light (#FF00000) to green light (#00FF000), for example, you get yellow
light (#FFFF00). This is how a TV screen works: the colors are composed of red,
green, and blue dots. RGB is typically used for graphics that need to be ren-
dered on a screen.

■ DeviceCMYK—The opposite of RGB is a subtractive color model. If you look at an
object using white light, you see a color because the object reflects and absorbs
some of the wavelengths that make up the white light. A yellow object absorbs
blue and reflects red and green. White (#FFFFFF) minus blue (#0000FF) equals
yellow (#FFFF00). The subtractive color model is used when printing a docu-
ment. You don’t use red, green, and blue, but cyan, magenta, yellow, and black.
The CMY in CMYK correspond with the colors in the cartridge of an ink-jet
printer. The K (key) stands for black. Such a color can be created using one of
BaseColor’s subclasses: CMYKColor.

■ DeviceGray—The default color space when drawing lines or shapes in PDF is
gray. It is expressed as the intensity of achromatic light, represented by a single
number in the range 0 to 1, where 0 corresponds to black, 1 to white, and inter-
mediate values to different gray levels. The corresponding class in iText is Gray-
Color, another subclass of BaseColor.

The BaseColor, CMYKColor, and GrayColor classes have different constructors. The
color values can be expressed as int values from 0 to 255, or as float values from 0.0
to 1.0. The BaseColor and GrayColor classes also have a series of predefined colors.

public void colorRectangle(PdfContentByte canvas,
 BaseColor color, float x, float y,
 float width, float height) {
 canvas.saveState();
 canvas.setColorFill(color);
 canvas.rectangle(x, y, width, height);
 canvas.fillStroke();

Listing 10.1 DeviceColor.java

Method that
draws colored
rectangle
Licensed to Bruno Lowagie <bruno@lowagie.com>

319Working with the iText color classes
 canvas.restoreState();
}
public void createPdf(String filename)
 throws IOException, DocumentException {
 Document document = new Document();
 PdfWriter writer = PdfWriter.getInstance(
 document, new FileOutputStream(filename));
 document.open();
 PdfContentByte canvas = writer.getDirectContent();
 colorRectangle(canvas,
 new BaseColor(0x00, 0x00, 0xFF), 90, 770, 36, 36);
 colorRectangle(canvas,
 new BaseColor(1f, 1f, 0f), 360, 770, 36, 36);
 colorRectangle(canvas,
 BaseColor.LIGHT_GRAY, 470, 770, 36, 36);
 colorRectangle(canvas,
 new CMYKColor(0x00, 0x00, 0xFF, 0x00),
 90, 716, 36, 36);
 colorRectangle(canvas,
 new CMYKColor(0f, 1f, 0f, 0.5f), 252, 716, 36, 36);
 colorRectangle(canvas,
 new GrayColor(0x20), 36, 662, 36, 36);
 colorRectangle(canvas,
 new GrayColor(0x40), 90, 662, 36, 36);
 colorRectangle(canvas,
 new GrayColor(0.75f), 306, 662, 36, 36);
 colorRectangle(canvas,
 GrayColor.GRAYBLACK, 416, 662, 36, 36);
 canvas.setRGBColorFill(0x00, 0x80, 0x80);
 canvas.rectangle(36, 608, 36, 36);
 canvas.fillStroke();
 canvas.setRGBColorFillF(0.5f, 0.25f, 0.60f);
 canvas.rectangle(90, 608, 36, 36);
 canvas.fillStroke();
 canvas.setGrayFill(0.5f);
 canvas.rectangle(144, 608, 36, 36);
 canvas.fillStroke();
 canvas.setCMYKColorFill(0xFF, 0xFF, 0x00, 0x80);
 canvas.rectangle(198, 608, 36, 36);
 canvas.fillStroke();
 canvas.setCMYKColorFillF(0f, 1f, 1f, 0.5f);
 canvas.rectangle(252, 608, 36, 36);
 canvas.fillStroke();
 document.close();
}

Observe that you don’t need a BaseColor class when writing to the direct content. You
can instead use a number of variations on the setColorFill() method.

NOTE By convention, integers for colors are written in their hexadecimal form
in iText. This isn’t an obligation, but it improves the readability of the code if
you’re familiar with the way colors are expressed in HTML. The expression new
BaseColor(0, 128, 128) is the equivalent of new BaseColor(0x00, 0x80, 0x80),
but in the latter, you’ll recognize the HTML notation #008080, aka teal.

Method that draws
colored rectangle

RGB colors

CMYK colors

Gray colors

Alternative
methods that
define colors
Licensed to Bruno Lowagie <bruno@lowagie.com>

320 CHAPTER 10 Brightening your document with color and images
In part 4, we’ll talk about different flavors of PDF. One of the first ISO specifications
for PDF was PDF/X. The X stands for exchange. It was proposed by the prepress sector
to make PDF documents more predictable when printing. Among other restrictions,
it’s forbidden to use RGB in a PDF/X document, because the results of the transforma-
tion of the red, green, and blue values to cyan, magenta, yellow, and black ink might
not be consistent for all printers.

 There are also printing devices that work with special colors that can’t be achieved
with CMYK. For instance, metallic colors, fluorescent colors, and special textures. If
that’s the case, you probably need spot colors.

10.1.2 Spot colors

A spot color is any color generated by an ink (pure or mixed) that is printed in a sin-
gle run. Section 8.6.6.4 of ISO-32000-1, titled “Separation Color Spaces,” contains the
following note:

When printing a page, most devices produce a single composite page on which all
process colorants (and spot colorants, if any) are combined. However, some devices, such
as image setters, produce a separate, monochromatic rendition of the page, called a
separation, for each colorant. When the separations are later combined—on a printing
press, for example—and the proper inks or other colorants are applied to them, the result
is a full-color page.

The term separation is often misused as a synonym for an individual device colorant.
In the context of this discussion, a printing system that produces separations generates a
separate piece of physical medium (generally film) for each colorant. It is these pieces of
physical medium that are correctly referred to as separations. A particular colorant
properly constitutes a separation only if the device is generating physical separations,
one of which corresponds to the given colorant. The Separation color space is so named
for historical reasons, but it has evolved to the broader purpose of controlling the
application of individual colorants in general, regardless of whether they are actually
realized as physical separations.

—ISO-32000-1, section 8.6.6.4

Every colorant in the Separation color space has a name. Every color value consists of
a single tint component in the range 0.0 to 1.0. A tint value of 0.0 denotes the lightest
color that can be achieved with the given colorant, and 1.0 is the darkest. Listing 10.2
shows how the PdfSpotColor class is used to define the colorant; the actual color is
created with the SpotColor class.

PdfSpotColor psc_g = new PdfSpotColor(
 "iTextSpotColorGray", new GrayColor(0.9f));
PdfSpotColor psc_rgb = new PdfSpotColor(
 "iTextSpotColorRGB",
 new BaseColor(0x64, 0x95, 0xed));
PdfSpotColor psc_cmyk = new PdfSpotColor(

Listing 10.2 SeparationColor.java

Defines
colorants
Licensed to Bruno Lowagie <bruno@lowagie.com>

321Working with the iText color classes
 "iTextSpotColorCMYK",
 new CMYKColor(0.3f, .9f, .3f, .1f));
colorRectangle(canvas,
 new SpotColor(psc_g, 0.5f), 36, 770, 36, 36);
colorRectangle(canvas,
 new SpotColor(psc_rgb, 0.1f), 90, 770, 36, 36);
colorRectangle(canvas,
 new SpotColor(psc_rgb, 0.2f), 144, 770, 36, 36);
colorRectangle(canvas,
 new SpotColor(psc_rgb, 0.3f), 198, 770, 36, 36);
...
colorRectangle(canvas,
 new SpotColor(psc_cmyk, 0.25f), 470, 770, 36, 36);
canvas.setColorFill(psc_g, 0.5f);
canvas.rectangle(36, 716, 36, 36);
canvas.fillStroke();
canvas.setColorFill(psc_rgb, 0.5f);
canvas.rectangle(144, 716, 36, 36);
canvas.fillStroke();
canvas.setColorFill(psc_cmyk, 0.5f);
canvas.rectangle(252, 716, 36, 36);
canvas.fillStroke();

Observe that I’ve used dummy names—iTextSpotColorRGB and iTextSpotColor-
CMYK—referring to the way the spot color was created.

NOTE The dominant spot-color printing system in the United States is Pan-
tone. Pantone Inc. is a New Jersey company, and the company’s list of color
names and values is its intellectual property. Free use of the list isn’t allowed,
but if you buy a house style, and the colors include Pantones, you can replace
the dummy names with the names of your Pantone colors as well as the corre-
sponding color values.

The next type of color isn’t really a color in the strict sense of the word. It’s listed with
the special color spaces in ISO-32000-1.

10.1.3 Painting patterns

When stroking or filling a path, you’ve always used a single color in this book, but it’s
also possible to apply paint that consists of repeating graphical figures or a smoothly
varying color gradient. In this case, we’re talking about pattern colors that use either a
tiled pattern (a repeating figure) or a shading pattern (a smooth gradient).

TILING PATTERNS

To create a tiled pattern color, you must construct a pattern cell. This cell is a subclass of
PdfTemplate named PdfPatternPainter. You can obtain such a cell from the Pdf-
ContentByte object with the method createPattern(). This cell will be repeated at
fixed horizontal and vertical intervals when you fill a path. See figure 10.1.

 There are two kinds of tiling patterns: colored tiling patterns and uncolored tiling pat-
terns. A colored tiling pattern is self-contained. In the course of painting the pattern
cell, the pattern’s content stream explicitly sets the color of each graphical element it

Defines colorants

Defines spot
colors

Defines spot colors
with alternative
methods
Licensed to Bruno Lowagie <bruno@lowagie.com>

322 CHAPTER 10 Brightening your document with color and images
paints. An uncolored tiling pattern has no inherent color. You can define a default
color, but normally you specify the actual color whenever the pattern is used. The con-
tent stream defines a stencil through which the color is poured.

PdfContentByte canvas = writer.getDirectContent();
PdfPatternPainter square = canvas.createPattern(15, 15);
square.setColorFill(new BaseColor(0xFF, 0xFF, 0x00));
square.setColorStroke(new BaseColor(0xFF, 0x00, 0x00));
square.rectangle(5, 5, 5, 5);
square.fillStroke();
PdfPatternPainter ellipse
 = canvas.createPattern(15, 10, 20, 25);
ellipse.setColorFill(new BaseColor(0xFF, 0xFF, 0x00));
ellipse.setColorStroke(new BaseColor(0xFF, 0x00, 0x00));
ellipse.ellipse(2f, 2f, 13f, 8f);
ellipse.fillStroke();
PdfPatternPainter circle = canvas.createPattern(
 15, 15, 10, 20, BaseColor.BLUE);
circle.circle(7.5f, 7.5f, 2.5f);
circle.fill();
PdfPatternPainter line
 = canvas.createPattern(5, 10, null);
line.setLineWidth(1);
line.moveTo(3, -1);
line.lineTo(3, 11);
line.stroke();

Listing 10.3 TilingPatternColor.java

Figure 10.1
Tiling patterns

Creates colored
pattern cell
with squares

Creates colored
pattern cell
with ellipses

Creates uncolored
pattern cell with
circles

Creates uncolored
pattern cell with
lines
Licensed to Bruno Lowagie <bruno@lowagie.com>

323Working with the iText color classes
Image img = Image.getInstance(RESOURCE);
img.scaleAbsolute(20, 20);
img.setAbsolutePosition(0, 0);
PdfPatternPainter img_pattern
 = canvas.createPattern(20, 20, 20, 20);
img_pattern.addImage(img);
img_pattern.setPatternMatrix(
 -0.5f, 0f, 0f, 0.5f, 0f, 0f);
colorRectangle(canvas,
 new PatternColor(square), 36, 696, 126, 126);
colorRectangle(canvas,
 new PatternColor(ellipse), 180, 696, 126, 126);
colorRectangle(canvas,
 new PatternColor(circle), 324, 696, 126, 126);
colorRectangle(canvas,
 new PatternColor(line), 36, 552, 126, 126);
colorRectangle(canvas,
 new PatternColor(img_pattern), 36, 408, 126, 126);
canvas.setPatternFill(line, BaseColor.RED);
canvas.ellipse(180, 552, 306, 678);
canvas.fillStroke();
canvas.setPatternFill(circle, BaseColor.GREEN);
canvas.ellipse(324, 552, 450, 678);
canvas.fillStroke();
canvas.setPatternFill(img_pattern);
canvas.ellipse(180, 408, 450, 534);
canvas.fillStroke();

Observe that there are different versions of the createPattern()method. The sim-
plest version accepts two float values: one for the width and one for the height of the
pattern cell. Additionally, you can also specify an X and Y step. This is the desired hor-
izontal and vertical spacing between pattern cells. These are the methods used to cre-
ate a colored pattern.

 When you add a default color (or null), you create an uncolored pattern. This
default color is used when you create a PatternColor object, but typically you’ll want
to use an uncolored pattern with the setPatternFill() method, passing the PdfPat-
ternPainter object and a different color. Uncolored patterns are monochrome,
whereas a colored pattern can consist of different colors. It can even contain images,
as demonstrated with img_pattern. In listing 10.3, you use the method setPattern-
Matrix() to scale and mirror the cell; this method corresponds to the setMatrix()
method in PdfTemplate and PdfContentByte.

 The other pattern type is more complex. Let’s look at simple examples to get an idea.

SHADING PATTERNS

Shading patterns provide a smooth transition between colors across an area to be
painted. ISO-32000-1 lists seven types of shading; iText provides convenience methods
for two: axial shading and radial shading. These two shadings are demonstrated in fig-
ure 10.2.

 The background color of the first page of figure 10.2 (the left half) changes from
orange in the lower-left corner to blue in the upper-right corner. This is an axial

Creates pattern
cell with image

Creates and
uses color with
pattern cell

Uses pattern colors
with alternative
methods
Licensed to Bruno Lowagie <bruno@lowagie.com>

324 CHAPTER 10 Brightening your document with color and images
shading. The circular shape on the second page (the right half) is the result of a
radial shading:

■ Axial shadings (Type 2 in ISO-32000-1)—These define a color blend that varies
along a linear axis between two endpoints and extends indefinitely perpendicu-
lar to that axis. In the iText object PdfShading, a static simpleAxial() method
allows you to pass the start and end coordinates of the axis, as well as a start and
end color.

■ Radial shadings (type 3 in ISO 32000-1)—These define a color blend that varies
between two circles; see the shape in the right side of figure 10.2. This shape
was created with the static simpleRadial() method. With this method, you
define two circles, using the coordinates of the center point and a radius. You
also pass a start and end color.

The methods simpleAxial() and simpleRadial() also accept two boolean values
that indicate whether or not you want the shading to be extended at the start and end.
These values were true for the axial shading on the left side of figure 10.2 and false
for the radial shading on the right side.

PdfContentByte canvas = writer.getDirectContent();
PdfShading axial = PdfShading.simpleAxial(writer,
 36, 716, 396, 788, BaseColor.ORANGE, BaseColor.BLUE);
canvas.paintShading(axial);

Listing 10.4 ShadingPatternColor.java

Figure 10.2 Shading patterns
Licensed to Bruno Lowagie <bruno@lowagie.com>

325Working with the iText color classes
document.newPage();
PdfShading radial = PdfShading.simpleRadial(writer,
 200, 700, 50, 300, 700, 100,
 new BaseColor(0xFF, 0xF7, 0x94),
 new BaseColor(0xF7, 0x8A, 0x6B),
 false, false);
canvas.paintShading(radial);
PdfShadingPattern shading
 = new PdfShadingPattern(axial);
colorRectangle(canvas,
 new ShadingColor(shading), 150, 420, 126, 126);
canvas.setShadingFill(shading);
canvas.rectangle(300, 420, 126, 126);
canvas.fillStroke();

The first part of this code snippet shows how to create and paint the shading with the
method paintShading(). In the second part, you use the shading to create a Pdf-
ShadingPattern and a ShadingColor.

NOTE Shadings are created using specific types of functions. So far we’ve
seen an example involving type 2 and type 3 functions. ISO-32000-1 includes
five more types. If you want to use the other types, you need to combine one
or more of the static type() methods of the PdfShading class. Please consult
ISO-32000-1, section 8.7.4, for more info, and inspect the implementation of
the simpleAxial() and simpleRadial() methods in the iText source code
for inspiration.

We’ve looked at drawing different graphical objects in different colors. If these objects
overlap, as shown in figures 3.1 and 3.2, the color at each point on the page will, by
default, be the color of the topmost object. But you can change this. You can intro-
duce transparency so that the color is composed using a combination of the color of
the topmost object with the colors of the objects below, aka the backdrop.

10.1.4 Transparency

Transparency is very complex matter, but let me try to select the most important rules
from chapter 11 of ISO-32000-1:

A given object shall be composited with a backdrop. Ordinarily, the backdrop consists of
the stack of all objects that have been specified previously. The result of compositing shall
then be treated as the backdrop for the next object. However, within certain kinds of
transparency groups, a different backdrop may be chosen.

During the compositing of an object with its backdrop, the color at each point shall be
computed using a specified blend mode, which is a function of both the object’s color and
the backdrop color ...

Two scalar quantities called shape and opacity mediate compositing of an object with its
backdrop ... Both shape and opacity vary from 0.0 (no contribution) to 1.0 (maximum
contribution) ... Shape and opacity are conceptually very similar. In fact, they can
Licensed to Bruno Lowagie <bruno@lowagie.com>

326 CHAPTER 10 Brightening your document with color and images
usually be combined into a single value, called alpha, which controls both the color
compositing computation and the fading between an object and its backdrop. However,
there are a few situations in which they shall be treated separately; see knockout groups.

—ISO-32000-1 11.2

You’ve already used transparency to draw the layers in figures 3.2 and 6.2. These fig-
ures were created with the source code shown in listing 10.5 taken from an example in
chapter 6. This code snippet draws the transparent white rectangle that was used as
the background for every page. When you overlap the PdfImportedPage objects, you
can see what is beneath each page.

public static void drawRectangle(
 PdfContentByte content, float width, float height) {
 content.saveState();
 PdfGState state = new PdfGState();
 state.setFillOpacity(0.6f);
 content.setGState(state);
 content.setRGBColorFill(0xFF, 0xFF, 0xFF);
 content.setLineWidth(3);
 content.rectangle(0, 0, width, height);
 content.fillStroke();
 content.restoreState();
}

When transparency is involved, you need to create a PdfGState object and apply it with
the method setGState(). The rectangle that is drawn in listing 10.5 has an opaque black
border, but the setFillOpacity() method is used to change the opacity of the white
“paint” to 0.6.

 Let’s look at examples to learn more about transparency groups, isolation, and
knockout.

TRANSPARENCY GROUPS

Figure 10.3 shows four identical paths. The background is a square that is half gray,
half white. Inside the square, three circles are painted. The first one is red, the second
is yellow, and the third is blue. Each version of these paths is filled using a different
transparency model.

 In the two upper figures, the circles are painted as independent objects (no group-
ing). There’s no transparency involved in the upper-left figure; the circles in the
upper-right figure are drawn with an opacity of 0.5 causing them to composite with
each other and with the gray and white backdrop.

 In the two lower figures, the circles are combined as a transparency group. At the
left, the individual circles have an opacity of 1 within the group, but the group as a
whole is painted in the Normal blend mode with an opacity of 0.5. The objects over-
write each other within the group, but the resulting group composites transparently
with the backdrop. At the right, the circles have an opacity of 0.5 within the group,

Listing 10.5 Layers.java (from chapter 6)

Creates graphics
state dictionary Applies

graphics state

Draws white
rectangle with
black border
Licensed to Bruno Lowagie <bruno@lowagie.com>

327Working with the iText color classes
and the group as a whole is painted against the backdrop with an opacity of 1.0, but in
a different blend mode.

 The pictureCircles() method draws the figures shown in figure 10.3. You’ll use
this method in different graphics states.

pictureCircles(gap, 500, cb);
cb.saveState();
PdfGState gs1 = new PdfGState();
gs1.setFillOpacity(0.5f);
cb.setGState(gs1);
pictureCircles(200 + 2 * gap, 500, cb);
cb.restoreState();
cb.saveState();
PdfTemplate tp = cb.createTemplate(200, 200);
PdfTransparencyGroup group = new PdfTransparencyGroup();
tp.setGroup(group);
pictureCircles(0, 0, tp);
cb.setGState(gs1);
cb.addTemplate(tp, gap, 500 - 200 - gap);

Listing 10.6 Transparency1.java

Figure 10.3 Transparency groups

Changes
opacity to 0.5

Creates
transparency
group for XObject

Draws template
using opacity 0.5
Licensed to Bruno Lowagie <bruno@lowagie.com>

328 CHAPTER 10 Brightening your document with color and images
cb.restoreState();
cb.saveState();
tp = cb.createTemplate(200, 200);
tp.setGroup(group);
PdfGState gs2 = new PdfGState();
gs2.setFillOpacity(0.5f);
gs2.setBlendMode(PdfGState.BM_HARDLIGHT);
tp.setGState(gs2);
pictureCircles(0, 0, tp);
cb.addTemplate(tp, 200 + 2 * gap, 500 - 200 - gap);
cb.restoreState();

To group objects, you create a PdfTemplate object. When you define a PdfTranspar-
encyGroup for this XObject, the objects drawn to it—in this case, circles—belong to
the same transparency group. Observe the difference between the lower-left figure
where you set the opacity for the complete group and the lower-right figure where you
set the opacity and blend mode within the group.

 The PdfTransparencyGroup class has two methods: setIsolated() and setKnock-
out(). Let’s find out what these concepts are about.

ISOLATION AND KNOCKOUT

Figure 10.4 shows four squares filled with a shading pattern. Four circles are added
inside these squares as a group.

Defines group with
opacity 0.5 and hard
light blend mode

Draws template
using opacity 1

Figure 10.4
Isolation and knockout
Licensed to Bruno Lowagie <bruno@lowagie.com>

329Overview of supported image types
The code that draws the four figures is identical. All the circles have the same CMYK
color: C, M, and Y are set to 0 and K to 0.15. Their opacity is 1.0 and the blend mode
is Multiply; the only difference is the isolation and knockout modes.

■ Isolation—For the two upper squares, the group is isolated: it doesn’t interact
with the backdrop. For the two lower squares, the group is nonisolated: the
group composites with the backdrop.

■ Knockout—For the squares at the left, knockout is set to true: the circles don’t
composite with each other. For the two on the right, it’s set to false: they com-
posite with each other.

Listing 10.7 shows how the upper-right figure was drawn. The other figures are
created by changing the boolean values for the methods setIsolated() and
setKnockout().

tp = cb.createTemplate(200, 200);
pictureCircles(0, 0, tp);
group = new PdfTransparencyGroup();
group.setIsolated(true);
group.setKnockout(true);
tp.setGroup(group);
cb.addTemplate(tp, gap, 500);

Note that figure 10.3 was inspired by figure L.16 in ISO-32000-1. Figure 10.4 is very
similar to figure L.17. You may also want to take a look at the overview of the different
blend modes in figures L.18 (RGB) and L.19 (CMYK). The blend modes are listed in
section 11.3.5 of ISO-32000-1. They are all supported in iText (see the constant values
starting with BM_ in the PdfGState class), but it would lead us too far off topic to dis-
cuss them in detail.

 It would be interesting to apply transparency to images, but before you can do so,
you need to know which types of images are supported in iText.

10.2 Overview of supported image types
When we needed images in the previous chapters, we used Image.getInstance(),
passing the path to an image without considering which type of image we were using.
Figure 10.5 shows a document with 12 images.

 The first nine images were created with the getInstance() method; the last three
are special cases. Let’s start with the standard types.

Listing 10.7 Transparency2.java
Licensed to Bruno Lowagie <bruno@lowagie.com>

330 CHAPTER 10 Brightening your document with color and images
10.2.1 JPEG, JPEG2000, GIF, PNG, BMP, WMF, TIFF, and JBIG2

Table 10.1 lists the types of images supported by the Image class and indicates which
format is best to use in which context. For example, JPEG is a better format for photo-
graphs than GIF. GIF is better for charts than JPG.

Table 10.1 Standard image types supported by com.itextpdf.text.Image

Type Extension Description

JPEG
JPG

.jpg JPEG (Joint Photographic Experts Group) is commonly used to refer to a lossy
compression technique, reducing the size of a graphic file by as much as 96 per-
cent. Usually this is the best file format for photographs on the web.

JPEG
2000

.jp2

.j2k
The successor to JPEG, providing better efficiency in compression. JPEG 2000
has multiple versions for use, including a lossless version and a tiling version
that allows for zooming in to detailed areas of the image file.

GIF .gif GIF (Graphics Interchange Format) is a format that is suitable for images contain-
ing large areas of the same color. GIF files of simple images are often smaller
than the same files would be if stored in JPEG format, but GIF doesn’t store pho-
tographic images as well as JPEG. A GIF file can contain multiple frames, in
which case it’s referred to as an animated GIF.

Figure 10.5 Different image types
Licensed to Bruno Lowagie <bruno@lowagie.com>

331Overview of supported image types
Image is an abstract class, which means you can’t construct an instance directly. The
getInstance() method returns an instance of a specific image implementation. iText
has a separate image class for each type that is supported. These classes process the
image data, and possibly change the bits and bytes into a format that is supported in
PDF. For instance, JPEG images are copied as is into an image XObject, but a BMP will
be decoded into raw image bytes that are compressed using the zlib/deflate compres-
sion method. A WMF file will be translated into PDF syntax; if you look inside the PDF,
you’ll see that the WMF image is changed into a form XObject.

 Table 10.2 gives an overview of the most important image classes and how they
relate to each other. The second column indicates whether the class is a subclass of
com.itextpdf.text.Image.

PNG .png The PNG (Portable Network Graphics) format was designed as the successor to
GIF. It features compression, transparency, and progressive loading, like GIF.

BMP .bmp
.dib

BMP (Windows bitmap) is a common form of bitmap file in Microsoft Windows. Most
BMP files have a relatively large file size due to the lack of any compression.

WMF .wmf WMF (Windows Metafile) is a vector graphics format for Windows-compatible
computers, used mostly for word processing clip art.

TIFF .tiff
.tif

TIFF (Tagged Image File Format) is commonly used for digital scanned images. It
was originally a binary image format with only two possible values for each pixel.
Nowadays, it’s a popular format for high color-depth images, along with JPEG and
PNG. A TIFF image can consist of multiple pages.

JBIG2 .jb2 JBIG2 (Joint Bi-level Image Experts Group) is an image compression standard for
bilevel images. Bi-level images are digital images in which each pixel is represented
by only one bit. For instance, a pixel can be either black or white. JBIG2 is intended
for images sent using a fax. A JBIG2 image can consist of multiple pages.

Table 10.2 Image classes in iText

Classname Subclass Produces

Jpeg Yes The image is copied byte by byte into the PDF. Inspecting the PDF, you’ll
find out that the DCTDecode filter can be used to decompress the data.
DCT stands for Discrete Cosine Transform.

Jpeg2000 Yes The filter used for these images is JPXDecode. This means that the
image was encoded using the wavelet-based JPEG 2000 standard.

ImgRaw Yes Raw images can either be compressed using zlib/flate compression or
using the CCITT facsimile standard. See sections 10.2.2 and 10.2.3 for
more details.

GifImage No Although PDF supports images with LZW compression, iText decodes the
GIF image into a raw image. If you create an Image with a path to a GIF
file, you’ll get an instance of the ImgRaw class.

Table 10.1 Standard image types supported by com.itextpdf.text.Image (continued)

Type Extension Description
Licensed to Bruno Lowagie <bruno@lowagie.com>

332 CHAPTER 10 Brightening your document with color and images
In table 10.2, you’ll find some image types that don’t map directly to an image type in
table 10.1. For instance, what do we mean when we talk about a raw image?

10.2.2 Creating a raw image

An image consists of a series of pixels, and each pixel has a color. The color value of
the sequence of pixels can be stored in a byte array, and the byte array can be com-
pressed, for instance using zlib/flate compression. Figure 10.6 shows images that were
created byte by byte.

PngImage No Just like GIF images, iText decodes PNG images into raw images. If the
color space of the image is DeviceGray and if it only has 1 bit per compo-
nent, CCITT is used as compression. In all other cases, the image data
is zlib/flate compressed.

BmpImage No Just like GIF images, iText decodes BMP images into raw images. Like-
wise, the filter in the image dictionary is FlateDecode.

ImgTemplate Yes This is an image that consists of PDF syntax. If you look inside the PDF,
you won’t find an image XObject, but a form XObject. In iText lingo, it’s a
PdfTemplate wrapped in an Image object for reasons of conve-
nience when scaling, rotating, and adding the image to the document.

ImgWMF Yes If you create an Image using a WMF file, you’ll get an instance of ImgWMF,
but internally the image will be translated into a PdfTemplate. Inside
the PDF, you’ll find a form XObject instead of an image XObject.

ImgCCITT Yes The filter for these images is CCITTFaxDecode. The data was encoded
using the CCITT facsimile standard. It’s typically a monochrome image
with 1 bit per pixel. See section 10.2.3.

TiffImage No The TiffImage class will inspect the TIFF file and, depending on its
parameters, it can return an ImgCCITT, an ImgRaw, or even a Jpeg
instance.

ImgJBIG2 Yes An ImgJBIG2 object is an Image instance produced by the
JBIG2Image.

Table 10.2 Image classes in iText (continued)

Classname Subclass Produces

Figure 10.6 Images built using raw image data
Licensed to Bruno Lowagie <bruno@lowagie.com>

333Overview of supported image types
This source code was used to create the images in figure 10.6.

byte gradient[] = new byte[256];
for (int i = 0; i < 256; i++)
 gradient[i] = (byte) i;
Image img1 = Image.getInstance(256, 1, 1, 8, gradient);
img1.scaleAbsolute(256, 50);
document.add(img1);
byte cgradient[] = new byte[256 * 3];
for (int i = 0; i < 256; i++) {
 cgradient[i * 3] = (byte) (255 - i);
 cgradient[i * 3 + 1] = (byte) (255 - i);
 cgradient[i * 3 + 2] = (byte) i;
}
Image img2 = Image.getInstance(256, 1, 3, 8, cgradient);
img2.scaleAbsolute(256, 50);
document.add(img2);
Image img3 = Image.getInstance(16, 16, 3, 8, cgradient);
img3.scaleAbsolute(64, 64);
document.add(img3);

You’re creating three images in listing 10.8. The first one has 256 pixels x 1 pixel. The
color space is DeviceGray (1 component), and you’re using 8 bits per component
(bpc) B. When you create the image data, you let the color value vary from 0 to 255.
This results in the gradient from black to white in figure 10.6 (note that the height of
the image is scaled).

 For the second and third images, you use three components with 8 bits per compo-
nent. This means that you’ll need 256 bytes x 3 bytes to describe an image that con-
sists of 256 pixels. You use the image data to create an image of 256 pixels x 1 pixel C,
and to create an image of 16 pixels x 16 pixels D. Note that this image uses the
DeviceRGB color space; if you create an image with four components, you’re working
in the DeviceCMYK color space. The getInstance() method used in listing 10.8 also
accepts an extra parameter to define a transparency range. We’ll discuss transparency
for images in more detail in section 10.3.1.

 What you’re doing manually in this example is done automatically with GIF, PNG,
BMP, and some TIFF images internally. These bytes are added to a zipped stream using
the zlib/flate algorithm, except for some TIFF and PNG images that are CCITT-encoded.

10.2.3 CCITT compressed images

CCITT stands for Comité Consultatif International Téléphonique et Télégraphique, a
standards organization that is now part of the International Telecommunication
Union (ITU). This organization is responsible for defining many of the standards for
data communications. PDF supports Group 3 and Group 4 compression, which are
facsimile (fax) standards.

 With iText, you can insert CCITT-encoded images using the following method:

Image.getInstance(int width, int height, boolean reverseBits,
 int typeCCITT, int parameters, byte[] data)

Listing 10.8 RawImage.java

Creates
DeviceGray, 8
bpc image

B

Creates RGB,
8 bpc image

C

Creates RGB,
8 bpc imageD
Licensed to Bruno Lowagie <bruno@lowagie.com>

334 CHAPTER 10 Brightening your document with color and images
The reverseBits parameter indicates whether the bits need to be swapped (bit 7
swapped with bit 0, and so on). The type can be Element.CCITTG31D, Element.
CCITTG32D, or Element.CCITT4. The parameters value is a combination of the follow-
ing flags:

■ Element.CCITT_BLACKIS1—A flag indicating whether 1 bits are interpreted as
black pixels and 0 bits as white pixels.

■ Element.CCITT_ENCODEDBYTEALIGN—A flag indicating whether the filter
expects extra 0 bits before each encoded line so that the line begins on a byte
boundary.

■ Element.CCITT_ENDOFLINE—A flag indicating whether end-of-line bit patterns
are required to be present in the encoding.

■ Element.CCITT_ENDOFBLOCK—A flag indicating whether the filter expects the
encoded data to be terminated by an end-of-block pattern.

The CCITT protocols described in this section are used to send a document as an
image from one fax to another. You could use iText to import a stream received from
your fax into a PDF file. iText also uses CCITT internally to create images that need to
be read by a machine, such as two-dimensional barcodes.

10.2.4 Creating barcodes

You may not look at barcodes as images, but in iText it’s common to add a barcode to
a document as an instance of the Image object. The same goes for matrix codes, which
are often referred to as two-dimensional barcodes. Listing 10.9 shows how these bar-
codes were created.

 Figure 10.5 has a barcode in the EAN-13 format containing the ISBN number of
this book. The second barcode is a matrix code in the PDF417 format containing the
text “iText in Action, a book by Bruno Lowagie.” Internally, the first barcode is
added to the document as an instance of ImgTemplate; the second one is an Img-
CCITT object.

BarcodeEAN codeEAN = new BarcodeEAN();
codeEAN.setCodeType(Barcode.EAN13);
codeEAN.setCode("9781935182610");
img = codeEAN.createImageWithBarcode(
 writer.getDirectContent(), null, null);
document.add(img);
BarcodePDF417 pdf417 = new BarcodePDF417();
String text = "iText in Action, a book by Bruno Lowagie.";
pdf417.setText(text);
img = pdf417.getImage();
document.add(img);

The classes to create regular (one-dimensional) barcodes extend the abstract class
Barcode.

Listing 10.9 ImageTypes.java
Licensed to Bruno Lowagie <bruno@lowagie.com>

335Overview of supported image types
NORMAL BARCODES

Table 10.3 shows an overview of these subclasses, along with the types of barcodes they
can produce.

The value that has to be shown by the barcode is set with the method setCode(),
except for BarcodeEANSUPP. The example shows how to create a Bookland barcode
composed of two BarcodeEAN instances: one with type EAN13 and one with type SUPP5.

document.add(new Paragraph("Bookland"));
document.add(new Paragraph("ISBN 0-321-30474-8"));
codeEAN.setCodeType(Barcode.EAN13);
codeEAN.setCode("9781935182610");
BarcodeEAN codeSUPP = new BarcodeEAN();
codeSUPP.setCodeType(Barcode.SUPP5);
codeSUPP.setCode("55999");
codeSUPP.setBaseline(-2);

Table 10.3 Barcode classes and barcode types

iText class Barcode type Description

BarcodeEAN EAN-13, UPC-A,
EAN-8, UPC-E

EAN stands for European Article Number code; UPC for Uni-
versal Product Code. Each type represents a number with a
different number of digits.

BarcodeEANSUPP Supplemental 2,
Supplemental 5

EAN-13, UPC-A, EAN-8, and UPC-E allow for a supplemental
two- or five-digit number to be appended to the main bar-
code. For instance, if you add a supplemental five-digit bar-
code to an EAN-13 barcode representing an International
Standard Book Number (ISBN), you get a Bookland code.

Barcode128 Plain code 128,
raw code 128,
UCC/EAN-128

Code 128 provides much more detail than the single-prod-
uct EAN barcodes. It’s used to describe properties such as
the number of products included, weight, dates, and so on.

BarcodeInter25 Interleaved 2 of 5 A numerical barcode that encodes pairs of digits: the first
digit is encoded in the bars; the second digit is encoded in
the spaces interleaved with them. Two out of every five
bars or spaces are wide (hence 2 of 5).

BarcodePostnet POSTNET, PLANET The United States Postal Service (USPS) uses a combina-
tion of the Postal Numeric Encoding Technique (POSTNET)
sorting code and the Postal Alphanumeric Encoding Tech-
nique (PLANET) code to direct and identify mail. Currently,
three forms of POSTNET codes are in use: a 5-digit ZIP
code, a 9-digit ZIP+4, and an 11-digit delivery point code.
The PLANET code is an 11-digit code assigned by USPS.

Barcode39 Barcode 3 of 9, 3
of 9 extended

The 3 of 9 code can encode numbers, uppercase letters
(A–Z), and symbols (- . ‘ ’$ / + % *).

BarcodeCodabar Codabar Codabar is used to store numerical data only, but the let-
ters A, B, C, and D are used as start and stop characters.

Listing 10.10 Barcodes.java
Licensed to Bruno Lowagie <bruno@lowagie.com>

336 CHAPTER 10 Brightening your document with color and images
BarcodeEANSUPP eanSupp = new BarcodeEANSUPP(codeEAN, codeSUPP);
document.add(eanSupp.createImageWithBarcode(cb, null, BaseColor.BLUE));

The barcodes example contains code samples for every type of barcode. The barcodes
are added to the document as an Image that is created with the createImageWithBar-
code() method. As an alternative, you can write the barcode directly to a PdfContent-
Byte object with placeBarcode(), or create a PdfTemplate with createTemplate-
WithBarcode(). These methods take three parameters:

■ PdfContentByte cb—The direct content of the PdfWriter to which the bar-
code has to be added

■ BaseColor barColor—The color of the bars
■ BaseColor textColor—The color of the text

You can also create a java.awt.Image of the barcode using the createAwtImage()
method. This method expects two colors of type java.awt.Color (as opposed to
com.itextpdf.text.BaseColor). The first one represents the color of the bars; the
second one defines the background color. No text is added to these barcodes.

 The subclasses of the Barcode class have a lot of properties in common that can be
set with methods in the abstract superclass. Table 10.4 presents an overview showing
the default value for each property.

Table 10.4 Default properties of the different barcode classes

Code: EAN EANSUPP 128 Inter25 39 Codabar Postnet

type EAN13 - CODE128 - - CODABAR POSTNET

x 0.8f 0.02f * 72f

n - 8 - 2 72f / 22f

font
BaseFont.createFont(BaseFont.HELVETICA,

BaseFont.WINANSI, BaseFont.NOT_EMBEDDED);
-

size 8 0.05f * 72f

baseline size -

bar height size * 3 0.125f * 72f

text align - - Element.ALIGN.CENTER -

guardbars true - - - - - -

generate
checksum

User User - false false false -

text
checksum

- - - false false false -

start/stop
text

- - - - true false -
Licensed to Bruno Lowagie <bruno@lowagie.com>

337Overview of supported image types
Note that some barcode classes require a value for the type variable. For example,
BarcodeEAN can produce barcodes of type EAN13, EAN8, UPCA, UPCE, SUPP2, and SUPP5,
whereas BarcodeInter25 can produce only one type of barcode.

 The property x—adjustable with the setX() method—holds the minimum width
of a bar. Except for the POSTNET code, this value is set to 0.8 by default. You can set
the amount of ink spreading with setInkSpreading(). This value is subtracted from
the width of each bar. The actual value depends on the ink and the printing medium;
it’s 0 by default. The property n holds the multiplier for wide bars for some types, the
distance between two barcodes in EANSUPP, and the distance between the bars in the
USPS barcodes.

 The font property defines the font of the text (if any). If you want to produce a
barcode without text, you have to set the barcode font to null with setFont(). You
can change the size of the font with setSize(). With setBaseline() you can change
the distance between text and barcode; negative values put the text above the bar.
Changing the bar height can be done with setBarHeight(). For USPS codes, you can
also change the height of the short bar with setSize(). USPS codes don’t have text.

 Finally, there are methods to generate a checksum and to make the calculated
value visible in the human-readable text (or not). You can also set the start/stop
sequence visible for those barcodes that use these sequences.

MATRIX CODES

iText supports three types of matrix codes. Table 10.5 lists the classes that are available
for each type.

The different matrix codes don’t have a common superclass in iText. Each type has its
own typical set of properties. PDF417 codes can be segmented, and you can set the
aspect ratio. For Data Matrix, you can set the width, height, and encoding options.
The same goes for QRCode, where you define a width and a height, along with hints
that are listed in the API documentation. But let’s return to real images.

 There’s one type of image used in figure 10.5 we haven’t discussed yet. The picture
of Alfred Hitchcock was added using a java.awt.Image.

Table 10.5 Overview of the matrix code classes

iText class Matrix code Description

BarcodePDF417 PDF417 In this context, PDF stands for Portable Data File. It’s a
stacked linear barcode that can store up to 2,170 charac-
ters, and the symbology is capable of encoding the entire
ASCII set.

BarcodeDatamatrix Data Matrix This code consists of black and white pixels arranged in a
square or rectangular pattern. A Data Matrix symbol can
store up to 2,335 alphanumeric characters.

BarcodeQRCode QRCode This is a matrix code created for Quick Response. These
codes can be read by mobile phones with their camera in the
context of mobile tagging.
Licensed to Bruno Lowagie <bruno@lowagie.com>

338 CHAPTER 10 Brightening your document with color and images
10.2.5 Working with java.awt.Image

You have to pay attention not to confuse the iText object com.itextpdf.text.Image
with the standard Java image class java.awt.Image. If you’re using both classes in the
same source file, you must use the full class name for at least one of them to avoid
ambiguity and compile errors.

 This shows how Hitchcock was added to the document shown in figure 10.5.

java.awt.Image awtImage
 = Toolkit.getDefaultToolkit().createImage(RESOURCE);
img = com.itextpdf.text.Image.getInstance(awtImage, null);
document.add(img);

The second parameter in the getInstance() method is null in this example. In sec-
tion 10.3.1, you’ll learn that you can pass a java.awt.Color object. This color will
replace the transparent color when the com.itextpdf.text.Image is added to the
document. One of the possible reasons why you’d prefer using java.awt.Image is to
reduce the quality of an image so that the resulting file size is significantly lower.

10.2.6 Compressing images

The different compression algorithms are listed in table 10.2, but it’s important to
realize that iText doesn’t reduce the quality of an image. If you create an Image with a
high-quality image, the image will be added to the PDF at the same quality. If you
change the width and the height of the image, the resolution will change, but the
number of pixels will remain the same.

CHANGING THE COMPRESSION LEVEL

You can try to reduce the size of an image that is flate-compressed by changing the
compression level.

Image img = Image.getInstance(RESOURCE);
img.setCompressionLevel(9);
document.add(img);

Compression levels vary from 1 for best speed to 9 for best compression. If you set the
compression to 0, the stream won’t be compressed. iText uses default compression: -1.
In some cases, a compression level of 9 will result in a smaller stream, but that’s
no guarantee.

 Usually, you won’t save a lot of space by changing the compression level. The
RESOURCE in the example is a BMP image with a size of 492 KB. Before changing the com-
pression, the resulting PDF file is 13 KB; with compression level 9, it’s reduced to 11 KB.
(With compression 0, it would have been 370 KB.) Lossless compression won’t result in
dramatic file size reduction. However, if lossy compression is acceptable, you could use
java.awt.Image to reduce the quality.

Listing 10.11 ImageTypes.java

Listing 10.12 CompressImage.java
Licensed to Bruno Lowagie <bruno@lowagie.com>

339Overview of supported image types
USING JAVA.AWT.IMAGE FOR JPEG COMPRESSION

Figure 10.7 shows the same picture three times. The original hitchcock.png image
is 16 KB. Due to the way the Image object is constructed, it’s compressed using JPEG
compression. The image in the first PDF in figure 10.7 is shown with a quality of 100
percent; the size of the file is 35 KB. The quality is reduced to 20 percent in the sec-
ond PDF, resulting in a file size of 6 KB. At 10 percent quality, the size is 5 KB.

 This is how you convert the image from PNG to JPEG.

java.awt.Image awtImage
 = Toolkit.getDefaultToolkit().createImage(RESOURCE);
Image img = Image.getInstance(writer, awtImage, quality);
img.setAbsolutePosition(15, 15);
document.add(img);

For the quality parameter, you can pass a float varying from 0.0 to 1.0. Note that if
you added the PNG as is, without using.java.awt.Image, the file size of the resulting
PDF would have been 17 KB, which is almost half of the file size with the JPEG at 100
percent. If you really want to compress an image, you’ll have to fine-tune your applica-
tion to make sure you don’t end up with unexpected results.

NOTE As an alternative to using this limited functionality to compress
images, you may want to use the Java Advanced Imaging (JAI) library or
java.awt.Image to preprocess images. You can use standard Java transforma-
tions to reduce the size of the image, or even to change the appearance of the
image before adding it to a document using iText. Although this is outside
the scope of a book about iText, you’ll use this technique in chapter 16 to
reduce the resolution of an image in an existing document.

Table 10.1 showed that TIFF, JBIG2, and GIF files can contain more than one image.
But when you added these files to obtain figure 10.5, only one image was added. Let’s
find out how to retrieve the other images in the file (if there are any).

Listing 10.13 CompressAwt.java

Figure 10.7 Compressed image with quality loss
Licensed to Bruno Lowagie <bruno@lowagie.com>

340 CHAPTER 10 Brightening your document with color and images
10.2.7 Images consisting of multiple pages or frames

TIFF and JBIG2 were originally created for scanners and fax machines, and when you
scan or fax a document, it can contain multiple pages. The next listing shows how you
can use the TiffImage and JBIG2Image objects to get the number of pages in the
image file B, and how to get an Image instance C that can be added to a Document.

public void addTif(Document document, String path)
 throws DocumentException, IOException {
 RandomAccessFileOrArray ra = new RandomAccessFileOrArray(RESOURCE1);
 int n = TiffImage.getNumberOfPages(ra);
 Image img;
 for (int i = 1; i <= n; i++) {
 img = TiffImage.getTiffImage(ra, i);
 img.scaleToFit(523, 350);
 document.add(img);
 }
}
public void addJBIG2(Document document, String path)
 throws IOException, DocumentException {
 RandomAccessFileOrArray ra = new RandomAccessFileOrArray(RESOURCE2);
 int n = JBIG2Image.getNumberOfPages(ra);
 Image img;
 for (int i = 1; i <= n; i++) {
 img = JBIG2Image.getJbig2Image(ra, i);
 img.scaleToFit(523, 350);
 document.add(img);
 }
}

The GIF format, on the other hand, can be used to create small animations. An ani-
mated GIF contains different images that are referred to as frames. That’s why the ter-
minology for extracting the different frames from an animated GIF is slightly different
from what you saw in listing 10.14. Instead of getting the number of pages, you get the
frame count.

public void addGif(Document document, String path)
 throws IOException, DocumentException {
 GifImage img = new GifImage(RESOURCE3);
 int n = img.getFrameCount();
 for (int i = 1; i <= n; i++) {
 document.add(img.getImage(i));
 }
}

Figure 10.8 shows a series of photographs that animate the pangram, “Quick brown
fox jumps over the lazy dog.” (A pangram is a phrase that contains all the letters of the
alphabet.)

Listing 10.14 PagedImages.java

Listing 10.15 PagedImages.java (continued)

B

C

B

C

Licensed to Bruno Lowagie <bruno@lowagie.com>

341Making images transparent
 Note that animated GIF images aren’t supported in
PDFs. You can only add static GIF images. If you want to
add an animation, you need to create a movie file, and
add that movie as an annotation, but that will have to
wait until you’ve reached chapter 16.

 We’ve discussed all the different types of images
that are supported in iText; now let’s combine this
knowledge about images with what you’ve learned
about transparency.

10.3 Making images transparent
All the image types listed in table 10.1 are raster
images, except for WMF, which is a vector graphics
image, aka line work. A raster graphics image is a data
structure representing a rectangular grid of pixels. Sup-
pose you want to add a raster image to a document
shaped as a circle instead of a rectangle. There are dif-
ferent solutions for achieving this. Let’s have a look at
them one by one.

10.3.1 Images and transparency

Some image types, such as GIF and PNG, support trans-
parency; others, such as JPEG, don’t. Figure 10.9 shows
a JPEG image in the background. Three other images
were added on top of it.

 The circle with the letter “i” is a PNG that is partly
transparent. When you add this file to a document, the transparency of the original
image is preserved. The other two images are GIFs that aren’t transparent. If you open
them in another application, you’ll see that they are completely opaque.

Figure 10.9 Making
images transparent

Figure 10.8 Different frames
taken from an animated GIF
Licensed to Bruno Lowagie <bruno@lowagie.com>

342 CHAPTER 10 Brightening your document with color and images
COLOR KEY MASKING

You can make part of those images transparent using color key masking.

Image img1 = Image.getInstance(RESOURCE1);
Document document = new Document(img1);
PdfWriter.getInstance(document, new FileOutputStream(filename));
document.open();
img1.setAbsolutePosition(0, 0);
document.add(img1);
Image img2 = Image.getInstance(RESOURCE2);
img2.setAbsolutePosition(0, 260);
document.add(img2);
Image img3 = Image.getInstance(RESOURCE3);
img3.setTransparency(new int[]{ 0x00, 0x10 });
img3.setAbsolutePosition(0, 0);
document.add(img3);
Image img4 = Image.getInstance(RESOURCE4);
img4.setTransparency(new int[]{ 0xF0, 0xFF });
img4.setAbsolutePosition(50, 50);
document.add(img4);
document.close();

Observe that you can construct a Document object with an Image object because Image
extends the Rectangle class B. You don’t need to do anything special for the PNG
that is already transparent, but you need to use the setTransparency() method for
the two GIF images. This method expects an array specifying a range of colors to be
masked out. The array needs to contain 2 x n values, with n being the number of com-
ponents in the image’s color space. For an RGB image, you need six values: a range for
red, green, and blue. The GIFs in listing 10.16 use the Indexed color space. In this case,
the PDF contains a color map with 256 RGB values. Every pixel of the image can be
expressed as 1 byte, corresponding to a color in the color map.

NOTE We started this chapter saying that there are 11 color spaces in PDF,
but we only discussed 5 of them in section 10.1: DeviceGray, DeviceRGB,
DeviceCMYK, Pattern, and Separation. The other six color spaces, including
Indexed and ICCBased, are supported in iText when they are needed to
embed images in a PDF document. You won’t be confronted with them
directly; that’s why they aren’t discussed in detail in this book.

For RESOURCE3, you make the colors with index values of 0 to 16 transparent; the col-
ors blue and orange of the iText logo are made transparent. For RESOURCE4, you make
the white pixels transparent.

TRANSPARENCY AND JAVA.AWT.IMAGE

To create figure 10.10, you’ll use a GIF file that was already transparent. If you add it
the way you did in listing 10.16, the foreground will be red, the background will be
transparent.

Listing 10.16 TransparentImage.java

Defines
page
size
using
ImageB

Adds transparent
PNG

Adds GIFs that are
made transparent
Licensed to Bruno Lowagie <bruno@lowagie.com>

343Making images transparent
For this example, you’ll use a java.awt.Image object and create four different
instances of com.itextpdf.Image with it.

java.awt.Image awtImage
 = Toolkit.getDefaultToolkit().createImage(RESOURCE);
Image img1 = Image.getInstance(awtImage, null);
document.add(img1);
Image img2 = Image.getInstance(awtImage, null, true);
document.add(img2);
Image img3 = Image.getInstance(awtImage,
 new Color(0xFF, 0xFF, 0x00));
document.add(img3);
Image img4 = Image.getInstance(awtImage,
 new Color(0xFF, 0xFF, 0x00), true);
document.add(img4);

If you add the image exactly the way you did in listing 10.11, the foreground of the
image is red, and the background is transparent.

With an extra boolean parameter, you can tell iText to change the image into a black
and white image (with 1 bit per component). In the second image, all the red is
changed into black, and the transparency is preserved.

Listing 10.17 TransparentAwt.java

Figure 10.10 Transparency with java.awt.Image

Creates a
java.awt.Image

B

C

D

E

B

C

Licensed to Bruno Lowagie <bruno@lowagie.com>

344 CHAPTER 10 Brightening your document with color and images
You keep the colors, but you tell iText that the transparent pixels should be replaced
with a java.awt.Color; in this case, yellow. The image is no longer transparent.

This is a combination of C and D. The transparent pixels are replaced by another
color, but then the image is changed to black and white.

If you look inside the PDF generated with listing 10.17, you’ll see that the transparency
of the GIF is achieved using color key masking. The PNG image from listing 10.16 is
made transparent using a soft mask.

10.3.2 Masking images

The image used in figure 10.11 is the same JPEG used in figure 10.9. The JPEG
format doesn’t support transparency, but you can apply either an explicit mask or a
soft mask.

EXPLICIT MASKING

The PDF shown to the left in figure 10.11 uses a stencil mask.

byte circledata[] = {
 (byte) 0x3c, (byte) 0x7e, (byte) 0xff, (byte) 0xff,
 (byte) 0xff, (byte) 0xff, (byte) 0x7e, (byte) 0x3c };
Image mask = Image.getInstance(8, 8, 1, 1, circledata);
mask.makeMask();
mask.setInverted(true);

Listing 10.18 ImageMask.java

D

E

Figure 10.11 Hard and soft image masks

Specifies
image data

Creates
mask
Licensed to Bruno Lowagie <bruno@lowagie.com>

345Making images transparent
You create an image with 8 pixels x 8 pixels, using one component and 1 bit per com-
ponent, which makes 64 bits in total. You can store these bits in an array containing 8
bytes. Internally, iText will create a CCITT image.

 When you make it a mask with the method makeMask(), you tell iText that this
image is a stencil mask. This means that the bit value doesn’t define a color (black or
white), but rather whether the pixel is opaque or transparent. Normally, the value 1
will be opaque, and 0 transparent, but you change this with the method set-
Inverted(). You can now apply the mask to the JPEG image:

Image img = Image.getInstance(RESOURCE);
img.setImageMask(mask);

The mask parameter can also be a soft mask. That’s the case in the image shown to the
right in figure 10.11.

SOFT MASKING

The code in the next listing should look very familiar. The first part is identical to
what you did in listing 10.8 when you created a gradient in the DeviceGray color
space.

byte gradient[] = new byte[256];
for (int i = 0; i < 256; i++)
 gradient[i] = (byte) i;
mask = Image.getInstance(256, 1, 1, 8, gradient);
mask.makeMask();

The only difference here is that you now use the makeMask() method so that you can
use the resulting Image as a parameter for the setImageMask() on another Image.

 If using masks is too complex for what you need, you can also use simple PDF syn-
tax to clip an image.

10.3.3 Clipping images

The first image in figure 10.5 is a picture of my wife and me, taken at the Flanders
International Film Festival in Ghent. In the foreground you see a phenakistoscope.
That’s an early animation device, invented in 1832 by Joseph Plateau, (also) a citizen
of Ghent. Nowadays, it’s the Belgian version of the Oscar statue. Unfortunately, I
didn’t win one of these Belgian Oscars (yet); the picture was an initiative of one of the
sponsors of the film festival.

 Suppose I want to use only the upper half of this photograph in a PDF document
because the lower half shows the name of the sponsor. This is done in figure 10.12. Using
a mask isn’t the best way to achieve this. Instead, we’ll clip the image.

TEMPLATE CLIP

If you want to cut a rectangle out of the original image, as is done in the PDF to the left
in figure 10.12, you could create a PdfTemplate object that is smaller than the original
picture, and add the Image object to it.

Listing 10.19 ImageMask.java
Licensed to Bruno Lowagie <bruno@lowagie.com>

346 CHAPTER 10 Brightening your document with color and images
Image img = Image.getInstance(RESOURCE);
float w = img.getScaledWidth();
float h = img.getScaledHeight();
PdfTemplate t = writer.getDirectContent().createTemplate(850, 600);
t.addImage(img, w, 0, 0, h, 0, -600);
Image clipped = Image.getInstance(t);
clipped.scalePercent(50);
document.add(clipped);

What happens with the image in the template is true for all the objects you add to the
direct content. Everything that is added outside the boundaries of a PdfTemplate or a
page will be present in the PDF, but you won’t see it in a PDF viewer. It’s important to
understand that iText may change the way the image is compressed, but it doesn’t
remove pixels. In this case, the complete picture—including the name of the festival
sponsor in the lower half of the image—will be in the PDF file, but it won’t be visible
when looking at the PDF document.

 If you aren’t satisfied with a rectangle, you can define a clipping path.

CLIPPING PATH

You defined different paths in chapter 3, when you wrote lines and shapes to the
direct content. With the combination of the clip() and newPath() methods, you can
use such a path as a clipping path. You can reuse listing 10.20 to create the PDF shown
to the right in figure 10.12. You only have to add a couple of lines.

PdfTemplate t = writer.getDirectContent().createTemplate(850, 600);
t.ellipse(0, 0, 850, 600);
t.clip();
t.newPath();
t.addImage(img, w, 0, 0, h, 0, -600);

Any graphical shape can be used as a clipping path, including text.

Listing 10.20 TemplateClip.java

Listing 10.21 ClippingPath.java

Figure 10.12 Clipping images
Licensed to Bruno Lowagie <bruno@lowagie.com>

347Making images transparent
Let’s finish this chapter with one more example that demonstrates another, less obvi-
ous, way to hide part of an image.

USING A SOFT MASK FOR DIRECT CONTENT

The PDF in figure 10.13 looks similar to the one in figure 10.12, but it also has a soft mask
applied. The main difference between this and what you did for figure 10.11 is that you
don’t use the soft mask for the Image object, but for the GState of the direct content.

 The code to achieve this is rather complex, as you can see.

PdfTemplate t2 = writer.getDirectContent()
 .createTemplate(850, 600);
PdfTransparencyGroup transGroup
 = new PdfTransparencyGroup();
transGroup.put(PdfName.CS, PdfName.DEVICEGRAY);
transGroup.setIsolated(true);
transGroup.setKnockout(false);
t2.setGroup(transGroup);
int gradationStep = 30;
float[] gradationRatioList = new float[gradationStep];
for(int i = 0; i < gradationStep; i++) {
 gradationRatioList[i] = 1 - (float)Math.sin(
 Math.toRadians(90.0f / gradationStep * (i + 1)));
}
for(int i = 1; i < gradationStep + 1; i++) {
 t2.setLineWidth(5 * (gradationStep + 1 - i));
 t2.setGrayStroke(
 gradationRatioList[gradationStep - i]);
 t2.ellipse(0, 0, 850, 600);
 t2.stroke();
}

Listing 10.22 TransparentOverlay.java

Figure 10.13
Clipped image with a
transparent overlay

Creates XObject/
transparency group

Adds ellipses in
shades of gray
Licensed to Bruno Lowagie <bruno@lowagie.com>

348 CHAPTER 10 Brightening your document with color and images
PdfDictionary maskDict = new PdfDictionary();
maskDict.put(PdfName.TYPE, PdfName.MASK);
maskDict.put(PdfName.S, new PdfName("Luminosity"));
maskDict.put(
 new PdfName("G"), t2.getIndirectReference());
PdfGState gState = new PdfGState();
gState.put(PdfName.SMASK, maskDict);
canvas.setGState(gState);
canvas.addTemplate(t2, 0, 0);

This is an example that should be studied with this book in one hand and ISO-32000-1
in the other. This isn’t “the definitive chapter” about colors, images, and transparency,
but we’ve looked at a selection of the most important functionality from the perspec-
tive of the iText developer.

10.4 Summary
We started this chapter with an introduction to color spaces. We discussed three
device color spaces (RGB, CMYK, and Gray), as well as two special device color spaces
(Separation and Pattern). These are the color spaces for which iText has specific color
classes that can be used as font, fill, or stroke color. You also learned about making col-
ors transparent. You can change the opacity and the blend mode of objects added to
the direct content using the GState object, and you can group objects in a transpar-
ency group for which you can define isolation and knockout.

 After this overview of colors and transparency, we took a look at the different
image types that are supported by iText. We mapped these image types to the different
image classes in iText. You created an image byte by byte, color by color to find out
what images are about. You learned that iText changes the way some image types are
compressed, but it doesn’t reduce the quality, unless you use java.awt.Image.

 Finally, you made images transparent using masking (color key masking, explicit
masking, and soft masking) and you learned to clip images. Although you may have
the impression that we’ve covered a lot of functionality, we’ve only been scratching
the surface. ISO-32000-1 contains much more information about color spaces, blend-
ing modes, image types, and so on.

 We can’t go into more detail. We have to move on to chapter 11 and take a closer
look at fonts, font programs, and glyphs.

Creates
Image mask
dictionary

Sets graphics
state

Adds XObject
Licensed to Bruno Lowagie <bruno@lowagie.com>

Choosing the right font
We discussed two font classes in chapter 2: Font and BaseFont. You used the Font
class in section 2.2.1 for the 14 standard Type 1 fonts. These fonts are supposed to be
“known” by every PDF viewer and are therefore never embedded by iText. In sec-
tion 2.2.2, you used the Font class in combination with BaseFont to embed fonts.
You created a BaseFont object by telling iText where to find a font program; for
instance, a .ttf file. In chapter 3, you needed the BaseFont class to set the font when
writing text to the direct content. You’ve also learned how to measure Strings in a
certain font, how to change the render mode, and so on.

 You know how to use fonts in your applications, but how do you choose them?
Which font files can be used with iText? How about special writing systems? In some
languages, you have to write from right to left, and from top to bottom. Further-
more, there are some convenience classes that make it easier to select a font. You’ll
find the answers to all these questions in this chapter.

11.1 Getting fonts from a file
Figure 11.1 shows a PDF containing a sentence written nine times using different fonts.

This chapter covers
■ Font files, types, and classes
■ Writing systems and advanced typography
■ Automatic font creation and selection
349

Licensed to Bruno Lowagie <bruno@lowagie.com>

350 CHAPTER 11 Choosing the right font
The document also shows which font program and encoding was used, and which
iText class was responsible for interpreting the font. In the next subsections, we’ll
approach this example from different angles. First, let’s take a look at the font files
that can be used.

11.1.1 Font files and their extensions

Table 11.1 lists the extensions of the files that contain the font metrics or the font
program, or both. Type 1 was originally a proprietary specification owned by Adobe,
but after Apple introduced TrueType as a competitor, the specification was pub-
lished, and third-party font manufacturers were allowed to create Type 1 fonts, pro-
vided they adhered to the specification. In 1991, Microsoft started using TrueType as
its standard font.

Figure 11.1 One sentence written in different fonts
Licensed to Bruno Lowagie <bruno@lowagie.com>

351Getting fonts from a file
For a long time, TrueType was the most common font on both Mac OS and MS Win-
dows systems, but both companies, Apple as well as Microsoft, added their own propri-
etary extensions, and soon they had their own versions and interpretations of (what
once was) the standard. When looking for a commercial font, you had to be careful to
buy a font that could be used on your system. A TrueType font for Windows didn’t
necessarily work on a Mac. To resolve the platform dependency of TrueType fonts,
Microsoft started developing a new font format. Microsoft was joined by Adobe, and
support for Adobe’s Type 1 fonts was added. In 1996, a new font format was born:
OpenType fonts. The glyphs in an OpenType font can be defined using either True-
Type or Type 1 technology.

 This demonstrates how the PDF shown in figure 11.1 was created.

public static String[][] FONTS = {
 {BaseFont.HELVETICA, BaseFont.WINANSI},
 {"resources/fonts/cmr10.afm", BaseFont.WINANSI},
 {"resources/fonts/cmr10.pfm", BaseFont.WINANSI},
 {"c:/windows/fonts/ARBLI__.TTF", BaseFont.WINANSI},
 {"c:/windows/fonts/arial.ttf", BaseFont.WINANSI},
 {"c:/windows/fonts/arial.ttf", BaseFont.IDENTITY_H},
 {"resources/fonts/Puritan2.otf", BaseFont.WINANSI},
 {"c:/windows/fonts/msgothic.ttc,0",
 BaseFont.IDENTITY_H},
 {"KozMinPro-Regular", "UniJIS-UCS2-H"}
};
public void createPdf(String filename)
 throws IOException, DocumentException {
 Document document = new Document();
 PdfWriter.getInstance(document, new FileOutputStream(filename));
 document.open();
 BaseFont bf;
 Font font;
 for (int i = 0; i < FONTS.length; i++) {
 bf = BaseFont.createFont(
 FONTS[i][0], FONTS[i][1], BaseFont.EMBEDDED);
 document.add(new Paragraph(String.format(

Table 11.1 Font files and their extension

Font type Extension Description

Type 1
font files

.afm, .pfm,

.pfb
A Type 1 font is composed of two files: one containing the metrics (.afm or .pfm),
and one containing the mathematical descriptions for each character (.pfb).

TrueType
font files

.ttf A font based on a specification developed by Apple to compete with Adobe’s
Type 1 fonts.

OpenType
font files

.otf, .ttf,

.ttc
A cross-platform font file format based on Unicode. OpenType font files con-
taining Type 1 outlines have an .otf extension. Filenames of OpenType fonts
containing TrueType data have a .ttf or .ttc extension. The .ttc extension is
used for TrueType collections.

Listing 11.1 FontTypes.java

Type 1

TrueType

OpenType
with
TrueType
outlines

OpenType
with Type 1
outlines

TrueType
collection
Licensed to Bruno Lowagie <bruno@lowagie.com>

352 CHAPTER 11 Choosing the right font
 "Font file: %s with encoding %s", FONTS[i][0], FONTS[i][1])));
 document.add(new Paragraph(String.format(
 "iText class: %s", bf.getClass().getName())));
 font = new Font(bf, 12);
 document.add(new Paragraph(TEXT, font));
 document.add(new LineSeparator(0.5f, 100, null, 0, -5));
 }
 document.close();
}

There are many things going on in this code snippet, but for now we’ll focus on the
files that were used to create the BaseFont object.

11.1.2 Type 1 fonts

If you open the iText JAR, you’ll find a com/itextpdf/text/pdf/fonts folder contain-
ing 14 .afm files. These are the Adobe Font Metrics (AFM) files for the 14 standard
Type 1 fonts: 4 Helvetica fonts (normal, bold, oblique, and bold-oblique), 4 Times-
Roman fonts (normal, bold, italic, and bold-italic), 4 Courier fonts (normal, bold,
oblique, and bold-oblique), Symbol, and Zapf Dingbats.

ADOBE FONT METRICS (AFM) FILES

The AFM files are used when you create a Font like this:

Font f = new Font(FontFamily.COURIER, 10, Font.BOLD);

Or when you create a BaseFont like this:

BaseFont bf = BaseFont.createFont(
 BaseFont.TIMES_ITALIC, BaseFont.WINANSI, BaseFont.EMBEDDED);

The former will fetch the Courier-Bold.afm file from the iText JAR; the latter will get
the Times-Italic.afm file. The AFM files only contain metrics for each glyph: the
bounding box, the character advance, and so on.

FAQ Why do I get an IOException when I use the default or a standard font? If
you get an exception with a message saying something like “Helvetica not
found as resource.” this means that the AFM file containing the font metrics
of the font Helvetica can’t be loaded as a resource. This will happen if you
build the JAR from source code but forget to include the AFM file. Add them
to the iText JAR, or check if you have access to the com/itextpdf/text/pdf/
fonts/*.afm files for the standard Type 1 fonts.

Note that the BaseFont.EMBEDDED parameter will be ignored for the standard Type 1
fonts. That’s because iText doesn’t ship with the PostScript Font Binary (PFB) files of
these fonts.

POSTSCRIPT FONT BINARY FILES

The actual outlines of each glyph aren’t stored in the metrics file, but in a separate
PFB file. In listing 11.1, the cmr10.afm AFM file is used. This is the metrics file for
Computer Modern Regular, a font designed by Donald Knuth. When you tell iText to
Licensed to Bruno Lowagie <bruno@lowagie.com>

353Getting fonts from a file
embed this font, it will check whether the cmr10.pfb file is present in the same direc-
tory as the AFM file. If that file is missing, you’ll get an exception saying “resources/
fonts/cmr10.pfb not found as file or resource.” Computer Modern Regular is used
twice in our example: once with an AFM file and once with a PFM file.

PRINTER FONT METRICS (PFM) FILES

Printer Font Metrics (PFM) files are the
Microsoft version of AFM, and iText is able to
convert PFM into AFM. The same PFB file is
used for both types of metrics files. Type 1
fonts aren’t subset by iText; when you choose
to embed a Type 1 font, the outlines of all
glyphs in the font are embedded, including
those that aren’t used in the document.

 Now let’s take a look at the difference
between TrueType fonts and OpenType fonts.

11.1.3 TrueType and OpenType fonts

Files with the .ttf extension can be either a
TrueType font, or an OpenType font with
TrueType outlines. Figure 11.2 shows a frag-
ment of the fonts folder on Windows. The
snippet contains icons for two .ttc and four
.ttf files.

 Thanks to the icon that’s used, you can
distinguish the TrueType fonts—the ones
with the TT icon—from the OpenType fonts
with TrueType outlines—the ones with the O
icon. This difference doesn’t matter much if
you’re using iText; you only have to be care-
ful if you’re using a TrueType collection—
with the TC icon.

TRUETYPE COLLECTIONS

A TrueType collection is, as the name indi-
cates, a collection of TrueType fonts bun-
dled in one .ttc file. Figure 11.3 shows the
fonts available in the file msgothic.ttc.

 In the next example, you’ll use the enu-
merateTTCNames() method to find the
names of the fonts inside the collection.

Figure 11.2 TrueType fonts,
TrueType collections, OpenType
fonts with TrueType outlines

Figure 11.3 TrueType collection example
Licensed to Bruno Lowagie <bruno@lowagie.com>

354 CHAPTER 11 Choosing the right font
String[] names = BaseFont.enumerateTTCNames(FONT);
for (int i = 0; i < names.length; i++) {
 bf = BaseFont.createFont(String.format("%s,%s", FONT, i),
 BaseFont.IDENTITY_H, BaseFont.EMBEDDED);
 font = new Font(bf, 12);
 document.add(new Paragraph("font " + i + ": " + names[i], font));
 document.add(new Paragraph("Rash\u00f4mon", font));
 document.add(new Paragraph("Directed by Akira Kurosawa", font));
 document.add(new Paragraph("\u7f85\u751f\u9580", font));
 document.add(Chunk.NEWLINE);
}

The FONT parameter contains the path to msgothic.ttc. Observe that you have to add
the index of the font to the font file when you want to create a BaseFont object. For
instance, if you want to use the font MS-PGothic, you need to add the index 1:

BaseFont bf = BaseFont.createFont("c:/windows/fonts/msgotic.ttc,1",
 BaseFont.IDENTITY_H, BaseFont.EMBEDDED);

When you ask iText to embed a TrueType or an OpenType font with TrueType out-
lines, iText will not embed the complete font, as is the case with Type 1 fonts or Open-
Type fonts with Type 1 outlines. Instead, it will only embed a subset of the font,
containing only those glyphs that were used in the document. iText will ignore the
embedded parameter and always embed a subset of the font if you use the encoding
IDENTITY_H or IDENTITY_V.

 If you want to understand what this encoding means, you have to look at the differ-
ent ways a font can be stored inside a PDF.

11.2 Examining font types from a PDF perspective
In this section, we’ll examine font types from a PDF perspective, and we’ll find out the
difference between simple and composite fonts.

 Table 11.1 looked at the way fonts can be organized in different files; table 11.2
lists the font subtypes that can be present in a PDF document. This table corresponds
to Table 110 in ISO-32000-1, omitting the subtype MMType1. Multiple Master fonts
have been discontinued. They can be present in a PDF document, but there’s no sup-
port for Multiple Master fonts in iText’s BaseFont class.

Listing 11.2 TTCExample.java

Table 11.2 Subtype values for fonts (ISO-32000-1 Table 110)

Subtype Description

/Type1 A font that defines glyph shapes using Type 1 font technology

/Type3 A font that defines glyphs with streams of PDF graphics operators

/TrueType A font based on the TrueType font format

/Type0 A composite font—a font composed of glyphs from a descendant CIDFont
Licensed to Bruno Lowagie <bruno@lowagie.com>

355Examining font types from a PDF perspective
The first three subtypes are used in the context of simple fonts; Type 0 are fonts called
composite fonts. Let’s start with simple fonts.

11.2.1 Simple fonts

Glyphs in a simple font are selected using a single byte. Each glyph corresponds to a
character that has a value from 0 to 255. The mapping between the characters and the
glyphs is called the character encoding. A Type 1 font can have a special built-in encoding,
as is the case for Symbol and Zapf Dingbats. With other fonts, multiple encodings may
be available. For instance, the glyph known as dagger (†) corresponds with (char) 134
in the encoding known as WinAnsi, aka Western European Latin (code page 1252), a
superset of Latin 1 (ISO-8859-1). The same dagger glyph corresponds to different char-
acter values in the Adobe Standard encoding (178), Mac Roman encoding (160), and
PDF Doc Encoding (129). Figure 11.4 shows the available code pages for three of the
fonts used in figure 11.1.

/CIDFontType0 A CIDFont whose glyph descriptions are based on the Compact Font Format (CFF)

/CIDFontType2 A CIDFont whose glyph descriptions are based on TrueType font technology

Table 11.2 Subtype values for fonts (ISO-32000-1 Table 110) (continued)

Subtype Description

Figure 11.4 Encodings available in different font files
Licensed to Bruno Lowagie <bruno@lowagie.com>

356 CHAPTER 11 Choosing the right font
These encoding names were obtained using the getCodePagesSupported() method.
Code page is the traditional IBM term for character encoding.

String[] encoding = bf.getCodePagesSupported();
for (int i = 0; i < encoding.length; i++) {
 document.add(new Paragraph("encoding[" + i + "] = " + encoding[i]));
}

If you use a simple font, it’s up to you to decide which encoding to use. Some Western
languages (for instance, French) have letters that get a cedilla (¸) or a circumflex (ˆ).
Those letters are in code page 1252 (Latin 1). If you need a hacek or a caron (ˇ), you
should use code page 1250 (Latin 2). Figure 11.5 shows examples using different
encodings available in Arial-BoldMT, including examples in Cyrillic (code page 1251)
and Greek (code page 1253).

 Listing 11.4, which produced what you see in figure 11.5, shows that four different
BaseFont objects were created using the same font, but with different encodings. If
you look at the document properties (see the window on the right in figure 11.5),
you’ll find four embedded subsets of Arial-BoldMT: one using Ansi encoding
(Cp1252) and three using a custom encoding.

Listing 11.3 EncodingNames.java

Figure 11.5 Using different
encodings of the same font
Licensed to Bruno Lowagie <bruno@lowagie.com>

357Examining font types from a PDF perspective
public static final String FONT = "c:/windows/fonts/arialbd.ttf";
public static final String[][] MOVIES = {
 { "Cp1252",
 "A Very long Engagement (France)",
 "directed by Jean-Pierre Jeunet",
 "Un long dimanche de fian\u00e7ailles" },
 { "Cp1250",
 "No Man's Land (Bosnia-Herzegovina)",
 "Directed by Danis Tanovic",
 "Nikogar\u0161nja zemlja" },
 { "Cp1251",
 "You I Love (Russia)",
 "directed by Olga Stolpovskaja and Dmitry Troitsky",
 "\u042f \u043b\u044e\u0431\u043b\u044e \u0442\u0435\u0431\u044f" },
 { "Cp1253",
 "Brides (Greece)",
 "directed by Pantelis Voulgaris",
 "\u039d\u03cd\u03c6\u03b5\u03c2" }
};
public void createPdf(String filename)
 throws IOException, DocumentException {
 Document document = new Document();
 PdfWriter.getInstance(document, new FileOutputStream(filename));
 document.open();
 BaseFont bf;
 for (int i = 0; i < 4; i++) {
 bf = BaseFont.createFont(FONT, MOVIES[i][0], BaseFont.EMBEDDED);
 document.add(new Paragraph("Font: " + bf.getPostscriptFontName()
 + " with encoding: " + bf.getEncoding()));
 document.add(new Paragraph(MOVIES[i][1]));
 document.add(new Paragraph(MOVIES[i][2]));
 document.add(new Paragraph(MOVIES[i][3], new Font(bf, 12)));
 document.add(Chunk.NEWLINE);
 }
 document.close();
}

Although this example uses characters that are expressed using more than one byte in
the source code, the characters will be stored as single bytes inside the PDF file because
you’re using Arial-BoldMT as a simple font. This is OK if you have a document that con-
sists of only one language, but if you have a document where you constantly need to
switch between languages, it would probably be easier if you didn’t have to worry about
switching the encoding. You can achieve this by using Arial-BoldMT as a composite font.

11.2.2 Composite fonts

A composite font obtains its glyphs from a font-like object called a CIDFont. A compos-
ite font is represented by a font dictionary with subtype /Type0. The Type 0 font is
known as the root font, and its associated CIDFont is called its descendant.

Listing 11.4 EncodingExample.java
Licensed to Bruno Lowagie <bruno@lowagie.com>

358 CHAPTER 11 Choosing the right font
Please compare figure 11.6 with figure 11.5. The content of the page is identical, but
now Arial-BoldMT only appears once in the list of fonts, as a CIDFont with Identity-H
encoding.

 The code to create this PDF is almost identical to the code in listing 11.4; you need
only to replace the encoding.

BaseFont bf;
for (int i = 0; i < 4; i++) {
 bf = BaseFont.createFont(FONT, BaseFont.IDENTITY_H, BaseFont.EMBEDDED);
 document.add(new Paragraph("Font: " + bf.getPostscriptFontName()
 + " with encoding: " + bf.getEncoding()));
 document.add(new Paragraph(MOVIES[i][1]));
 document.add(new Paragraph(MOVIES[i][2]));
 document.add(new Paragraph(MOVIES[i][3], new Font(bf, 12)));
 document.add(Chunk.NEWLINE);
}

CIDFonts are collections of glyphs that can’t be used directly. They can only be used as
a component of a Type 0 font.

CHARACTER COLLECTION

CID stands for character identifier. A character identifier is used as the index of the char-
acter collection to access the glyphs in the font. For simple fonts, you had an index rang-
ing from 0 to 255; in contrast, a CID can be a number from 0 to 65,535. This is a great
advantage when dealing with languages that have huge character sets, such as Chi-
nese, Japanese, and Korean.

Listing 11.5 UnicodeExample.java

Figure 11.6 Using
Identity-H instead of
different encodings
Licensed to Bruno Lowagie <bruno@lowagie.com>

359Using fonts in iText
CMAP

Note that 65,535 is less than the number of code points available in Unicode
(1,114,112). The association between the Unicode code points and their CIDs in the
font is specified in a CMap, which is like a very large code page.

 In listing 11.5, you have used the CMap named Identity-H. This is a generic identity
mapping for 2-byte CIDs in a horizontal writing system. The same mapping also exists
for vertical writing systems: Identity-V. You’ll use Identity-V when we discuss vertical
writing systems. You’ll use other CMaps in an example that uses a CJKFont.

CIDFONT TYPES

As you can see in table 11.2, there are two types of CIDFonts:

■ Type 0 CIDFonts—These contain glyphs based on the Compact Font Format
(CFF; this is a Type 2 font in PostScript terms). If you want to embed such a font,
you’ll need to buy an .otf file that supports this format. You won’t find many
free fonts that support this format.

■ Type 2 CIDFonts—These contain glyphs based on the TrueType format. You can
embed such a font if you have a file containing an OpenType font with True-
Type outlines (.ttf) or a TrueType collection (.ttc).

Note that the way fonts are named can be very confusing: Type 0 in the context of CID-
Fonts has a different meaning than for Type 0 fonts; Type 2 in PostScript has a differ-
ent meaning than for CIDFonts. Moreover, when you look at the Fonts tab in the
Document properties, you’ll see that a font with subtype CIDFontType0 is listed as a
Type 1 (CID) font.

 Font technology isn’t simple, but it’s described in great detail in ISO-32000-1 and
in additional technical notes published by Adobe. Right now, we’re more interested in
the way iText deals with these different types of fonts.

11.3 Using fonts in iText
In the previous sections, we had a short overview of the different font files that can be
used to create a BaseFont object, as well as the different font types one can find inside
a PDF file. You saw some examples using different files resulting in different font types,
but we’ve overlooked some types: we haven’t discussed Type 3 fonts yet, and we should
also take a look at CMaps other than Identity-H. Before we can do this, we must have a
look at the different iText classes that deal with fonts.

11.3.1 Overview of the Font classes

In the first column of table 11.3, you can find the most important font classes in iText.
You already know Font and BaseFont, but more classes are used under the hood, most
of which are subclasses of BaseFont (see the subclass column).

 Table 11.3 covers all the file types listed in table 11.1, as well as all the font subtypes
listed in table 11.2. You don’t need to address classes such as Type1Font and True-
TypeFont directly; just as you used the Image class to select the correct image type in
the previous chapter, you can let the BaseFont class decide which font class applies.
Licensed to Bruno Lowagie <bruno@lowagie.com>

360 CHAPTER 11 Choosing the right font
Table 11.3 is nevertheless useful for finding out about important implementation dif-
ferences. For instance, the TrueTypeFontUnicode class always embeds a subset of the
font. This reduces the file size.

FONTS AND FILE SIZE

In this example, you use the font arial.ttf to write a document with the text “quick
brown fox jumps over the lazy dog” using different settings for the font.

Table 11.3 iText Font classes

iText class Subclass Description

Font NA This is the most simple Font class. There are different con-
structors to create one of the standard Type 1 font types (not
embedded). You can also create a Font instance using a
BaseFont object and a font size as a parameter.

BaseFont NA This is the abstract superclass; the createFont()
method returns an instance of one of its subclasses,
depending on the font file used.

Type1Font Yes You’ll get a Type1Font instance if you create a standard
Type 1 font, or if you pass an .afm or .pfm file. Standard
Type 1 fonts are never embedded; for other Type 1 fonts, it
depends on the value of the embedded parameter and the
presence of a .pfb file.

Type3Font Yes Type 3 fonts are special: they don’t come in files. You need to
create them using PDF syntax. Type 3 fonts are always
embedded.

TrueTypeFont Yes In spite of its name, this class isn’t only used for TrueType
fonts (.ttf), but also for OpenType fonts with TrueType (.ttf) or
Type 1 (.otf) outlines. This class will create a TrueType or a
Type 1 font subtype in a PDF document.

TrueTypeFontUnicode Yes Files with extension .ttf or .otf can also result in this sub-
class of TrueTypeFont if you use them as composite
fonts. So will files with extension .ttc. Inside the PDF, you’ll
find the subtype /Type0 along with /CIDFontType2 (.ttf
and .ttc files) or /CIDFontType0 (.otf files). Contrary to its
superclass, TrueTypeFontUnicode ignores the embed-
ded parameter. iText will always embed a subset of the font.

CFFFont No OpenType fonts with extension .otf use the Compact Font For-
mat (CFF). Although creating a font using an .otf file results in
an instance of TrueTypeFont, it’s the CFFFont class
that does the work.

CJKFont Yes This is a special class for Chinese, Japanese, and Korean
fonts for which the metrics files are shipped in a separate
JAR. Using a CJK font results in a Type 0 font; the font is
never embedded.
Licensed to Bruno Lowagie <bruno@lowagie.com>

361Using fonts in iText
public static final String FONT = "c:/windows/fonts/arial.ttf";
public static String TEXT
 = "quick brown fox jumps over the lazy dog";
public static String OOOO
 = "ooooo ooooo ooo ooooo oooo ooo oooo ooo";
public static void main(String[] args)
 throws IOException, DocumentException {
 FontFileAndSizes ffs = new FontFileAndSizes();
 BaseFont bf;
 bf = BaseFont.createFont(
 FONT, BaseFont.WINANSI, BaseFont.NOT_EMBEDDED);
 ffs.createPdf(RESULT[0], bf, TEXT);
 bf = BaseFont.createFont(
 FONT, BaseFont.WINANSI, BaseFont.EMBEDDED);
 ffs.createPdf(RESULT[1], bf, TEXT);
 ffs.createPdf(RESULT[2], bf, OOOO);
 bf = BaseFont.createFont(
 FONT, BaseFont.WINANSI, BaseFont.EMBEDDED);
 bf.setCompressionLevel(9);
 ffs.createPdf(RESULT[3], bf, TEXT);
 bf = BaseFont.createFont(
 FONT, BaseFont.WINANSI, BaseFont.EMBEDDED);
 bf.setSubset(false);
 ffs.createPdf(RESULT[4], bf, TEXT);
}

If you compare the file sizes of the different files that are created, you’ll see that the
smallest file is the one for which you didn’t embed the font: 2 KB B.

 In C, you embed a subset of the glyphs. You create a PDF containing 27 different
glyphs (the 26 letters of the alphabet and the space character) with a file size of 24 KB.
If you reduce the number of glyphs to two, the size is only 16 KB. The file size varies
depending on the number of different glyphs used.

 Setting the compression level as is done in D doesn’t save space; the resulting file
is also 24 KB.

FAQ Can I prevent iText from creating a subset of the font? Yes, you can. If your
requirements demand full embedding of the font, you can use the setSub-
set(false) method to change the default behavior E. This comes at a cost:
the resulting file is 414 KB.

Two classes in table 11.3 demand an extra example: Type3Font and CJKFont. See fig-
ure 11.7.

11.3.2 Type 3 fonts

In a Type 3 font, the glyphs are described using PDF graphics operators. You used these
operators in chapter 3 when you wrote to the direct content. You can use this knowledge
to create a user-defined font. Figure 11.7 shows custom characters created for the Greek
capitals Delta and Sigma. They even use colors. This is how it was created.

Listing 11.6 FontFileAndSizes.java

B

C

D

E

Licensed to Bruno Lowagie <bruno@lowagie.com>

362 CHAPTER 11 Choosing the right font
Type3Font t3 = new Type3Font(writer, true);
PdfContentByte d
 = t3.defineGlyph('D', 600, 0, 0, 600, 700);
d.setColorStroke(new BaseColor(0xFF, 0x00, 0x00));
d.setColorFill(new GrayColor(0.7f));
d.setLineWidth(100);
d.moveTo(5, 5);
d.lineTo(300, 695);
d.lineTo(595, 5);
d.closePathFillStroke();
PdfContentByte s
 = t3.defineGlyph('S', 600, 0, 0, 600, 700);
s.setColorStroke(new BaseColor(0x00, 0x80, 0x80));
s.setLineWidth(100);
s.moveTo(595,5);
s.lineTo(5, 5);
s.lineTo(300, 350);
s.lineTo(5, 695);
s.lineTo(595, 695);
s.stroke();
Font f = new Font(t3, 12);

Listing 11.7 Type3Example.java

Figure 11.7 Type 3 and CJK font example

Creates BaseFont

Creates Delta
(corresponds to “D”)

Creates Sigma
(corresponds to “S”)
Licensed to Bruno Lowagie <bruno@lowagie.com>

363Using fonts in iText
Paragraph p = new Paragraph();
p.add(
 "This is a String with a Type3 font that contains a fancy Delta (");
p.add(new Chunk("D", f));
p.add(") and a custom Sigma (");
p.add(new Chunk("S", f));
p.add(").");
document.add(p);

There’s no createFont() method for Type 3 fonts; instead you need to use the
Type3Font constructor. The first parameter is the PdfWriter to which the glyph descrip-
tions will be written; the second parameter is a boolean indicating whether or not you
want to use color. If you change this parameter to false, the glyphs in figure 11.7 will
change into black and white. You define two characters using the defineGlyph()
method. The first parameter of this method is the character that corresponds to the cus-
tom glyph. The other parameters contain the metrics for the glyph: the char advance
and the coordinates of the bounding box of the glyph (lower-left X, lower-left Y, upper-
right X, and upper-right Y).

 The other PDF shown in figure 11.7 contains Chinese, Japanese, and Korean
glyphs. This was achieved using the CJKFont class.

11.3.3 CJK fonts

If you look at the iText source code repository, you’ll see that the directory com/itext-
pdf/text/pdf/fonts doesn’t only contain fourteen AFM files, but also a series of
*.properties and *.cmap files. These files aren’t shipped with the iText JAR, but you
can download them separately. Look for iTextAsian.jar and add this JAR to your class-
path if you want to use CJK fonts. The properties and CMap files in this JAR do not con-
tain the glyph descriptions, which means that iText won’t embed these fonts.

NOTE If you open a file using these CJK fonts in Adobe Reader, and if the
fonts aren’t available, a dialog box will open. You’ll be asked if you want to
update the Reader. If you agree, the necessary font packs will be down-
loaded and installed. You’ll find the font files in the folder where Adobe
Reader was installed; for example, C:/Program Files/Adobe/Reader 9.0/
Resource/CIDFont/. These fonts are only licensed for use in combination
with Adobe Reader; you’re not allowed to use them in any other application
(unless you’ve bought a license from Adobe).

The files from iTextAsian.jar correspond with the values in the second and third col-
umn of table 11.4. You can use this table to create a CJKFont object. If you want to use
a CJKFont in a different style, you can add one of the following modifiers to the font
name: Bold, Italic, or BoldItalic. For instance, replace "STSong-Light" in list-
ing 11.8 with "STSong-Light,Italic", and the title of the movie by Zhang Yimou will
be printed in italics.

Uses Delta

Uses Sigma
Licensed to Bruno Lowagie <bruno@lowagie.com>

364 CHAPTER 11 Choosing the right font
public static final String[][] MOVIES = {
 { "STSong-Light", "UniGB-UCS2-H",
 "Movie title: House of The Flying Daggers (China)",
 "directed by Zhang Yimou", "\u5341\u950a\u57cb\u4f0f" },
 { "KozMinPro-Regular", "UniJIS-UCS2-H",
 "Movie title: Nobody Knows (Japan)", "directed by Hirokazu Koreeda",
 "\u8ab0\u3082\u77e5\u3089\u306a\u3044" },
 { "HYGoThic-Medium", "UniKS-UCS2-H",
 "Movie title: '3-Iron' aka 'Bin-jip' (South-Korea)",
 "directed by Kim Ki-Duk", "\ube48\uc9d1" }
};
public void createPdf(String filename) throws IOException, DocumentException

{
 Document document = new Document();
 PdfWriter.getInstance(document, new FileOutputStream(filename));
 document.open();
 BaseFont bf;
 Font font;
 for (int i = 0; i < 3; i++) {
 bf = BaseFont.createFont(
 MOVIES[i][0], MOVIES[i][1], BaseFont.NOT_EMBEDDED);
 font = new Font(bf, 12);
 document.add(new Paragraph(bf.getPostscriptFontName(), font));
 for (int j = 2; j < 5; j++)
 document.add(new Paragraph(MOVIES[i][j], font));
 document.add(Chunk.NEWLINE);
 }
 document.close();
}

Observe that the CMaps come in pairs: one for horizontal writing systems (-H) and
one for vertical writing systems (-V).

Table 11.4 CJK fonts in iTextAsian.jar

Language Font CMap name

Chinese (simplified) STSong-Light
STSongStd-Light

UniGB-UCS2-H
UniGB-UCS2-V

Chinese (traditional) MHei-Medium
MSung-Light
MSungStd-Light

UniCNS-UCS2-H
UniCNS-USC2-V

Japanese HeiseiMin-W3
HeiseiKakuGo-W5
KozMinPro-Regular

UniJIS-UCS2-H
UniJIS-UCS2-V
UniJIS-UCS2-HW-H
UniJIS-UCS2-HW-V

Korean HYGoThic-Medium
HYSMyeongJo-Medium
HYSMyeongJoStd

UniKS-UCS2-H
UniKS-UCS2-V

Listing 11.8 CJKExample.java
Licensed to Bruno Lowagie <bruno@lowagie.com>

365Using fonts in iText
THE VERTICAL WRITING SYSTEM

In figure 11.7, some Asian movie titles
were written from left to right, but
some Eastern languages were origi-
nally written from top to bottom, in
columns from right to left. See, for
instance, figure 11.8.

 My knowledge of Japanese is lim-
ited to “konishiwa” and “arigato,” so
I’ve used the title of a movie by Akira
Kurosawa and the English translation
of a quote from this movie for this
example. The PDF shown to the left in
figure 11.8 is created using this code.

BaseFont bf = BaseFont.createFont(
 "KozMinPro-Regular", "UniJIS-UCS2-V", BaseFont.NOT_EMBEDDED);
Font font = new Font(bf, 20);
VerticalText vt = new VerticalText(writer.getDirectContent());
vt.setVerticalLayout(390, 570, 540, 12, 30);
vt.addText(new Chunk(MOVIE, font));
vt.go();
vt.addText(new Phrase(TEXT1, font));
vt.go();
vt.setAlignment(Element.ALIGN_RIGHT);
vt.addText(new Phrase(TEXT2, font));
vt.go();

You use the VerticalText object to achieve this. It’s very similar to the ColumnText
object, but instead of defining a simple column, you define a layout. The first two param-
eters define the coordinates where the column has to start, in this case (390, 570).
The second parameter defines the height of each column: 540. Then follows the max-
imum number of lines that may be written (12) and the leading. Observe that the lead-
ing is no longer the vertical distance between two horizontal baselines, but
the horizontal distance between two vertical lines. Likewise, you also have to turn your
head 90 degrees to the right if you want to set the alignment: ALIGN_RIGHT aligns the
column to the bottom.

 The PDF on the right in figure 11.8 is created in a slightly different way.

public void createPdf(String filename)
 throws IOException, DocumentException {
...
 BaseFont bf = BaseFont.createFont(

Listing 11.9 VerticalTextExample1.java

Listing 11.10 VerticalTextExample2.java

Creates
VerticalText

Defines
layout

Figure 11.8 The vertical writing system
Licensed to Bruno Lowagie <bruno@lowagie.com>

366 CHAPTER 11 Choosing the right font
 "KozMinPro-Regular", "Identity-V", BaseFont.NOT_EMBEDDED);
 Font font = new Font(bf, 20);
 VerticalText vt = new VerticalText(writer.getDirectContent());
 vt.setVerticalLayout(390, 570, 540, 12, 30);
 font = new Font(bf, 20);
 vt.addText(new Phrase(convertCIDs(TEXT1), font));
 vt.go();
 vt.setAlignment(Element.ALIGN_RIGHT);
 vt.addText(new Phrase(convertCIDs(TEXT2), font));
 vt.go();
 ...
}
public String convertCIDs(String text) {
 char cid[] = text.toCharArray();
 for (int k = 0; k < cid.length; ++k) {
 char c = cid[k];
 if (c == '\n')
 cid[k] = '\uff00';
 else
 cid[k] = (char) (c - ' ' + 8720);
 }
 return new String(cid);
}

You still use KozMinPro-Regular, but now you use Identity-V. This font contains
Western characters that are rotated 90 degrees clockwise, as shown in figure 11.8. You
use the custom-made formula in the convertCIDs() method to translate the normal
characters into rotated characters. This example demonstrates more or less what
needs to be done when you’re confronted with Strings in different encodings.

USING OTHER CMAPS

The UCS2 in the CMap names listed in table 11.4 stands for Universal Character Set.
There’s also a JAR named iTextAsianCmaps.jar with the contents of the com/itextpdf/
text/pdf/cmaps/ directory. These CMaps can be used in combination with the PdfEn-
codings class to convert a String in a specific encoding to a String with 2-byte CIDs.

 For example, if you have a char[]encoded in the GB 18030-2000 character set, you
need to load the CMap GBK2K-H and convert it to a sequence of Identity-H CIDs like this:

PdfEncodings.loadCmap("GBK2K-H", PdfEncodings.CRLF_CID_NEWLINE);
byte text[] = my_GB_encoded_text;
String cid = PdfEncodings.convertCmap("GBK2K-H", text);
BaseFont bf = BaseFont.createFont(
 "STSong-Light", BaseFont.IDENTITY_H, BaseFont.NOT_EMBEDDED);
Paragraph p = new Paragraph(cid, new Font(bf, 14));
document.add(p);

We’ve discussed Asian languages written vertically. Now let’s find out how to write
Semitic languages such as Hebrew and Arabic; these are written from right to left.

11.3.4 Writing from right to left

Figure 11.9 shows an XML file with the text “Say Peace in all languages” in English, Ara-
bic, and Hebrew. The XML is encoded using UTF-8, and in the top left of the figure it’s
Licensed to Bruno Lowagie <bruno@lowagie.com>

367Using fonts in iText
opened in WordPad, which assumes it’s plain text, hence the strange characters. You’ll
use this XML file to create the PDF document shown in the foreground. But you’ll start
by creating the PDF showing the movie title Nina’s Tragedies in Hebrew.

 Writing from right to left is only supported when using ColumnText or PdfPCell
objects.

RUN DIRECTION IN COLUMNTEXT OBJECTS

If you don’t know Hebrew, you’ll probably try to read the glyphs of the Hebrew movie
title from left to right. You see four glyphs, a space, two glyphs, a space, and the rest of
the title. Let’s compare this with the original String here.

BaseFont bf = BaseFont.createFont(
 "c:/windows/fonts/arial.ttf", BaseFont.IDENTITY_H, true);
Font font = new Font(bf, 14);
document.add(new Paragraph("Movie title: Nina's Tragedies"));
document.add(new Paragraph("directed by Savi Gabizon"));
ColumnText column = new ColumnText(writer.getDirectContent());
column.setSimpleColumn(36, 770, 569, 36);
column.setRunDirection(PdfWriter.RUN_DIRECTION_RTL);
column.addElement(new Paragraph(
 "\u05d4\u05d0\u05e1\u05d5\u05e0\u05d5\u05ea "
 + "\u05e9\u05dc \u05e0\u05d9\u05e0\u05d4", font));
column.go();

Listing 11.11 RightToLeftExample.java

Figure 11.9 Writing from right to left

Sets run
direction

Adds paragraph
to column
Licensed to Bruno Lowagie <bruno@lowagie.com>

368 CHAPTER 11 Choosing the right font
The String that is passed to the ColumnText object includes seven 2-byte characters, a
space, two characters, a space, and four characters. In reality, the first glyph on the
title line in figure 11.9 is \u05d4, followed by \u05e0, and so on: iText has added the
characters in reverse order because you changed the run direction with the setRun-
Direction() method. This method accepts one of the following options:

■ RUN_DIRECTION_DEFAULT—Uses the default direction
■ RUN_DIRECTION_LTR—Uses bidirectional reordering with a left-to-right prefer-

ential run direction
■ RUN_DIRECTION_NO_BIDI—Doesn’t use bidirectional reordering
■ RUN_DIRECTION_RTL—Uses bidirectional reordering with a right-to-left prefer-

ential run direction

The best way to understand what bidirectional means is to look at the message of
peace in figure 11.9. In this text, the term I18N (Internationalization) is used. If you
choose RTL as the run direction, you don’t want this term to be reordered as N81I; you
want to preserve the order of the Latin text. Choosing the option RUN_DIRECTION_RTL
means that the characters are reordered from right to left by preference, but if Latin
text is encountered, the left-to-right order is preserved. The PDF containing the mes-
sage of peace was created using a PdfPTable.

RUN DIRECTION IN PDFPCELL OBJECTS

You can use the technique explained in chapter 9 to convert the XML file into a PDF
document. This is what to do when an opening or a closing tag is encountered.

public void startElement(
 String uri, String localName, String qName, Attributes attributes)
 throws SAXException {
 if ("message".equals(qName)) {
 buf = new StringBuffer();
 cell = new PdfPCell();
 cell.setBorder(PdfPCell.NO_BORDER);
 if ("RTL".equals(attributes.getValue("direction"))) {
 cell.setRunDirection(PdfWriter.RUN_DIRECTION_RTL);
 }
 }
 else if ("pace".equals(qName)) {
 table = new PdfPTable(1);
 table.setWidthPercentage(100);
 }
}
public void endElement(String uri, String localName, String qName)
 throws SAXException {
 ...
 if ("message".equals(qName)) {
 Paragraph p = new Paragraph(strip(buf), f);
 p.setAlignment(Element.ALIGN_LEFT);
 cell.addElement(p);

Listing 11.12 SayPeace.java
Licensed to Bruno Lowagie <bruno@lowagie.com>

369Using fonts in iText
 table.addCell(cell);;
 buf = new StringBuffer();
 }
 else if ("pace".equals(qName)) {
 try {
 document.add(table);
 } catch (DocumentException e) {
 throw new ExceptionConverter(e);
 }
 }
}

The Arabic text produced by this example looks all right, but it’s important to under-
stand that iText has done a lot of work behind the scenes. Not every character in the
XML file was rendered as a separate glyph. Some characters or glyphs were combined
and replaced.

 To understand what happens, we need to talk about diacritics and ligatures.

11.3.5 Advanced typography

If you want to see a Thai cowboy movie about a poor hero who falls in love with a girl
from the upper classes, you should buy a ticket for Tears of the Black Tiger at the Foobar
Film Festival. Figure 11.10 shows the poster featuring the protagonists.

 As you can see in the figure, the Thai title is also printed:

public static final String MOVIE =
 "\u0e1f\u0e49\u0e32\u0e17\u0e30\u0e25\u0e32\u0e22\u0e42\u0e08\u0e23";

This String is written twice, using two different fonts: Angsana New and Arial Uni-
code MS.

public static final String[] FONTS = {
 "c:/windows/fonts/angsa.ttf",
 "c:/windows/fonts/arialuni.ttf"
};

Figure 11.10 Using diacritics, ancillary glyphs added to a letter
Licensed to Bruno Lowagie <bruno@lowagie.com>

370 CHAPTER 11 Choosing the right font
This shows how the title was added to the Document.

for (int i = 0; i < 2; i++) {
 bf = BaseFont.createFont(
 FONTS[i], BaseFont.IDENTITY_H, BaseFont.EMBEDDED);
 document.add(new Paragraph("Font: " + bf.getPostscriptFontName()));
 font = new Font(bf, 20);
 document.add(new Paragraph(MOVIE, font));
}

If you look at the poster, you’ll see that there’s a special curl above the first character.
This curl is a diacritical mark.

DIACRITICAL MARKS

You’ve used diacritical marks before. In figure 11.5, you’ll find a cedilla, a hacek, and
so on, but there’s a difference between listing 11.4 and listing 11.13. When you
printed c cedilla (ç), you only used one Unicode character (\u00e7). In listing 11.13,
the diacritical mark is a separate character: \u0e49 has to be combined with \u0e1f.

 That’s unusual for Western languages. Suppose that you want to type the French
word être (to be) on a French keyboard (AZERTY instead of QWERTY); you’d need to
hit five different keys: ^etre. If you save a text file with this String, only four bytes
would be used, because there’s a character value for the e with a circumflex.

 In other languages that use diacritics more frequently, it’s common to store both
characters separately. For instance: ^etre or e^tre instead of être. That’s what hap-
pened in the Thai example. The fonts Angsana New and Arial Unicode MS used a
negative character advance for this glyph to create the illusion that the two characters
are actually one.

CHANGING THE CHARACTER ADVANCE

The character advance is stored in the font’s metrics, but you can change this value in
the iText BaseFont object. The second example in figure 11.10 is somewhat artificial,
but it demonstrates how the mechanism works. The original title of the best Swedish
film of 1999 is written like this:

public static final String MOVIE = "Tomten ¨ar far till alla barnen";

The title literally means “Santa Claus is the father of all children,” but it was translated
into “In bed with Santa,” probably to prevent parents from bringing young children to
the movie.

 The next example shows how you can change the character advance of the ¨ char-
acter so that it’s positioned on top of the next character that is added.

BaseFont bf = BaseFont.createFont(
 FONTS[0], BaseFont.CP1252, BaseFont.EMBEDDED);
Font font = new Font(bf, 12);

Listing 11.13 Diacritics1.java

Listing 11.14 Diacritics2.java

Title in Arial
Licensed to Bruno Lowagie <bruno@lowagie.com>

371Using fonts in iText
bf.setCharAdvance('¨', -100);
document.add(new Paragraph(MOVIE, font));
bf = BaseFont.createFont(
 FONTS[1], BaseFont.CP1252, BaseFont.EMBEDDED);
bf.setCharAdvance('¨', 0);
font = new Font(bf, 12);
document.add(new Paragraph(MOVIE, font));

The width of the umlaut (or dieresis) glyph is 333 units in Arial (glyph space). To get
the umlaut or dieresis above the letter that follows the diacritical mark, you change
the advance to a negative value.

 The value used here is ideal for the letter a, but there’s no guarantee that it will fit
perfectly above the other vowels, because they may have a different width and charac-
ter advance. Arial is a proportional font, meaning that different glyphs have different
widths. This problem doesn’t occur when you use a fixed-width or monospaced font such
as Courier. Every character in Courier has the same width (600 units in glyph space).
To make the diacritical mark fit above the next character, it’s sufficient to set its
advance to 0.

CHANGING THE CHARACTER WIDTH

In listing 11.15, a proportional font is changed into a fixed width font. You use the
method getWidths() to get an array containing the widths of every character in the
font (measured in glyph space). You then change the width to 600 units for every
glyph with a width greater than 0.

BaseFont bf3 = BaseFont.createFont(
 "c:/windows/fonts/arialbd.ttf", BaseFont.CP1252, BaseFont.EMBEDDED);
Font font3 = new Font(bf3, 12);
int widths[] = bf3.getWidths();
for (int k = 0; k < widths.length; ++k) {
 if (widths[k] != 0)
 widths[k] = 600;
}
bf3.setForceWidthsOutput(true);

You force iText to use the changed widths with the method setForceWidthsOutput().
This feature is very useful if you want to print a Chinese text where every ideogram
needs to have the same width, but it’s not very elegant when you use it for Western
fonts. If you want to use it to attribute more space to every character to get t h i s e f
f e c t, you should use the setCharacterSpacing() method.

Chunk chunk = new Chunk(MOVIE, font1);
chunk.setCharacterSpacing(10);
document.add(new Paragraph(chunk));

Ligatures are another example involving advanced typography.

Listing 11.15 Monospace.java

Listing 11.16 ExtraCharSpace.java

Title in Arial

Title in
Courier
Licensed to Bruno Lowagie <bruno@lowagie.com>

372 CHAPTER 11 Choosing the right font
LIGATURES

A ligature occurs when a combination of two or more characters is considered to be
one and only one glyph. A letter with a diacritic isn’t usually called a ligature, but the
same principle applies. One of the ligatures we all know—though we may have forgot-
ten it’s a ligature—is the & character. The ampersand sign was originally a ligature for
the Latin word et (meaning and). Figure 11.11 shows a movie title with ligatures in
Danish and Arabic.

 As is the case with diacritics, you usually don’t have to worry about ligatures in lan-
guages using Latin text. Usually, you’ll use only one character for the ligature:

document.add(
 new Paragraph("K\u00e6rlighed ved f\u00f8rste hik", font));

If you want to use more than one character, you’ll need to write code that makes the
ligature for you. Suppose you want to add a String like this:

document.add(
 new Paragraph(ligaturize("Kaerlighed ved f/orste hik"), font));

You need to write your own ligaturize() method as is done next.

public String ligaturize(String s) {
 int pos;
 while ((pos = s.indexOf("ae")) > -1) {
 s = s.substring(0, pos) + '\u00e6' + s.substring(pos + 2);
 }
 while ((pos = s.indexOf("/o")) > -1) {
 s = s.substring(0, pos) + '\u00f8' + s.substring(pos + 2);
 }
 return s;
}

The combination “ae” is changed into “æ”, the combination “/o” into “ø”. Similar
code, but much more complex than this small snippet, is present in iText to make Ara-
bic ligatures.

Listing 11.17 Ligatures1.java

Figure 11.11 Using ligatures, joining different glyphs into one
Licensed to Bruno Lowagie <bruno@lowagie.com>

373Automating font creation and selection
WRITING ARABIC

In figure 11.11, the Arabic translation of the movie title Lawrence of Arabia has been
added three times. The first version of the title is wrong because the glyphs are added
from left to right, whereas Arabic is written from right to left (see section 11.3.4). In
the second version, the glyphs are written in reverse order, but a space was added
between all characters. No ligatures are made, so the title isn’t rendered correctly.
Compare this line with the next one. The omission of the extra spaces is the only dif-
ference, but if you look closely, you can see that some character combinations were
replaced by another glyph. That was done by the iText class ArabicLigaturizer.

 If you study listing 11.18, you can see that you don’t have to do anything special to
start up the ArabicLigaturizer. If the run direction is RTL and if iText detects Uni-
code characters in the Arabic character set, this is done automatically.

public static final String MOVIE =
 "\u0644\u0648\u0631\u0627\u0646\u0633 "
 + "\u0627\u0644\u0639\u0631\u0628";
public static final String MOVIE_WITH_SPACES =
 "\u0644 \u0648 \u0631 \u0627 \u0646 \u0633 "
 + " \u0627 \u0644 \u0639 \u0631 \u0628";
...
document.add(new Paragraph("Wrong: " + MOVIE, font));
ColumnText column = new ColumnText(writer.getDirectContent());
column.setSimpleColumn(36, 730, 569, 36);
column.setRunDirection(PdfWriter.RUN_DIRECTION_RTL);
column.addElement(new Paragraph("Wrong: " + MOVIE_WITH_SPACES, font));
column.addElement(new Paragraph(MOVIE, font));
column.go();

Note that the setRunDirection() method only exists for the classes PdfPCell and
ColumnText. Both classes also have a setArabicOption() method to tell iText how to
deal with vowels in Arabic. These are the possible values for the parameter:

■ ColumnText.AR_NOVOWEL—Eliminates Arabic vowels
■ ColumnText.AR_COMPOSEDTASHKEEL—Composes the Tashkeel on the ligatures
■ ColumnText.AR_LIG—Does extra double ligatures

None of these options has any effect on this example, but it can be useful information
if you need advanced Arabic support.

 This is highly specialized functionality; it’s time to return to everyday use of iText
and look at some classes that make working with fonts easier.

11.4 Automating font creation and selection
In this section, you’ll add two classes that make it easier for you to select a font: the
FontFactory and the FontSelector classes.

 When you created Font objects in part 1, you mostly used one of the standard Type 1
fonts. In this chapter, you’ve always created Font objects in two steps. For example,

Listing 11.18 Ligatures2.java
Licensed to Bruno Lowagie <bruno@lowagie.com>

374 CHAPTER 11 Choosing the right font
BaseFont bf = BaseFont.createFont(
 "c:/windows/fonts/arial.ttf", BaseFont.CP1252, BaseFont.EMBEDDED);
Font font = new Font(bf, 12);

One of the major disadvantages of this approach is that you need to pass a path to a
font program. I’m working on Windows XP and Vista, and I know that the font arial.tff
is present in the directory c:/windows/fonts/. But this code won’t work if you try to
run it on a Mac or a Linux machine. You may need to look for the font in the direc-
tory /Library/Fonts/ or /usr/share/X11/fonts/.

 It would be nice if there were a more generic way to select fonts to make your code
platform-independent. The FontFactory class can help you.

11.4.1 Getting a Font from the FontFactory

The FontFactory class has a series of static getFont() methods that allow you to get a
Font object without explicitly creating a BaseFont instance:

Font font = FontFactory.createFont(
 "c:/windows/fonts/arial.ttf", BaseFont.CP1252, BaseFont.EMBEDDED, 12);

This doesn’t solve the platform (in)dependence problem yet. But you should be able
do something like this:

Font font = FontFactory.getFont("Times-Roman");
document.add(new Paragraph("Times-Roman", font));
Font fontbold = FontFactory.getFont("Times-Roman", 12, Font.BOLD);
document.add(new Paragraph("Times-Roman, Bold", fontbold));

This code snippet will work because Times-Roman is one of the font families that is
supported by default by the font factory; so are all the standard Type 1 fonts. It won’t
work with other fonts, unless they are registered.

REGISTERING A FONT

You can register an individual font like this:

FontFactory.register("c:/windows/fonts/garabd.ttf", "my_bold_font");
Font myBoldFont = FontFactory.getFont("my_bold_font");

This code registers the font Garamond Bold and gives it the alias my_bold_font. From
now on, you can use this custom name to get the font from the factory.

 The alias parameter is optional. You can also use one of the names that is stored
in the font to retrieve a Font object. This bit of code shows how to read not only the
PostScript name, but also the full font names in different languages.

BaseFont bf = myBoldFont.getBaseFont();
document.add(new Paragraph(bf.getPostscriptFontName(), myBoldFont));
String[][] name = bf.getFullFontName();
for (int i = 0; i < name.length; i++) {
 document.add(new Paragraph(name[i][3] + " (" + name[i][0]
 + "; " + name[i][1] + "; " + name[i][2] + ")"));

Listing 11.19 FontFactory.java
Licensed to Bruno Lowagie <bruno@lowagie.com>

375Automating font creation and selection
}
Font myBoldFont2 = FontFactory.getFont("Garamond vet");
document.add(new Paragraph("Garamond Vet", myBoldFont2));

The output contains the following entries:

Garamond Bold (3; 1; 1033)
Garamond Gras (3; 1; 1036)
Garamond Vet (3; 1; 1043)

If i is an index of the two-dimensional name array, you’re interested in name[i][3],
because that’s the String you can use to get the font from the FontFactory. In list-
ing 11.19, the Dutch name of the font “Garamond Vet” is used. “Garamond Bold”,
“Garamond Gras”, or any other of the names in the name array would also work.

NOTE The other values in the array only make sense for fonts that contain a
cmap (not to be confused with the CMap mapping Unicode characters to CIDs
from section 11.2.2). A cmap is an internal structure that maps character
codes directly to glyph descriptions. A cmap table may contain one or more
subtables that represent multiple encodings intended for use on different
platforms. Each subtable is identified by two numbers that represent a combi-
nation of a platform ID (name[i][0]) and a platform-specific encoding ID
(name[i][1]). There’s also a language id (name[i][2]). You can find a full
overview of all these codes in naming table pages published on the developer
pages at adobe.com and microsoft.com (see appendix B.3.2 for the full URLs).
If you look up the IDs from the output of listing 11.19, you’ll see that 3 is the
platform ID for Microsoft encoding and that the encoding ID 1 means Uni-
code BMP only. The language IDs are expressed in hexadecimal, but if you
convert them to decimal, you’ll find out that 1033 stands for English, 1036 for
French, and 1043 for Dutch.

You probably won’t use the register() method directly; instead you could register a
complete directory.

REGISTERING A FONT DIRECTORY

The examples in this book come with a resources directory; in this directory, there’s
a fonts folder. You can register all the fonts in this folder at once like this:

FontFactory.registerDirectory("resources/fonts");

This method will call the register() method for every font file in the directory. You
can list all the available names like this:

for (String f : FontFactory.getRegisteredFonts()) {
 document.add(new Paragraph(
 f, FontFactory.getFont(f, "", BaseFont.EMBEDDED)));
}

One of the fonts in the list that is produced has a very cryptic name: cmr10. You used
this font in section 11.1.2, and you know that the real font name is Computer Modern
Regular. If you want to use the full name as an alias, you can change the PostScript
name of the BaseFont like this:
Licensed to Bruno Lowagie <bruno@lowagie.com>

376 CHAPTER 11 Choosing the right font
Font cmr10 = FontFactory.getFont("cmr10");
cmr10.getBaseFont().setPostscriptFontName("Computer Modern Regular");
Font computerModern = FontFactory.getFont(
 "Computer Modern Regular", "", BaseFont.EMBEDDED);
document.add(new Paragraph("Computer Modern", computerModern));

This is an interesting way to get fonts that are shipped with an application, but what
you really want is to register all the system fonts, be it on Windows, Mac, or Linux.

REGISTERING SYSTEM FONTS

The registerDirectories() method will attempt to register all the system fonts at
once:

FontFactory.registerDirectories();

This method calls the method registerDirectory() using the following paths as a
parameter:

■ c:/windows/fonts—A possible font directory on Windows
■ c:/winnt/fonts—A possible font directory on Windows
■ d:/windows/fonts—A possible font directory on Windows
■ d:/winnt/fonts—A possible font directory on Windows
■ /Library/Fonts—A possible font directory on OS X
■ /System/Library/Fonts—A possible font directory on OS X
■ /usr/share/X11/fonts—A possible font directory on UNIX/Linux
■ /usr/X/lib/X11/fonts—A possible font directory on UNIX/Linux
■ /usr/openwin/lib/X11/fonts—A possible font directory on UNIX/Linux
■ /usr/share/fonts—A possible font directory on UNIX/Linux
■ /usr/X11R6/lib/X11/fonts—A possible font directory on UNIX/Linux

The registerDirectory() method for the Linux directories is used with an extra
boolean that tells iText also to scan the subdirectories.

NOTE registerDirectories() is an “expensive” method if you have a lot
of fonts on your system. Don’t use it in a servlet because it takes time to scan
the font directories; it’s better to use it when the JVM starts up, so that you
can use the font factory throughout your web application.

If you list the available font names now, you’ll see that the list is much longer. You can
also list the font families.

FONT FAMILIES

The first font you registered was Garamond Bold. This font belongs to a family of
three different fonts: Garamond (gara.ttf), Garamond-Italic (garait.ttf), and Gara-
mond-Bold (garabd.ttf). You can list the names of all the families just like you listed
the names of all the individual fonts.

for (String f : FontFactory.getRegisteredFamilies()) {
 document.add(new Paragraph(f));
}

Licensed to Bruno Lowagie <bruno@lowagie.com>

377Automating font creation and selection
Font family names are very useful when you want to switch between styles. Instead of
using the full font name as the first parameter—for instance, Garamond-Italic—you
could use the family name with an extra parameter for the style:

Font garamondItalic = FontFactory.getFont(
 "Garamond", BaseFont.WINANSI, BaseFont.EMBEDDED, 12, Font.ITALIC);
document.add(new Paragraph("Garamond-Italic", garamondItalic));

Normally, the font factory would look for a font named “Garamond” and find the font
gara.ttf. But if you pass an extra parameter saying you want an italic font, iText will
search for an italic font in the Garamond family. You’ve registered all the system fonts,
so if garait.ttf is present on your system, the font factory will return Garamond-Italic.

NOTE If you look inside iText, you’ll see that FontFactory delegates most
of the work to the FontFactoryImp class. This class implements the Font-
Provider interface, which is the interface you implemented when you con-
verted HTML to PDF in chapter 9. The mechanism to switch between styles
within the same font family is used frequently by HTMLWorker when the font
family is defined with the font tag and the style with em, i, strong, or b tags.

We’ve solved several problems with the FontFactory class: you can make the creation
of fonts platform-independent, and you can easily switch between styles using only the
family name of the font. In the next section, we’ll solve another problem.

 If you have a text that contains characters from many different languages, you have
to switch between fonts, because there’s not a single font that contains every possible
glyph for every possible language. Up until now, you’ve manually selected different fonts
for different languages. In the next section, you’ll let iText select the appropriate fonts.

11.4.2 Automatic font selection

Imagine that you need to write text in Times-Roman, but the text contains a number
of Chinese glyphs. The document in the background of figure 11.12 shows such an
example. It lists the names of the protagonists in the movie Hero by Zhang Yimou.

 It would be possible to construct this sentence using different Chunks or Phrases,
with the English text in Times-Roman and the Chinese names in a traditional Chinese

Figure 11.12 Automatic font selection
Licensed to Bruno Lowagie <bruno@lowagie.com>

378 CHAPTER 11 Choosing the right font
font. But there’s an easier way; you can use the FontSelector class to do this work
for you.

public static final String TEXT
 = "These are the protagonists in 'Hero', a movie by Zhang Yimou:\n"
 + "\u7121\u540d (Nameless), \u6b98\u528d (Broken Sword), "
 + "\u98db\u96ea (Flying Snow), \u5982\u6708 (Moon), "
 + "\u79e6\u738b (the King), and \u9577\u7a7a (Sky).";
...
FontSelector selector = new FontSelector();
selector.addFont(
 FontFactory.getFont(FontFactory.TIMES_ROMAN, 12));
selector.addFont(FontFactory.getFont("MSung-Light",
 "UniCNS-UCS2-H", BaseFont.NOT_EMBEDDED));
Phrase ph = selector.process(TEXT);
document.add(new Paragraph(ph));

What happens in here? You have a String containing characters referring to glyphs
from the Latin alphabet as well as to Chinese glyphs. You pass this String to a FontSe-
lector object for processing, and the FontSelector will look at the String, character
by character. If the corresponding glyph is available in the first font that was added (in
this case, Times-Roman), the character is added to a Chunk with the Times-Roman
font. If the character isn’t available, the selector looks it up in the next font that was
added (in this case, MSung-Light). The selector goes on until the glyph is found, or
until there are no fonts left.

NOTE The order in which the fonts are added to the selector is important.
If you switch B and C in listing 11.20, you get the PDF shown in the fore-
ground of figure 11.12. All glyphs are printed in MSung-Light, because that
font also has descriptions for Western characters.

Figure 11.13 shows an XML file with the word Peace in different languages. This XML
was converted to PDF using iText. In this example, you see different mechanisms at
work: font selection, but also bidirectional writing and ligatures.

 If you try this example (named Peace) on your own system, you’ll see that some
translations for the word Peace are missing or wrong. If you see a question mark, it’s
because the translation is unknown. You’ll also find a question mark in the XML file.
(If you know the translation, feel free to post it to the iText mailing list.)

 If you see an empty space where a translation was expected, it’s because the font
selector couldn’t find the glyph in any of the fonts that were added to the selector.

FAQ I’ve tried all the examples in the book, but as soon as I change the text into a String
in language X, the text disappears. Why? That’s because the glyphs that are needed
can’t be found in the font. You are either using the wrong encoding, or the
glyphs just aren’t there. Try using another encoding or another font.

Some of the translations are rendered incorrectly because iText doesn’t have support
for ligatures for Hindic languages. Just as we have the ArabicLigaturizer, we need a

Listing 11.20 FontSelectionExample.java

B

C

Creates
selector and
adds fonts

Processes String
Licensed to Bruno Lowagie <bruno@lowagie.com>

379Summary
HindicLigaturizer, but so far we haven’t found anyone who could write such a class
for iText. Maybe that’s something for the third edition of iText in Action.

 Let’s take a look at what we’ve covered in this chapter.

11.5 Summary
First we approached fonts from three different angles:

■ Table 11.1—Lists the different types of font files that can be used to create a
BaseFont object

■ Table 11.2—Lists the different font types that can be stored in a PDF file, divided
into two groups: simple fonts and composite fonts

■ Table 11.3—Lists the different font classes that are available in iText

After looking at examples for every type that was discussed, we studied different writ-
ing systems: vertical text, written in columns from right to left, and horizontal text
written from right to left. We also looked at some advanced typography issues, such as
using diacritical marks and making ligatures.

 Finally, you learned ways to make the font creation and selection easier. With the
FontFactory class, you learned how to make your applications platform independent;
with the FontSelector class you delegated the font selection process to iText.

 We’ll conclude this part about essential iText skills with a chapter about protecting
your documents by using encryption and digital signatures.

Figure 11.13 Using iText for different languages
Licensed to Bruno Lowagie <bruno@lowagie.com>

Protecting your PDF
You have created many different documents containing data, such as movies, direc-
tors, and movie screenings taken from a database, but you haven’t added any infor-
mation about the owner of this data. You could make sure that people find out who
created the document by adding metadata.

 You’ve also peeked inside some of the PDF files you created, and you’ve seen
that the content of a document is compressed by default. You could use iText to
decompress content streams to read the PDF syntax that makes up a page or a
form XObject.

 For confidential documents, you’ll want to protect the document. To achieve
this, we’re going to discuss how to encrypt content streams. You can do this using a
password, or you can encrypt a PDF using a public key. Only the person who owns
the corresponding private key will be able to open the document.

This chapter covers
■ Providing metadata
■ Compressing and decompressing PDFs
■ Encrypting documents
■ Adding digital signatures
380

Licensed to Bruno Lowagie <bruno@lowagie.com>

381Adding metadata
 Digital signatures work the other way around: you sign a document using your pri-
vate key, and whoever reads your document can use your public key (or the root cer-
tificate of a certificate authority) to make sure the document wasn’t forged by some-
body else.

 But let’s begin with the beginning, and start by adding metadata.

12.1 Adding metadata
There are two ways to store metadata inside a PDF document. The original way was
to store a limited number of keys and values in a special dictionary; a newer way is
to embed the data as an XML stream inside the PDF. Let’s discuss both to find out
the difference.

12.1.1 The info dictionary

In figure 12.1, the document properties from the Hello World example you made in
chapter 1 are compared to a new Hello World example with metadata added.

Figure 12.1 Metadata in PDF files
Licensed to Bruno Lowagie <bruno@lowagie.com>

382 CHAPTER 12 Protecting your PDF
The metadata shown in the window to the right was added using this code:

document.addTitle("Hello World example");
document.addAuthor("Bruno Lowagie");
document.addSubject("This example shows how to add metadata");
document.addKeywords("Metadata, iText, PDF");
document.addCreator("My program using iText");

This code snippet adds the title of the document, its author, the subject, some key-
words, and the application that was used to create the PDF as metadata. If you look
inside the PDF, you see that this information is stored in a dictionary, named the info
dictionary, along with the creation date, modification date, and PDF producer. This is
the limited set of metadata key-value pairs that is supported in PDF.

 Three metadata entries are filled in automatically by iText (and you can’t change
them). If you create a PDF from scratch, iText will use the time on the clock of your
local computer as the creation and modification date. If you manipulate a PDF with
PdfStamper, only the modification date will be changed. The same goes for the pro-
ducer name.

PdfReader reader = new PdfReader(src);
PdfStamper stamper =
 new PdfStamper(reader, new FileOutputStream(dest));
HashMap<String, String> info = reader.getInfo();
info.put("Title", "Hello World stamped");
info.put("Subject", "Hello World with changed metadata");
info.put("Keywords", "iText in Action, PdfStamper");
info.put("Creator", "Silly standalone example");
info.put("Author", "Also Bruno Lowagie");
stamper.setMoreInfo(info);
stamper.close();

With the getInfo() method, you can retrieve the keys and values as Strings. You can
add, remove, or replace entries in the HashMap, and put the altered metadata in the
PDF using setMoreInfo().

FAQ Can I change the producer info? The value for the PDF producer tells you
which version of iText was used to create the document. It’s also a way to tell
the end users of the document that iText was used to create it. You can’t
change this without breaking the software license that allows you to use iText
for free.

A dictionary is a PDF object, and the values that are stored in this dictionary are also PDF
objects. PDF viewers such as Adobe Reader don’t have any problem interpreting these
objects, but applications that aren’t PDF-aware can’t find or read this meta-information.
The Extensible Metadata Platform (XMP) was introduced to solve this problem.

Listing 12.1 MetadataPdf.java

Listing 12.2 MetadataPdf.java

Gets the
metadata

Replaces the
metadata
Licensed to Bruno Lowagie <bruno@lowagie.com>

383Adding metadata
12.1.2 The Extensible Metadata Platform (XMP)

The Extensible Metadata Platform provides a standard format for the creation, pro-
cessing, and interchange of metadata. An XMP stream can be embedded in a number
of popular file formats (TIFF, JPEG, PNG, GIF, PDF, HTML, and so on) without breaking
their readability by non-XMP-aware applications.

 The XMP specification defines a model that can be used with any defined set of
metadata items. It also defines particular schemas; for instance, the Dublin Core
schema provides a set of commonly used properties such as the title of the document,
a description, and so on. For PDF files, there’s a PDF schema with information about
the keywords, the PDF version, and the PDF producer. This way, an application that
can’t interpret PDF syntax can still extract the metadata from the file by detecting and
parsing the XML that is embedded inside the PDF. What follows is an example of such
an XMP metadata stream.

<?xpacket begin="?" id="W5M0MpCehiHzreSzNTczkc9d"?>
<x:xmpmeta xmlns:x="adobe:ns:meta/">
 <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
 <rdf:Description
 rdf:about="" xmlns:dc="http://purl.org/dc/elements/1.1/">
 <dc:format>application/pdf</dc:format>
 <dc:description><rdf:Alt>
 <rdf:li>This example shows how to add metadata</rdf:li>
 </rdf:Alt></dc:description>
 <dc:subject><rdf:Bag>
 <rdf:li>This example shows how to add metadata</rdf:li>
 </rdf:Bag></dc:subject>
 <dc:title><rdf:Alt>
 <rdf:li>Hello World example</rdf:li>
 </rdf:Alt></dc:title>
 <dc:creator><rdf:Seq>
 <rdf:li>Bruno Lowagie</rdf:li>
 </rdf:Seq></dc:creator>
 </rdf:Description>
 <rdf:Description rdf:about="" xmlns:pdf="http://ns.adobe.com/pdf/1.3/">
 <pdf:Producer>iText 5.0.1 (c) 1T3XT BVBA</pdf:Producer>
 <pdf:keywords>Metadata, iText, PDF</pdf:keywords>
 </rdf:Description>
 <rdf:Description rdf:about="" xmlns:xmp="http://ns.adobe.com/xap/1.0/">
 <xmp:CreateDate>2010-01-22T16:31:00+01:00</xmp:CreateDate>
 <xmp:ModifyDate>2010-01-22T16:31:01+01:00</xmp:ModifyDate>
 <xmp:CreatorTool>My program using iText</xmp:CreatorTool>
 </rdf:Description>
 </rdf:RDF>
</x:xmpmeta>
<?xpacket end="w"?>

This stream was created with iText using the XmpWriter class. The following bit of
code shows how to add an XMP stream as metadata.

Listing 12.3 xmp.xml
Licensed to Bruno Lowagie <bruno@lowagie.com>

384 CHAPTER 12 Protecting your PDF
PdfWriter writer
 = PdfWriter.getInstance(document, new FileOutputStream(RESULT1));
ByteArrayOutputStream os = new ByteArrayOutputStream();
XmpWriter xmp = new XmpWriter(os);
XmpSchema dc
 = new com.itextpdf.text.xml.xmp.DublinCoreSchema();
XmpArray subject = new XmpArray(XmpArray.UNORDERED);
subject.add("Hello World");
subject.add("XMP & Metadata");
subject.add("Metadata");
dc.setProperty(DublinCoreSchema.SUBJECT, subject);
xmp.addRdfDescription(dc);
PdfSchema pdf = new PdfSchema();
pdf.setProperty(PdfSchema.KEYWORDS,
 "Hello World, XMP, Metadata");
pdf.setProperty(PdfSchema.VERSION, "1.4");
xmp.addRdfDescription(pdf);
xmp.close();
writer.setXmpMetadata(os.toByteArray());

You use the byte[] created with XmpWriter with the setXmpMetadata() method to
add the stream to the PdfWriter. This XMP stream covers the complete document. It’s
also possible to define an XML stream for individual pages. In that case you need to
use the setPageXmpMetadata() method.

 You can delegate the creation of the XMP stream to iText. Just create the metadata
as done in listing 12.1, and add the following line:

writer.createXmpMetadata();

Suppose you have a PDF file that only contains metadata in an info dictionary. In that
case, you can use the following to add an XMP stream.

PdfReader reader = new PdfReader(src);
PdfStamper stamper = new PdfStamper(reader, new FileOutputStream(dest));
HashMap<String, String> info = reader.getInfo();
ByteArrayOutputStream baos = new ByteArrayOutputStream();
XmpWriter xmp = new XmpWriter(baos, info);
xmp.close();
stamper.setXmpMetadata(baos.toByteArray());
stamper.close();

Extracting the XMP metadata from an existing PDF is done using the getMetadata()
method on a PdfReader instance.

 Tools or applications that aren’t PDF-aware will search through the file for an
xpacket with the id shown in listing 12.3, so it’s important that the stream containing
the XMP metadata is never compressed.

Listing 12.4 MetadataXmp.java

Listing 12.5 MetadataXmp.java

Defines the Dublin
Core Schema

Defines the
PDF Schema

Gets
metadata

Creates and
adds XMP
Licensed to Bruno Lowagie <bruno@lowagie.com>

385PDF and compression
12.2 PDF and compression
iText will never compress an XMP metadata stream; all other content streams are com-
pressed by default. You’ve already used the setCompressionLevel() method for the
Image and BaseFont classes; you can also use it for PdfWriter to set the compression
level for the other stream objects that are written to the OutputStream.

12.2.1 Compression levels

The next example uses different techniques to change the compression settings of a
newly created PDF document.

PdfWriter writer
 = PdfWriter.getInstance(document, new FileOutputStream(filename));
switch(compression) {
case -1:
 Document.compress = false;
 break;
case 0:
 writer.setCompressionLevel(0);
 break;
case 2:
 writer.setCompressionLevel(9);
 break;
case 3:
 writer.setFullCompression();
 break;
}

The Document class has a static member variable, compress, that can be set to false if
you want to avoid having iText compress the content streams of pages and form XOb-
jects. Use this for debugging purposes only! It changes the behavior of iText for the
whole JVM, and that’s not a good idea because it will also affect PDF documents cre-
ated in other processes using the same JVM.

 One option in listing 12.6 uses the method setFullCompression(). In the result-
ing PDF file, content streams will be compressed, but so will some other objects, such
as the cross-reference table. This is only possible since PDF version 1.5. This is an
example where iText will change the version number in the PDF header automatically
from PDF-1.4 to PDF-1.5.

 Table 12.1 compares the file sizes of the PDFs produced with listing 12.6.

Listing 12.6 HelloWorldCompression.java

Table 12.1 PDF and compression

Option File size Percentage

Without any compression
(Document.compress = false)

43,237 bytes 99.23%

Compression level 0 43,567 bytes 100.00%

No compression
JVM-wide

CompressionLevel 0

CompressionLevel 9

Full compression
Licensed to Bruno Lowagie <bruno@lowagie.com>

386 CHAPTER 12 Protecting your PDF
As you can see, compressing as many objects as possible is the most effective option in
this example, but be aware that the compression percentage largely depends on the
type of content in the document.

12.2.2 Compressing and decompressing existing files

Next you’ll see how to compress the content streams of the pages in an existing file.

PdfReader reader = new PdfReader(src);
PdfStamper stamper = new PdfStamper(
 reader, new FileOutputStream(dest), PdfWriter.VERSION_1_5);
stamper.getWriter().setCompressionLevel(9);
int total = reader.getNumberOfPages() + 1;
for (int i = 1; i < total; i++) {
 reader.setPageContent(i, reader.getPageContent(i));
}
stamper.setFullCompression();
stamper.close();

You want the PdfStamper class to create a file with header PDF-1.5, because you’re
using the setFullCompression() method after the header has been written to the
OutputStream. That’s why you add the PDF version number to the parameter list of
the PdfStamper constructor.

 Decompressing can be done exactly the same way by setting the compression level
to zero, or by using the following code.

PdfReader reader = new PdfReader(src);
PdfStamper stamper = new PdfStamper(reader, new FileOutputStream(dest));
Document.compress = false;
int total = reader.getNumberOfPages() + 1;
for (int i = 1; i < total; i++) {
 reader.setPageContent(i, reader.getPageContent(i));
}
stamper.close();
Document.compress = true;

The result is a document whose PDF syntax can be seen in the content streams of each
page when opened in a text editor. This can be handy when you need to debug a PDF
document. We’ll take a closer look inside the content stream of a PDF in part 4.

Default compression 12,066 bytes 27.70%

Compression level 9 11,943 bytes 27.41%

Full compression 9,836 bytes 22.58%

Listing 12.7 HelloWorldCompression.java

Listing 12.8 HelloWorldCompression.java

Table 12.1 PDF and compression (continued)

Option File size Percentage
Licensed to Bruno Lowagie <bruno@lowagie.com>

387Encrypting a PDF document
NOTE PdfStamper keeps existing stream objects intact when it manipulates a
document, which means the compression level won’t be changed. As a work-
around, you can use the getPageContent() method to get the content stream
of a page, and the setPageContent() method to put it back. When you do so,
iText thinks the stream has changed, and it will use the compression level that
was defined for PdfStamper’s writer object.

Suppose your PDF contains confidential information that should only be seen by a lim-
ited number of people. Or you want to enforce access permissions to the people who
download the PDF; for instance, they can view it, but they are not allowed to print it. In
that case, you’ll want these content streams to be encrypted.

12.3 Encrypting a PDF document
The PDF standard security handler allows access permissions and up to two passwords
to be specified for a document: a user password (sometimes referred to as the open pass-
word) and an owner password (sometimes referred to as the permissions password).

 In this section, we’ll start with encrypting and decrypting PDFs using passwords,
and we’ll move on to public-key encryption, which is a much more robust way to pro-
tect your documents.

WARNING The examples in the remainder of the chapter involve encryption or
digital signing. If you want them to work, you’ll need extra encryption JARs in
your classpath. For iText 5.0.x, the Bouncy Castle JARs are required (see section
B.3.1). Later versions of iText can use different libraries. Check itextpdf.com
for the most current information.

12.3.1 Creating a password-encrypted PDF

Listing 12.9 shows how to create a PDF document that is protected with two passwords.
The maximum password length is 32 characters. You can enter longer passwords, but
only the first 32 characters will be taken into account. One or both of the passwords
can be null.

public static byte[] USER = "Hello".getBytes();
public static byte[] OWNER = "World".getBytes();
public void createPdf(String filename)
 throws IOException, DocumentException {
 Document document = new Document();
 PdfWriter writer
 = PdfWriter.getInstance(document, new FileOutputStream(filename));
 writer.setEncryption(USER, OWNER,
 PdfWriter.ALLOW_PRINTING, PdfWriter.STANDARD_ENCRYPTION_128);
 writer.createXmpMetadata();
 document.open();
 document.add(new Paragraph("Hello World"));
 document.close();
}

Listing 12.9 EncryptionPdf.java
Licensed to Bruno Lowagie <bruno@lowagie.com>

388 CHAPTER 12 Protecting your PDF
A user who wants to open the resulting PDF file has to enter the password—“Hello” in
this example—and will be able to perform only the actions that were specified in the
permissions parameter. In this case, the user will be allowed to print the document but
won’t be able to copy and paste content.

 The document will also open if the user enters the password “World”. Using this
owner password on Adobe Acrobat (not Reader), allows the user to change the per-
missions to whatever they want. If you don’t specify a user password, all users will be
able to open the document without being prompted for a password, but the permis-
sions and restrictions (if any) will remain in place.

 Note that iText will create a random password if the owner password isn’t specified.
In that case, you’ll never know which password to use if you ever want to change the
access permissions.

ACCESS PERMISSIONS

Table 12.2 shows an overview of the permissions that are available. If you pass 0 as a
parameter for the permissions in the setEncryption() method, the end user can only
view the document. By composing the values of table 12.2 in an or (|) sequence (such
as PdfWriter.ALLOW_PRINTING | PdfWriter.ALLOW_COPY), you can grant the end
user permissions (for instance to print the document and to extract text).

 Half of these permissions can only be revoked when 128-bit encryption is used for
one of the available encryption algorithms.

Table 12.2 Overview of the permissions parameters

Static final in PdfWriter Description

ALLOW_PRINTING The user is permitted to print the document.

ALLOW_DEGRADED_PRINTING The user is permitted to print the document, but not with the qual-
ity offered by ALLOW_PRINTING (for 128-bit encryption only).

ALLOW_MODIFY_CONTENTS The user is permitted to modify the contents—for example, to
change the content of a page, or insert or remove a page.

ALLOW_ASSEMBLY The user is permitted to insert, remove, and rotate pages and
add bookmarks. The content of a page can’t be changed unless
the permission ALLOW_MODIFY_CONTENTS is granted too (for
128-bit encryption only).

ALLOW_COPY The user is permitted to copy or otherwise extract text and graph-
ics from the document, including using assistive technologies
such as screen readers or other accessibility devices.

ALLOW_SCREENREADERS The user is permitted to extract text and graphics for use by
accessibility devices (for 128-bit encryption only).

ALLOW_MODIFY_ANNOTATIONS The user is permitted to add or modify text annotations and inter-
active form fields.

ALLOW_FILL_IN The user is permitted to fill form fields (for 128-bit encryption
only).
Licensed to Bruno Lowagie <bruno@lowagie.com>

389Encrypting a PDF document
ENCRYPTION ALGORITHMS

The standard encryption used in PDF documents is a proprietary algorithm known as
RC4. RC4 was initially a trade secret, but in September 1994 a description of it was
posted anonymously on the Cypherpunks mailing list. This algorithm is often referred
to as ARC4 or ARCFOUR (the Alleged RC4). iText uses this unofficial implementation.

 Beginning with PDF 1.6, you can also use the Advanced Encryption Standard
(AES). iText supports the algorithms listed in table 12.3.

There’s one major problem with listing 12.9. You’re adding XMP metadata, but this
metadata won’t be readable by a non-PDF-aware application, because the XMP stream
will be encrypted too. To avoid this, you need to add DO_NOT_ENCRYPT_METADATA to the
encryption parameter; for instance, use ENCRYPTION_AES_128 | DO_NOT_ENCRYPT_
METADATA as the encryptionType parameter.

FAQ How do I revoke the permission to save a PDF file? It isn’t possible to restrict
someone from saving or copying a PDF file. You can’t disable the Save (or
Save As) option in Adobe Reader. And even if you could, people would always
be able to retrieve and copy the file with another tool. If you really need this
kind of protection, you must look for a Digital Rights Management (DRM)
solution. DRM tools give you fine-grained control over documents.

If you want to use an encrypted PDF document with PdfReader, for instance, to fill out
fields, add annotations, or even decrypt it, you always need the owner password,
regardless of the permissions that were set.

DECRYPTING AND ENCRYPTING AN EXISTING PDF DOCUMENT

Decrypting or encrypting an existing document is easily done with PdfStamper.

public void decryptPdf(String src, String dest)
 throws IOException, DocumentException {
 PdfReader reader = new PdfReader(src, OWNER);
 PdfStamper stamper
 = new PdfStamper(reader, new FileOutputStream(dest));
 stamper.close();
}
public void encryptPdf(String src, String dest)
 throws IOException, DocumentException {
 PdfReader reader = new PdfReader(src);
 PdfStamper stamper

Static final in PdfWriter Description

STANDARD_ENCRYPTION_40 40-bit ARC4 encryption

STANDARD_ENCRYPTION_128 128-bit ARC4 encryption

ENCRYPTION_AES_128 128-bit AES encryption

Listing 12.10 EncryptionPdf.java

Table 12.3 Overview of
the encryption algorithms
Licensed to Bruno Lowagie <bruno@lowagie.com>

390 CHAPTER 12 Protecting your PDF
 = new PdfStamper(reader, new FileOutputStream(dest));
 stamper.setEncryption(USER, OWNER, PdfWriter.ALLOW_PRINTING,
 PdfWriter.ENCRYPTION_AES_128 | PdfWriter.DO_NOT_ENCRYPT_METADATA);
 stamper.close();
}

You can also combine both methods from listing 12.10 to change the permissions of
an already encrypted PDF document. PdfReader has a getPermissions() method that
returns an integer value that can interpreted as a bit-set containing the values listed in
table 12.2.

FAQ I have an encrypted PDF document with permissions that allow me to fill in a
form, but iText throws a BadPasswordException. Why? The decryption process in
iText isn’t fine-grained. As soon as you start manipulating a document, iText
will decrypt it, and this always requires the owner password. Note that if
you’ve created the PDF using iText, passing null as the password, you won’t
be able to change the document because you don’t know the randomly cre-
ated password.

Encrypting a PDF document using passwords isn’t a waterproof solution. Password
protection has to be seen as a psychological and legal barrier. If the document is
encrypted, the author intends to protect the document against abuse. If you remove
that protection without permission (that is, without the passwords), you’re deliber-
ately doing something you’re not supposed to do. Extra restrictions were added to
iText to prevent the use of the API for password removal.

 If you need better protection for your documents, you can use public-key encryption.

12.3.2 Public-key encryption

With symmetric key algorithms, a single secret key has to be shared between the cre-
ator and the consumer of a document. The same key is used to encrypt and decrypt
the content.

 Public-key cryptography uses asymmetric key algorithms, where the key used to
encrypt a message is not the same as the key used to decrypt it. Each user has a pair of
cryptographic keys: one that is kept secret—the private key—and one that is publicly
distributed—the public key. In the next example, you’ll use a public key to encrypt a
PDF document. This way, only the person who owns the corresponding private key will
be able to open the document in Adobe Reader.

 But before you can do this, you need to find out how to create a public-private key
pair.

CREATING A PUBLIC-PRIVATE KEY PAIR WITH KEYTOOL

You’re developing in Java, so you can use the keytool application that comes with the
JDK. Let’s use the -genkey option to create a key store for somebody called Bruno
Specimen:

$ keytool -genkey -alias foobar -keyalg RSA -keystore .keystore
Enter keystore password: f00b4r
What is your first and last name?
Licensed to Bruno Lowagie <bruno@lowagie.com>

391Encrypting a PDF document
 [Unknown]: Bruno Specimen
What is the name of your organizational unit?
 [Unknown]: ICT
What is the name of your organization?
 [Unknown]: Foobar Film Festival
What is the name of your City or Locality?
 [Unknown]: Foobar
What is the name of your State or Province?
 [Unknown]:
What is the two-letter country code for this unit?
 [Unknown]: BE
Is CN=Bruno Specimen, OU=ICT, O=Foobar Film Festival, L=Foobar,
 ST=Unknown, C=BE correct?
 [no]: yes

Enter key password for <foobar>
 (RETURN if same as keystore password): f1lmf3st

This file, .keystore, is protected with the password f00b4r; the private key stored in this
file is protected with the password f1lmf3st. Do not share this key store or these pass-
words with anyone, but extract a public certificate with the -export option:

$ keytool -export -alias foobar -file foobar.cer -keystore .keystore
Enter keystore password: f00b4r
Certificate stored in file <foobar.cer>

You can now share the file foobar.cer, which contains your public key, with the world.
People can use this file to encrypt a PDF document that can be read by nobody else
but you, the owner of the corresponding private key.

CREATING A PUBLIC-KEY ENCRYPTED PDF

In the next listing, you’ll encrypt a document using two public keys. The first one is
the public key you’ve created for testing purposes (Bruno Specimen); the second one
is my own public key (Bruno Lowagie).

public Certificate getPublicCertificate(String path)
 throws IOException, CertificateException {
 FileInputStream is = new FileInputStream(path);
 CertificateFactory cf
 = CertificateFactory.getInstance("X.509");
 X509Certificate cert
 = (X509Certificate) cf.generateCertificate(is);
 return cert;
}
public void createPdf(String filename)
 throws IOException, DocumentException, GeneralSecurityException {
 Document document = new Document();
 PdfWriter writer
 = PdfWriter.getInstance(document, new FileOutputStream(RESULT1));
 Certificate cert1
 = getPublicCertificate("resources/encryption/foobar.cer");
 Certificate cert2

Listing 12.11 EncryptWithCertificate.java

Creates Certificate
object
Licensed to Bruno Lowagie <bruno@lowagie.com>

392 CHAPTER 12 Protecting your PDF
 = getPublicCertificate(properties.getProperty("PUBLIC"));
 writer.setEncryption(
 new Certificate[]{cert1, cert2},
 new int[]{
 PdfWriter.ALLOW_PRINTING, PdfWriter.ALLOW_COPY},
 PdfWriter.ENCRYPTION_AES_128);
 document.open();
 document.add(new Paragraph("Hello World!"));
 document.close();
}

Note the different permissions defined for the different certificates. Bruno Specimen
will only be able to print the document; I won’t be able to print it. I’ll only be able to
extract text, for instance with copy/paste, provided that my private key is registered
on my operating system.

 Listing 12.11 will only work if the unlimited strength jurisdiction policy files are
installed in your runtime environment.

FAQ When I try to encrypt a document using public-key encryption, an Invalid-
KeyException is thrown, saying the key size is invalid. Why? Due to import con-
trol restrictions by the governments of a few countries, the encryption
libraries shipped by default with the JDK restrict the length, and as a result the
strength, of encryption keys. If you want these examples to work, you need to
replace the default JARs with the Java Cryptography Extension (JCE) Unlimited
Strength Jurisdiction Policy Files. These JARs are available for download from
http://java.sun.com/ in eligible countries.

The document was encrypted for Bruno Specimen and for myself. If somebody else
tries to open the document, they will get an Acrobat Security error, saying that “A dig-
ital ID was used to encrypt this document but no digital ID is present to decrypt it.
Make sure your digital ID is properly installed or contact the document author.” See
figure 12.2.

 Suppose that the document was created for you. In that case, you should use the
keytool utility to export the private key from your key store to a .p12 file. To install

Sets encryption
using certificates

Figure 12.2 A protected public-key encrypted PDF document
Licensed to Bruno Lowagie <bruno@lowagie.com>

http://java.sun.com/

393Encrypting a PDF document
your private key on the Windows OS, you need to double-click this file (for instance,
private.p12) and follow the instructions.

NOTE The path to my personal key store and certificate, along with the
corresponding passwords that are used in the examples, are stored in a prop-
erties file on my OS. For obvious reasons, this file is not distributed with
the examples.

When you open the document that was created using listing 12.11 and your public
key, the PDF will be shown, as in figure 12.3. When you open the Document Properties
window, you can check the permissions and the security method that was used.

 While this is a safer way to protect your document than using user and owner pass-
words, it’s hard to enforce the permissions. Private key holders can always use a PDF
library to decrypt the content that was encrypted with their own public key.

DECRYPTING AND ENCRYPTING EXISTING PDFS

In the previous section, you used PdfStamper to decrypt existing password-protected
PDF files using the owner password; or to encrypt an unprotected PDF file by adding
a user and an owner password. In this listing, you’ll do the same with public-key
encryption.

Figure 12.3 An opened public-key-encrypted PDF document
Licensed to Bruno Lowagie <bruno@lowagie.com>

394 CHAPTER 12 Protecting your PDF
public PrivateKey getPrivateKey()
 throws GeneralSecurityException, IOException {
 String path = "resources/encryption/.keystore";
 KeyStore ks
 = KeyStore.getInstance(KeyStore.getDefaultType());
 ks.load(new FileInputStream(path),
 "f00b4r".toCharArray());
 PrivateKey pk = (PrivateKey)ks.getKey("foobar",
 "f1lmf3st".toCharArray());
 return pk;
}
public void decryptPdf(String src, String dest)
 throws IOException, DocumentException, GeneralSecurityException {
 PdfReader reader = new PdfReader(src,
 getPublicCertificate(
 "resources/encryption/foobar.cer"),
 getPrivateKey(), "BC");
 PdfStamper stamper
 = new PdfStamper(reader, new FileOutputStream(dest));
 stamper.close();
}
public void encryptPdf(String src, String dest)
 throws IOException, DocumentException, CertificateException {
 PdfReader reader = new PdfReader(src);
 PdfStamper stamper
 = new PdfStamper(reader, new FileOutputStream(dest));
 Certificate cert
 = getPublicCertificate("resources/encryption/foobar.cer");
 stamper.setEncryption(new Certificate[]{cert},
 new int[]{PdfWriter.ALLOW_PRINTING},
 PdfWriter.ENCRYPTION_AES_128);
 stamper.close();
}

Apart from the fact that the access permissions got lost in the decryption process,
there’s another problem that is inherent to the way Bruno Specimen’s key was cre-
ated. What if Bruno Specimen actually exists? You could distribute the public key you
created for him, and you could pretend to be him. He wouldn’t like that.

 Anybody can generate a private key and a self-signed certificate. To solve this prob-
lem, Bruno Specimen can call in a third party that is beyond suspicion: a certificate
authority (CA). He could create a certificate signing request (CSR) like this:

$ keytool -certreq -keystore .keystore -alias foobar -file foobar.csr
Enter keystore password: f00b4r
Enter key password for f1lmf3st

A file, foobar.csr, is generated. Bruno Specimen can send this file to a CA, and this
third party will check if Bruno Specimen is really who he says he is. If his identity can
be verified, he’ll receive a Privacy Enhanced Mail (PEM) file, which will contain his pub-
lic certificate signed by the CA using the CA’s private key. This certificate can be

Listing 12.12 EncryptWithCertificate.java

Creates
PrivateKey
object

Creates reader
using certificate
and private key

Sets encryption
using certificates
Licensed to Bruno Lowagie <bruno@lowagie.com>

395Digital signatures, OCSP, and timestamping
decrypted with the CA’s public key, which comes in the form of a Distinguished Encoding
Rules (DER) file.

 Many applications ship with a number of root certificates from CAs. This is neces-
sary to check the validity of digital signatures.

12.4 Digital signatures, OCSP, and timestamping
Digital signatures in PDF also involve asymmetric cryptography. Suppose that you
receive an official PDF document from Bruno Specimen. How do you make sure that
this document was originally created by Bruno and not by somebody else? Also, how
do you make sure that nobody changed the document after Bruno created it and
before you received it?

 This is only possible if the document was digitally signed by Bruno. The signing
application will make a digest of the document’s content, and encrypt it using Bruno’s
private key. This encrypted digest will be stored in a signature field. When you open
the signed PDF, the viewer application will decrypt the encrypted digest using the
author’s public key, and compare it with a newly created digest of the content. If
there’s a match, the document wasn’t tampered with; if there’s a difference, somebody
else has tried to forge the author’s signature, or the document was changed after it
was signed.

 Let’s start by creating a document that has a signature field.

12.4.1 Creating an unsigned signature field

When you created AcroForms in chapter 8, we discussed button (/Btn), text (/Tx),
and choice (/Ch) fields, but we skipped signature fields (/Sig). Figure 12.4 shows two
PDF files. The one to the left has a signature field without a digital signature. This file
was signed using my own private key. The resulting PDF is shown on the right.

Figure 12.4 PDFs with signature fields
Licensed to Bruno Lowagie <bruno@lowagie.com>

396 CHAPTER 12 Protecting your PDF
This code shows how to add a signature field without a signature.

public void createPdf(String filename)
 throws IOException, DocumentException {
 Document document = new Document();
 PdfWriter writer
 = PdfWriter.getInstance(document, new FileOutputStream(filename));
 document.open();
 document.add(new Paragraph("Hello World!"));
 PdfFormField field
 = PdfFormField.createSignature(writer);
 field.setWidget(new Rectangle(72, 732, 144, 780),
 PdfAnnotation.HIGHLIGHT_INVERT);
 field.setFieldName("mySig");
 field.setFlags(PdfAnnotation.FLAGS_PRINT);
 field.setPage();
 field.setMKBorderColor(BaseColor.BLACK);
 field.setMKBackgroundColor(BaseColor.WHITE);
 PdfAppearance tp
 = PdfAppearance.createAppearance(writer, 72, 48);
 tp.rectangle(0.5f, 0.5f, 71.5f, 47.5f);
 tp.stroke();
 field.setAppearance(
 PdfAnnotation.APPEARANCE_NORMAL, tp);
 writer.addAnnotation(field);
 document.close();
}

Normally, you won’t have to use the code in listing 12.13. The signature field will
either be present because it was added by another application (such as Adobe Acro-
bat); or you’ll be presented with a document that has no signature field. In that case,
you can add the field and sign it at the same time.

12.4.2 Signing a PDF

Listing 12.14 adds a signature to the field created in listing 12.13. There are two
options: with the parameter certified, you can choose whether or not to use a certi-
fication signature. In figure 12.5 there’s a bar with the text “Certified by Bruno Lowa-
gie <bruno@lowagie.com>, certificate issued by CA Cert Signing Authority.” This is
different from what was displayed in figure 12.4, where it only said “Signed and all sig-
natures are valid.”

 There’s also a graphic parameter to define whether or not to use a graphical
object instead of a text message. In figure 12.5, the 1T3XT logo was used to visualize
the signature on the page.

Listing 12.13 SignatureField.java

Creates field
(widget, name, ...)

Creates
appearance

Adds field
Licensed to Bruno Lowagie <bruno@lowagie.com>

397Digital signatures, OCSP, and timestamping
KeyStore ks = KeyStore.getInstance("pkcs12", "BC");
ks.load(new FileInputStream(path), keystore_password.toCharArray());
String alias = (String)ks.aliases().nextElement();
PrivateKey pk = (PrivateKey)ks.getKey(alias, key_password.toCharArray());
Certificate[] chain = ks.getCertificateChain(alias);
PdfReader reader = new PdfReader(ORIGINAL);
PdfStamper stamper = PdfStamper.createSignature(
 reader, new FileOutputStream(dest), '\0');
PdfSignatureAppearance appearance
 = stamper.getSignatureAppearance();
appearance.setVisibleSignature("mySig");
appearance.setReason("It's personal.");
appearance.setLocation("Foobar");
appearance.setCrypto(
 pk, chain, null, PdfSignatureAppearance.WINCER_SIGNED);
if (certified)
 appearance.setCertificationLevel(
 PdfSignatureAppearance.CERTIFIED_NO_CHANGES_ALLOWED);
if (graphic) {
 appearance.setAcro6Layers(true);
 appearance.setSignatureGraphic(Image.getInstance(RESOURCE));
 appearance.setRenderingMode(
 PdfSignatureAppearance.RenderingMode.GRAPHIC);
}
stamper.close();

This listing no longer uses the constructor to create an instance of PdfStamper,
but the method createSignature() B. You create a PdfSignatureAppearance
and define it as a visible signature C. In this example, the signature field uses the
name “mySig”.

Listing 12.14 SignatureField.java

Figure 12.5 PDF with a certifying signature

B

C

D

E

F

G

Licensed to Bruno Lowagie <bruno@lowagie.com>

398 CHAPTER 12 Protecting your PDF
FAQ How can I sign a document if it doesn’t have a signature field? If there’s no sig-
nature field present, you can make a small change to the code from listing 12.14
to add a signature that will show up in the signature panel (see the left side of
figure 12.5). If you omit the setVisibleSignature() method, the signature
won’t show up on any page. This is called an invisible signature. Or you can use
the setVisibleSignature() method with a Rectangle object, a page number,
and a field name as parameters. This will create a new signature field.

The name of the person who signs the document is retrieved from the private key. You
can add a reason for signing and a location with the setReason() and setLocation()
methods D. This information can be used for the appearance in the signature field
(see figure 12.4) and it’s also shown in the signature panel (see figure 12.5).

 You pass the PrivateKey object and the Certificate chain obtained from the key
store to the setCrypto() method E. With the third parameter, you can pass certificate
revocation lists (CRLs). We’ll discuss certificate revocation in section 12.4.6. With the
final parameter, you choose a security handler. The corresponding cryptographic fil-
ters that are supported in iText are listed in table 12.4.

The signature shown in figure 12.4 is an ordinary signature, aka an approval or a recipient
signature. A document can be signed for approval by one or more recipients.

 The signature shown in figure 12.5 is a certification signature, aka an author signature.
There can only be one certification signature in a document. In iText, you create a
certification signature by using the setCertificationLevel() method F with one of
the following values:

■ CERTIFIED_NO_CHANGES_ALLOWED—No changes are allowed.
■ CERTIFIED_FORM_FILLING—The document is certified, but other people can

still fill out form fields without invalidating the signature.
■ CERTIFIED_FORM_FILLING_AND_ANNOTATIONS—The document is certified, but

other people can still fill out form fields and add annotations without invalidat-
ing the signature.

If you use NOT_CERTIFIED as parameter, an approval signature will be added.

Table 12.4 Security handlers

iText constant Filter name Description

SELF_SIGNED Adobe.PPKLite This uses a self-signed security handler.

VERISIGN_SIGNED VeriSign.PPKVS To sign documents with the VeriSign CA, you need a key that
is certified with VeriSign. You can acquire a 60-day trial key
or buy a permanent key at verisign.com.

WINCER_SIGNED Adobe.PPKMS The Microsoft Windows Certificate Security works with any
trusted certificate. For instance, I’m using a public-private
key pair obtained from CACert (http://cacert.org).
Licensed to Bruno Lowagie <bruno@lowagie.com>

http://cacert.org

399Digital signatures, OCSP, and timestamping
 Just like other form fields, a signature field has an appearance. Only the normal
appearance is supported; the rollover and down attributes aren’t used. There are two
approaches to generating those appearances. In G, you use the setAcro6Layers()
method and pass the 1T3XT logo as signature graphic with the setSignature-
Graphic() method, because listing 12.14 uses the GRAPHIC option for the rendering
mode. The following options are available for the setRenderingMode() method:

■ DESCRIPTION—The rendering mode is just the description.
■ NAME_AND_DESCRIPTION—The rendering mode is the name of the signer and

the description.
■ GRAPHIC_AND_DESCRIPTION—The rendering mode is an image and the

description.
■ GRAPHIC—The rendering mode is just an image.

The setAcro6Layers() method refers to Acrobat 6. In earlier versions of Acrobat, the
signature appearance consisted of five different layers that are drawn on top of each
other:

■ n0 —Background layer.
■ n1—Validity layer, used for the unknown and valid state; contains, for instance,

a yellow question mark.
■ n2—Signature appearance, containing information about the signature. This

can be text or an XObject that represents the handwritten signature.
■ n3—Validity layer, containing a graphic that represents the validity of the signa-

ture when the signature is invalid.
■ n4—Text layer, for a text presentation of the state of the signature.

If you omit setAcro6Layers(), iText will create a default appearance for these layers,
or you can use the method getLayer() with a number ranging from 0 to 4 to get a
PdfTemplate that allows you to create a custom appearance. You can also use the
methods setLayer2Text() and setLayer4Text() to add a custom text for the signa-
ture appearance and the text layer. Note that the use of layers n1, n3, and n4 is no lon-
ger recommended since Acrobat 6.

 In the next example, you’ll add more than one signature.

12.4.3 Adding multiple signatures

Figure 12.6 shows another Hello World document, but now it has been signed twice.
Once by myself with a signature that could be validated, and once by Bruno Specimen,
who isn’t trusted because “None of the parent certificates are trusted identities.” This
is normal: the certificate was self-signed; there was no CA such as VeriSign involved.

 If you know and trust Bruno Specimen, you can add his public certificate to the list
of trusted identities in Adobe Reader. You can import the file foobar.cer through Doc-
ument > Manage Trusted Identities and edit the trust as a “trusted root.” If you do, the
second signature can also be verified (figure 12.7).
Licensed to Bruno Lowagie <bruno@lowagie.com>

400 CHAPTER 12 Protecting your PDF
The original Hello World example of the document shown in figures 12.6 and 12.7
didn’t have a signature field. Here is how the first signature was added.

PdfReader reader = new PdfReader(src);
FileOutputStream os = new FileOutputStream(dest);
PdfStamper stamper
 = PdfStamper.createSignature(reader, os, '\0');
PdfSignatureAppearance appearance
 = stamper.getSignatureAppearance();
appearance.setCrypto(key, chain, null,
PdfSignatureAppearance.WINCER_SIGNED);
appearance.setImage(Image.getInstance(RESOURCE));
appearance.setReason("I've written this.");

Listing 12.15 Signatures.java

Figure 12.6 Document with two signatures, one of which has “validity unknown”

Figure 12.7 Document with two valid signatures
Licensed to Bruno Lowagie <bruno@lowagie.com>

401Digital signatures, OCSP, and timestamping
appearance.setLocation("Foobar");
appearance.setVisibleSignature(
 new Rectangle(72, 732, 144, 780), 1, "first");
stamper.close();

You don’t have to create a PdfFormField explicitly as in listing 12.13. The field is cre-
ated by iText using the parameters of the setVisibleSignature() method. Note that
this time you add an Image that will be added in the background of layer 2. Compare
listing 12.15 with this one to find out how to add a second approval signature.

PdfReader reader = new PdfReader(src);
FileOutputStream os = new FileOutputStream(dest);
PdfStamper stamper
 = PdfStamper.createSignature(reader, os, '\0', null, true);
PdfSignatureAppearance appearance
 = stamper.getSignatureAppearance();
appearance.setCrypto(key, chain, null,
PdfSignatureAppearance.WINCER_SIGNED);
appearance.setReason("I'm approving this.");
appearance.setLocation("Foobar");
appearance.setVisibleSignature(
 new Rectangle(160, 732, 232, 780), 1, "second");
stamper.close();

You have to add two extra parameters to the createSignature() method if you want
to add a second signature. One parameter can be used to store the resulting PDF as a
temporary file. If you pass a File object that’s a directory, a temporary file will be cre-
ated there; if it’s a file, it will be used directly. The file will be deleted on exit unless
the os output stream is null. In that case, the document can be retrieved directly
from the temporary file. This is a way to keep the memory use low. In this example,
you’re signing a simple Hello World file. You don’t need a temporary file; the signing
will be done in memory.

 The fifth parameter of createSignature() indicates whether or not the file has to
be manipulated in append mode. Working in append mode means that the original file
will be kept intact; the new content will be appended after the %EOF marker.

NOTE You can also use append mode if you want the file to keep the com-
plete history of the changes made to the document. We’ll look at the implica-
tions of using append mode outside the context of digital signatures in
chapter 13.

Using append mode is mandatory if you want to add content to a document that has
been signed. If you set the append value to false, the original signature will be invali-
dated, as shown in figure 12.8.

 When a document is signed multiple times, you get a PDF file with multiple
revisions (see the signature panel in figures 12.6 and 12.7). For one revision, the
signature name is “first”; for the other it’s “second”. In figure 12.6, you can see a link

Listing 12.16 Signatures.java
Licensed to Bruno Lowagie <bruno@lowagie.com>

402 CHAPTER 12 Protecting your PDF
in the signature panel saying “Click to view this version.” This allows you to manually
retrieve the original files for each signature. This listing shows how to extract such a
revision programmatically.

public void extractFirstRevision() throws IOException {
 PdfReader reader = new PdfReader(SIGNED2);
 AcroFields af = reader.getAcroFields();
 FileOutputStream os = new FileOutputStream(REVISION);
 byte bb[] = new byte[8192];
 InputStream ip = af.extractRevision("first");
 int n = 0;
 while ((n = ip.read(bb)) > 0)
 os.write(bb, 0, n);
 os.close();
 ip.close();
}

With this code snippet, you can extract the first revision, the one that only has the sig-
nature field named “first”.

 We’ve now checked for the validity of a signature using Adobe Reader, but you can
also automate the process.

12.4.4 Verifying the signatures in a document

The root certificates of CAs that are trusted by the distributor of the Java Runtime you
use are stored in a file named cacerts. You can find this key store in the lib directory of
the JAVA_HOME directory. Depending on the use case, different collections of CA cer-
tificates may be required, which may not include those already in that file.

Listing 12.17 Signatures.java

Figure 12.8 Document with one valid and one invalid signature
Licensed to Bruno Lowagie <bruno@lowagie.com>

403Digital signatures, OCSP, and timestamping
 If a root certificate isn’t present, you can import it with the keytool utility. This key
store can be loaded into a KeyStore object like this:

KeyStore ks = PdfPKCS7.loadCacertsKeyStore();

The next bit of code uses the getSignatureNames() method to get all the names of
the signature fields in the document. Then you can use the root certificates in a Key-
Store to verify each signature.

PdfReader reader = new PdfReader(SIGNED2);
AcroFields af = reader.getAcroFields();
ArrayList<String> names = af.getSignatureNames();
for (String name : names) {
 out.println("Signature name: " + name);
 out.println("Signature covers whole document: "
 + af.signatureCoversWholeDocument(name));
 out.println("Document revision: "
 + af.getRevision(name) + " of " + af.getTotalRevisions());
 PdfPKCS7 pk = af.verifySignature(name);
 Calendar cal = pk.getSignDate();
 Certificate[] pkc = pk.getCertificates();
 out.println("Subject: "
 + PdfPKCS7.getSubjectFields(pk.getSigningCertificate()));
 out.println("Revision modified: " + !pk.verify());
 Object fails[] = PdfPKCS7.verifyCertificates(pkc, ks, null, cal);
 if (fails == null)
 out.println("Certificates verified against the KeyStore");
 else
 out.println("Certificate failed: " + fails[1]);
}

You can check whether the signature covers the whole document by using the signa-
tureCoversWholeDocument() method. This is true for the second signature, but the
first signature only covers revision 1 of 2, and that’s not the complete document.

 You can get the revision number for the signature with the getRevision()
method, and the total number of revisions with getTotalRevisions(). The verifica-
tion of the signature is done with the PdfPKCS7 object. This object can give you the
public certificate of the signer and its parent certificates, as well as the signing date.
You can use the verify() method to find out if the document was tampered with, and
the verifyCertificates() method to check the certificates in the PDF against the
certificates in the cacerts key store. In this example, you didn’t pass any CRLs, so the
third parameter of the method is null.

12.4.5 Creating the digest and signing externally

In the previous examples, we’ve let iText make the digest, and we’ve let iText decide
how to sign it using the PrivateKey object. But it isn’t always possible to create a
PrivateKey object. If the private key is put on a token or a smart card, you can’t
retrieve it programmatically. In this case, making and signing the digest has to be
done on external hardware, such as a smart-card reader.

Listing 12.18 Signatures.java
Licensed to Bruno Lowagie <bruno@lowagie.com>

404 CHAPTER 12 Protecting your PDF
FAQ How do I get a private key that is on my smart card? There would be a serious
security problem if you could extract a private key from a smart card. Your
private key is secret, and the smart card should be designed to keep this secret
safe. You don’t want an external application to use your private key. Instead,
you send a hash to the card, and the card returns a signature or a PKCS#7 mes-
sage. PKCS refers to a group of Public Key Cryptography Standards, and
PKCS#7 defines the Cryptographic Message Syntax Standard.

Signing a PDF document using a smart-card reader involves middleware, and the code
will depend on the type of smart-card reader you’re using. To get an idea of what needs
to be done, we’ll look at some examples where the digest is made or signed externally.

 The first part of this listing looks similar to what you’ve done before.

PdfStamper stamper = PdfStamper.createSignature(reader, os, '\0');
PdfSignatureAppearance appearance = stamper.getSignatureAppearance();
appearance.setCrypto(
 null, chain, null, PdfSignatureAppearance.SELF_SIGNED);
appearance.setReason("External hash example");
appearance.setLocation("Foobar");
appearance.setVisibleSignature(
 new Rectangle(72, 732, 144, 780), 1, "sig");
appearance.setExternalDigest(new byte[128], null, "RSA");
appearance.preClose();
Signature signature = Signature.getInstance("SHA1withRSA");
signature.initSign(key);
byte buf[] = new byte[8192];
int n;
InputStream inp = appearance.getRangeStream();
while ((n = inp.read(buf)) > 0) {
 signature.update(buf, 0, n);
}
PdfPKCS7 sig = appearance.getSigStandard().getSigner();
sig.setExternalDigest(signature.sign(), null, "RSA");
PdfDictionary dic = new PdfDictionary();
dic.put(PdfName.CONTENTS,
 new PdfString(sig.getEncodedPKCS1()).setHexWriting(true));
appearance.close(dic);

Let’s pretend you don’t have access to the private key, so you pass null to the set-
Crypto() method B. You use the setExternalDigest() method to reserve space in the
signature dictionary for keys whose content isn’t known yet C. You don’t close the Pdf-
Stamper, but you preClose() the signature appearance D. Then you create a Signa-
ture object using the private key E; this is something that could happen outside of your
program. You pass the document bytes obtained with getRangeStream() to the Signa-
ture F, and you create the /Contents (the signed digest) of the signature field G.
When you close the appearance, the signature will be added.

 The following listing shows a variation where you create a digest using the Secure
Hash Algorithm 1 (SHA-1), and if sign is true, you sign it with the RSA algorithm.

Listing 12.19 Signatures.java

B

C
D

E

F

G

Licensed to Bruno Lowagie <bruno@lowagie.com>

405Digital signatures, OCSP, and timestamping
appearance.setCrypto(
 key, chain, null, PdfSignatureAppearance.WINCER_SIGNED);
appearance.setExternalDigest(null, new byte[20], null);
appearance.preClose();
MessageDigest messageDigest = MessageDigest.getInstance("SHA1");
byte buf[] = new byte[8192];
int n;
InputStream inp = appearance.getRangeStream();
while ((n = inp.read(buf)) > 0) {
 messageDigest.update(buf, 0, n);
}
byte hash[] = messageDigest.digest();
PdfSigGenericPKCS sg = appearance.getSigStandard();
PdfLiteral slit = (PdfLiteral)sg.get(PdfName.CONTENTS);
byte[] outc = new byte[(slit.getPosLength() - 2) / 2];
PdfPKCS7 sig = sg.getSigner();
if (sign) {
 Signature signature = Signature.getInstance("SHA1withRSA");
 signature.initSign(key);
 signature.update(hash);
 sig.setExternalDigest(signature.sign(), hash, "RSA");
}
else
 sig.setExternalDigest(null, hash, null);
PdfDictionary dic = new PdfDictionary();
byte[] ssig = sig.getEncodedPKCS7();
System.arraycopy(ssig, 0, outc, 0, ssig.length);
dic.put(PdfName.CONTENTS, new PdfString(outc).setHexWriting(true));
appearance.close(dic);

If you look at the resources that come with this book, you’ll also find an example that
explains how to sign a PDF document using an external library.

NOTE Signing can become even more generic. There may be situations in
which you don’t know the certificate chain before the signature is gener-
ated. Or you may have to split the signing process into parts, in which case
you can’t keep the PdfStamper open all the time. It would lead us too far
afield to discuss all the possible workarounds for each of these situations.
More examples, including examples involving smart-card readers, can be
found on SourceForge and on the official iText site (see section B.1, for
the URLs).

Now let’s discuss some technologies that provide extra security features.

12.4.6 CRLs, OCSP, and timestamping

Suppose you receive a contract from person X who works at company Y. The contract
is signed with a valid digital signature, corresponding to the e-mail address X@Y.com.
You can safely assume that the document is genuine, unless ... person X was fired, but
he still owns a copy of the private key of company Y. Such a contract probably

Listing 12.20 Signatures.java
Licensed to Bruno Lowagie <bruno@lowagie.com>

406 CHAPTER 12 Protecting your PDF
wouldn’t be legal. Surely there must be a way for company Y to revoke the certificate
for employee X so that he no longer can act on behalf of his former company.

CERTIFICATE REVOCATION LIST

Every certificate authority keeps lists of certificates that are no longer valid, whether
because the owner thinks the private key was compromised, or the token containing
the private key was lost or stolen, or the original owner of the key is no longer entitled
to use it. Such a list is called a certificate revocation list (CRL), and they are made public
at one or more URLs provided by the CA who signed the certificate.

 You can create a CRL object like this:

InputStream is = new URL(url_of_crl).openStream();
CertificateFactory cf = CertificateFactory.getInstance("X.509");
CRL crl = (CRL)cf.generateCRL(is);

An array of CRL objects can be passed as a parameter to the setCrypto() method. How-
ever, CRLs are generally large, and this technique is considered to be “old technology.”

 It might be a better idea to use the Online Certificate Status Protocol (OCSP).

ONLINE CERTIFICATE STATUS PROTOCOL

OCSP is an internet protocol for obtaining the revocation status of a certificate online.
You can post a request to check the status of a certificate over HTTP, and the CA’s
OCSP server will send you a response. You no longer need to parse and embed long
CRLs. An OCSP response is small and constant in size, and can easily be included in
the PKCS#7 object.

NOTE Revocation information in a PDF document is a signed attribute, which
means that the signing software must capture the revocation information
before signing. A similar requirement in this use case applies to the chain of
certificates. The signing software must capture and validate the certificate’s
chain before signing. CRLs will lead to bigger PDF documents, and using
OCSP will not take as much space. But the OCSP connection to check the sta-
tus can take time, whereas CRLs can easily be cached on the filesystem. It’s
always a tradeoff.

Now let’s look at another problem that might arise. Suppose somebody sends you a
signed contract. He has used a private key that is still valid, and you’re sure that the
document you’ve received is genuine. However, at some point the author of the docu-
ment regrets what he’s written. By resetting the clock on his computer, he could cre-
ate a new document with a new digital signature that is as valid as the first one. This
way, you could end up with two documents signed with the same private key at almost
the same time, but with slightly different content. How can anybody know which doc-
ument is more genuine?

TIMESTAMPING

This problem can be solved by involving a third party: a timestamping authority (TSA).
The TSA will take the hash of the document and concatenate a timestamp to it. This is
Licensed to Bruno Lowagie <bruno@lowagie.com>

407Digital signatures, OCSP, and timestamping
done on a timestamp server that is contacted during the signing process. The time-
stamp server will return a hash that is signed using the private key of the TSA.

 Figure 12.9 shows a PDF with a timestamped signature. In previous examples and
screen shots, the signature panel informed you that the “Signature date/time are
from the clock on the signer’s computer.” Now it says: “Signature is timestamped.” You
can also check the certificate of the TSA in the signature properties. That solves the
potential problem of antedated documents.

 The next listing can be used to add a timestamp (if withTS is true) and to check
the revocation status of the certificate with OCSP (if withOCSP is true).

PdfReader reader = new PdfReader(src);
FileOutputStream fout = new FileOutputStream(dest);
PdfStamper stp = PdfStamper.createSignature(reader, fout, '\0');
PdfSignatureAppearance sap = stp.getSignatureAppearance();
sap.setVisibleSignature(
 new Rectangle(72, 732, 144, 780), 1, "Signature");
sap.setCrypto(null, chain, null, PdfSignatureAppearance.SELF_SIGNED);
PdfSignature dic = new PdfSignature(
 PdfName.ADOBE_PPKLITE,
 new PdfName("adbe.pkcs7.detached"));
dic.setReason(sap.getReason());
dic.setLocation(sap.getLocation());
dic.setContact(sap.getContact());
dic.setDate(new PdfDate(sap.getSignDate()));
sap.setCryptoDictionary(dic);
int contentEstimated = 15000;
HashMap<PdfName,Integer> exc
 = new HashMap<PdfName,Integer>();
exc.put(PdfName.CONTENTS,
 new Integer(contentEstimated * 2 + 2));

Listing 12.21 Signatures.java

Figure 12.9 A signed PDF with a timestamp

Creates
signature
dictionary

Reserves space
for signature
content
Licensed to Bruno Lowagie <bruno@lowagie.com>

408 CHAPTER 12 Protecting your PDF
sap.preClose(exc);
InputStream data = sap.getRangeStream();
MessageDigest messageDigest
 = MessageDigest.getInstance("SHA1");
byte buf[] = new byte[8192];
int n;
while ((n = data.read(buf)) > 0) {
 messageDigest.update(buf, 0, n);
}
byte hash[] = messageDigest.digest();
Calendar cal = Calendar.getInstance();
TSAClient tsc = null;
if (withTS) {
 String tsa_url = properties.getProperty("TSA");
 String tsa_login
 = properties.getProperty("TSA_LOGIN");
 String tsa_passw
 = properties.getProperty("TSA_PASSWORD");
 tsc = new TSAClientBouncyCastle(
 tsa_url, tsa_login, tsa_passw);
}
byte[] ocsp = null;
if (withOCSP) {
 String url
 = PdfPKCS7.getOCSPURL((X509Certificate)chain[0]);
 CertificateFactory cf
 = CertificateFactory.getInstance("X509");
 FileInputStream is = new FileInputStream(
 properties.getProperty("ROOTCERT"));
 X509Certificate root
 = (X509Certificate) cf.generateCertificate(is);
 ocsp = new OcspClientBouncyCastle(
 (X509Certificate)chain[0], root, url).getEncoded();
}
PdfPKCS7 sgn = new PdfPKCS7(
 pk, chain, null, "SHA1", null, false);
byte sh[] = sgn.getAuthenticatedAttributeBytes(
 hash, cal, ocsp);
sgn.update(sh, 0, sh.length);
byte[] encodedSig
 = sgn.getEncodedPKCS7(hash, cal, tsc, ocsp);
if (contentEstimated + 2 < encodedSig.length)
 throw new DocumentException("Not enough space");
byte[] paddedSig = new byte[contentEstimated];
System.arraycopy(
 encodedSig, 0, paddedSig, 0, encodedSig.length);
PdfDictionary dic2 = new PdfDictionary();
dic2.put(PdfName.CONTENTS,
 new PdfString(paddedSig).setHexWriting(true));
sap.close(dic2);

In this example, you use the PdfSignature dictionary to create a detached PKCS#7 sig-
nature, as opposed to PKCS#7 signatures where the data is encapsulated in the digest.
Before you preclose the appearance, you also need to estimate the length of the signa-
ture’s content.

Creates hash
of content

Creates
Timestamp
client

Creates
OCSP client

Creates
signed hash

Adds signature
content
Licensed to Bruno Lowagie <bruno@lowagie.com>

409Digital signatures, OCSP, and timestamping
 Note that you need an account with a TSA (with a TSA_LOGIN and TSA_PASSWORD)
to create a TSA client object. An account with a trustworthy TSA isn’t free, but you can
probably find some free timestamp server for testing purposes.

 The URL of the OCSP server that is needed to create an OCSP client object is avail-
able in the public certificate. That is, if the CA that signed the certificate supports
OCSP. You retrieve it with the getOCSPURL() method.

 If you set withTS and withOCSP to false in listing 12.21, you’ll get an example that
shows how to create a detached signature with authenticated attributes. By combining
the code snippets in this chapter, we could make many more examples, experiment-
ing with almost every option that is described in ISO-32000-1.

 We’ll finish this chapter by introducing a set of restrictions and extensions to the
PDF standard developed by the European Telecommunications Standards Institute
(ETSI) regarding PDF Advanced Electronic Signatures (PAdES) profiles.

12.4.7 PDF Advanced Electronic Signatures (PAdES) profiles

ETSI is a European standardization organization in the telecommunications industry.
This institute issues technical specifications such as TS 101 733 (first published in 2000),
“Cryptographic Message Syntax (CMS) Advanced Electronic Signatures (CAdES),” and
TS 101 903 (first published in 2002), “XML Advanced Electronic Signatures (XAdES).”
More recently, in 2009, ETSI brought the same capabilities pioneered in CAdES and
XAdES to PDF, resulting in a five-part specification describing PDF Advanced Electronic
Signatures profiles:

■ Part 1—This is an overview of support for signatures in PDF documents, and it
lists the features of the PDF profiles in the other documents.

■ Part 2—PAdES Basic is based on ISO-32000-1. If you want to know more about dig-
ital signatures in PDF, you should read this specification before starting to dig into
the PDF reference. Everything mentioned in PAdES part 2 is supported in iText.

■ Part 3—PAdES Enhanced describes profiles that are based on CAdES: PAdES Basic
Electronic Signature (BES) and Explicit Policy Electronic Signature (EPES). If
you want to implement PAdES part 3 using iText, you need to switch to creating
a detached CMS signature and use ETSI.CAdES.detached as the /SubFilter.

■ Part 4—PAdES Long-Term Validation (LTV) is about protecting data beyond the
expiry of the user signing certificate. This mechanism requires a Document
Security Store (DSS), and this mechanism isn’t available in ISO-32000-1. PAdES
part 4 isn’t supported in iText yet.

■ Part 5—PAdES for XML content describes profiles for XAdES signatures. For
instance, after filling an XFA form, which is XML content embedded in a PDF
file, a user may sign selected parts of the form. This isn’t supported in iText yet.

At the time this book was written, neither Adobe Acrobat nor iText supported parts 3, 4,
or 5. PAdES will solve one major issue that hasn’t been discussed in this chapter: certif-
icates have an expiration date. A document that is signed and verified today may be
Licensed to Bruno Lowagie <bruno@lowagie.com>

410 CHAPTER 12 Protecting your PDF
difficult to verify in seven years when the certificate has expired, or when it has been
revoked (the validation data may not be available in the future).

 The idea is to add new validation data and a new document timestamp to a Docu-
ment Security Store in the PDF before the last document timestamp expires. This can
be repeated multiple times, always before the expiration of the last document time-
stamp. This way, PAdES LTV makes it possible to extend the lifetime of protection for
the document.

 Note that the DSS isn’t part of ISO-32000-1 and it’s not available in iText yet; it will
be introduced in ISO-32000-2. We’ll find out more about ISO-32000-2 in the next part
of this book, but first let’s summarize what we’ve learned in this chapter.

12.5 Summary
With this chapter, we close part 3 of this book. You’ve discovered that you can add dif-
ferent types of metadata to the documents created in parts 1 and 2. We discussed the
compression of content streams, and we’ll use the decompression methods in the
next part to inspect the PDF syntax that’s used to describe the content of a page.

 In the sections about encryption and digital signatures, we talked about the protec-
tion of PDF documents. You used public-key cryptography to encrypt and decrypt a
PDF document, and to digitally sign a PDF document. You’ve worked with key stores
and certificates, signing documents in different ways. You’ve also learned about certif-
icate and timestamp authorities, about certificate revocation lists, and the Online Cer-
tificate Status Protocol.

 This chapter completes the overview of essential iText skills you may need when
creating or manipulating PDF documents. In the next part, we’ll dive into the PDF
specification, and look at PDF at a much lower level. While doing this, you’ll learn
about different types of PDFs such as PDF/X and PDF/A. We’ll work with PDF-specific
functionality, such as optional content and marked content, and we’ll inspect differ-
ent types of streams.
Licensed to Bruno Lowagie <bruno@lowagie.com>

Part 4

Under the hood

Part 4 provides an overview of the history of PDF, and it shows you the inner
workings of a PDF document. It explains the different parts of a PDF file: the
header, the body, the cross-reference table, and the trailer. The body of a PDF
file consists of a series of objects, and you’ll learn about the different types of
objects in the Carousel Object System.

 The three final chapters focus on stream objects. First you’ll learn more
about the content stream of a page. You’ll learn about graphics state and text
state, and about marked content. In the final chapter, you’ll learn how to deal
with streams that contain images, fonts, file attachments, and rich media.

Licensed to Bruno Lowagie <bruno@lowagie.com>

Licensed to Bruno Lowagie <bruno@lowagie.com>

PDFs inside-out
One of the initial strengths that made iText a success was that a developer was—and
still is—able to create documents in the PDF format without having to know any-
thing about the PDF specification. In the first versions of iText, you only had to
know how a Chunk related to a Phrase, a Phrase to a Paragraph, and so on. The
functionality was simple, but rather limited. Features that are specific to PDF, such
as forms, optional content, and file attachments, weren’t supported yet. The more
functionality was added, the more there was a need for developers to understand
what PDF is about. That’s why we’re going to take a look inside.

 But before you open up a PDF file, let’s look at why PDF was invented and how
the format evolved from a de facto to an ISO standard.

This chapter covers
■ The history of PDF
■ The Carousel Object System
■ Low-level PDF manipulation
413

Licensed to Bruno Lowagie <bruno@lowagie.com>

414 CHAPTER 13 PDFs inside-out
13.1 PDF, why and how?
We can’t talk about the history of PDF without talking about the history of the inven-
tors of PDF, Adobe Systems Incorporated. Adobe was founded in 1982 by John War-
nock and Chuck Geschke. Its first products were digital fonts, but nowadays Adobe
offers a wide range of products and technologies. In this section, we’ll look at the
ancestors of PDF, and you’ll learn about the different types of PDF that were created
for different purposes.

13.1.1 The ancestors of PDF

In 1985, Adobe introduced the PostScript (PS) Page Description Language (PDL). PS
is an interpretive programming language. Its primary goal is to describe the appear-
ance of text, graphical shapes, and sampled images. It also provides a framework for
controlling printing devices; for example, it can specify the number of copies to be
printed, activate duplicate printing, and so forth.

 Also in 1985, Adobe developed an application for the Apple Macintosh called
Adobe Illustrator, a vector-based drawing program with its own format, AI, which was
derived from PS. Illustrator was ported to Windows in 1989, so it covered an important
market in the graphical industry.

 Producing high-quality visual materials was the privilege of specialists for a long
time, but with the advent of PostScript and Illustrator, anyone with a computer could
accomplish high-end document publishing. By introducing these two technologies,
Adobe started the desktop publishing revolution. But the founders of Adobe felt there
was something missing.

 In 1991, John Warnock wrote the “Camelot paper,” in which he said:

The specific problem is that most programs print to a wide range of printers, but there is
no universal way to communicate and view this printed information electronically ...
What industries badly need is a universal way to communicate documents across a wide
variety of machine configurations, operating systems, and communication networks.

—The Camelot Project, John Warnock

As a result of this writing, a new development project was started, and the engineers at
Adobe enhanced the PostScript and Illustrator technologies to create a suite of appli-
cations with which to create and visualize documents of this format. Carousel was the
original code name for what later became Acrobat. The new document format was
originally called Interchange PostScript (IPS) but was soon known as the Portable
Document Format (PDF).

13.1.2 The history of PDF

In February 1993, Jim King, Adobe’s principal scientist, talked about “liberating” the
information locked up on computer systems. In many cases, you had to use the com-
puter application that was used to collect and assemble a document in order to read it
on screen or to print it.
Licensed to Bruno Lowagie <bruno@lowagie.com>

415PDF, why and how?
This is analogous to requiring the reader of a newspaper to own a photo-typesetting
machine. Or the reader of a book to own a printing press. Acrobat frees the computer
industry from this ridiculous model, establishing a standard for electronic final-form
documents and providing simple viewing and printing tools that are widely and
generally usable. Acrobat is an information liberation system!

—Jim King, principal scientist, Adobe

PDF is called the Portable Document Format because a PDF document can be viewed and
printed on any platform: Windows, Mac, Linux, and so on. In theory, a PDF document
looks the same on any of these platforms (although we’ve looked at some exceptions,
such as in chapters 2 and 11 when we talked about embedding fonts). In analogy with
Java’s Write Once, Run Anywhere, you could say PDF is Write Once, Read Anywhere—
but in a more reliable way than the catchy Java advertising phrase promises.

 In June 1993, Adobe announced its new product, Acrobat. The first documentation
on PDF was called the Portable Document Format Reference Manual and published by Addi-
son-Wesley. Five more editions would follow, although not all of them were printed on
paper—the sixth edition for PDF version 1.7 was only available as a PDF document. Fig-
ure 13.1 shows the cover of the first PDF reference, as well as an advertisement for the
Acrobat Starter Kit, and the diskettes on which Acrobat was distributed.

Figure 13.1 PDF reference cover, Acrobat Starter Kit advertisement, and Acrobat diskettes
Licensed to Bruno Lowagie <bruno@lowagie.com>

416 CHAPTER 13 PDFs inside-out
In September 1993, Acrobat Exchange was the software that allowed users to
exchange electronic documents with other Adobe Acrobat users. They could create,
view, collate, navigate, place sticky notes, and print documents for $195. Acrobat Dis-
tiller converted (and still converts) PS to PDF. Distiller was priced at $695; Network
Distiller at $2495. Finally, there was Acrobat Reader, described as “a special tool for
corporate and commercial publishers who need to distribute documents to large audi-
ences (50 or more) in the most time-efficient and cost effective way.” In those days,
Reader wasn’t distributed for free; it was sold at $2500 for 50 copies. By version 2.0,
released in 1994, the Reader was made available for free and Distiller was included
with Acrobat Pro.

THE RELATIONSHIP BETWEEN PDF AND PS

Although PS and PDF are related, they’re different formats. PDF leverages the ability of
the PS language to render complex text and graphics, and brings this feature to the
screen as well as to the printer. With PDF, reduced flexibility was traded for improved
efficiency and predictability. Unlike PS, PDF can contain a lot of document structure,
links, and other related information, but PDF can’t tell the printer to use a certain
input tray, change the resolution, or use any other hardware-specific features.

 PDF isn’t a programming language like PS. A PDF file consists of a number of
objects. In his presentations about the PDF format, Jim King often refers to PDF as
“object-oriented PostScript” because this object structuring is something that doesn’t
exist in PS. We’ll have a closer look at the different objects in the Carousel Object System
(COS) in section 13.2.

 One of the key advantages PDF has over PS is page independence. With PS, some-
thing in the description of page 1 can affect page 1000, so to view page 1000, you have
to interpret all the pages before it. PDF and PS share the same underlying Adobe imag-
ing model, but in PDF, each page is self-contained and can be drawn individually. Each
page has access to the text, font specifications, margins, layout, graphical elements,
and background and text colors. We’ll have a closer look at the syntax for drawing
content in chapter 14, and at the way font specifications and graphical elements are
embedded in the document in chapter 16.

 But let’s continue with the historical overview of PDF and Acrobat.

PDF VERSION HISTORY

In some of the examples you’ve made so far, you’ve changed the PDF version of a doc-
ument because you were using technology that was introduced in a later version than
the default. Table 13.1 shows a nonexhaustive list of new features that were added in
each version.

 The final part of this table needs more explaining. Up until PDF 1.7, Adobe
owned the copyright of the PDF specification. To promote the use of the format for
information exchange among diverse products and applications—including, but not
necessarily limited to, Acrobat products—Adobe gave anyone copyright permission
to do the following:
Licensed to Bruno Lowagie <bruno@lowagie.com>

417PDF, why and how?
■ Prepare files whose content conforms to the specification
■ Write drivers and applications that produce output represented in PDF
■ Write software that accepts input in PDF and displays, prints, or otherwise inter-

prets the contents
■ Copy Adobe’s copyrighted list of data structures and operators, as well as the

example code and PostScript language function definitions to the extent neces-
sary to use PDF for the purposes above

Table 13.1 New features in different PDF versions

PDF version Year Version New features

PDF-1.0 1993 Acrobat 1 ■ Render complex text and graphics to the screen as well as to
the printer

PDF-1.1 1994 Acrobat 2 ■ Password-protected PDFs
■ External links
■ Device-independent color

PDF-1.2 1996 Acrobat 3 ■ Flate compression
■ Interactive fill-in forms
■ Chinese, Japanese, Korean (CJK) support

PDF-1.3 1999 Acrobat 4 ■ File attachments
■ Digital signatures
■ Logical page numbering

PDF-1.4 2001 Acrobat 5 ■ 128-bit encryption
■ Transparency
■ Tagged PDF

PDF-1.5 2003 Acrobat 6 ■ Additional compression and encryption options
■ Optional content groups
■ Enhanced support for embedding and playback of multimedia

PDF-1.6 2004 Acrobat 7 ■ Customizable user unit value
■ Support for Advanced Encryption Standard (AES)
■ Page-scaling option for printing

PDF-1.7 2006 Acrobat 8 ■ Portable collections
■ More printer controls
■ Major improvements to 3D

PDF-1.7
Extension
Level 3

2008 Acrobat 9.0 ■ PDF 1.7 specification used as the basis for ISO-32000-1; the
version number remains 1.7, but companies can add their own
extensions, such as Adobe’s level 3 extensions, including sup-
port for rich media, geospatial data, and so on

PDF-1.7
Extension
Level 5

2009 Acrobat 9.1 ■ Adobe’s level 5 extensions, including enhancements for trans-
parency, portable collections, and rich text strings

PDF-2.0 2011 Acrobat 10? ■ ISO-32000-2, scheduled for release in the summer of 2011;
the version number of PDFs will be augmented to 2.0
Licensed to Bruno Lowagie <bruno@lowagie.com>

418 CHAPTER 13 PDFs inside-out
These were the conditions of such copyright permissions:

■ Authors of software that accepts input in the form of PDF must make reasonable
efforts to ensure that the software they create respects the access permissions
and permissions controls.

■ Anyone who uses the copyrighted list of data structures and operators, as stated
above, must include an appropriate copyright notice.

These permissions granted by Adobe made it possible for me to start writing iText.
Looking at the success of iText, I must have found a hole in the market. Whereas
Acrobat was an information liberation system for data locked away on your computer,
iText enabled you to liberate the data on your server. At the time iText was developed,
the End User License Agreement of Acrobat (EULA) prevented the use of the product
to produce PDF documents for multiple users on a server. The EULA of Acrobat still
prevents this use, but Adobe now offers LiveCycle Enterprise Suite as a very powerful
server solution.

13.1.3 PDF as an ISO standard

In spite of the far-reaching freedom provided by Adobe, there were always people who
didn’t consider the format open enough. They pestered Adobe because the company
kept the privilege of owning and controlling the language specification, whereas the
trend of the new millennium was to make everything as open as possible. At some
point, Adobe must have decided the time was ripe to make this decision:

SAN JOSE, Calif.—Jan. 29, 2007—Adobe Systems Incorporated (Nasdaq:ADBE) today
announced that it intends to release the full Portable Document Format (PDF) 1.7
specification to AIIM, the Enterprise Content Management Association, for the purpose
of publication by the International Organization for Standardization (ISO).

—Adobe Press Release

Jim King explains why this decision was made:

It was not a simple or easy decision for Adobe to make, but it has come up nearly every
year since we first announced PDF and each time we’ve decided not to do it. I view it as
a balance scale for weighing things. We put positive things on the right side and
negative things on the left. Negative and positive for all of Adobe, our customers, our
competitors, etc. It always has come out not to do it. Things do change and this year it
came out (to my surprise) that the scale tipped the other way for the first time. There were
just too many good reasons to do it and not many not so good. We believe that it will
benefit everyone. I have been asked if this was in response to the pressure from
government for open specifications or because of something Microsoft has done or might
do, or because we think the language is becoming mature. Well my answer is yes, of
course, but not because of any single one of those kinds of things. Just the accumulated
long list of benefits and the scale tipped.

—The Future of PDF and Flash, Jim King
Licensed to Bruno Lowagie <bruno@lowagie.com>

419PDF, why and how?
The standard was published by the ISO on July 1, 2008. To us, iText users and develop-
ers working with PDF, the corporate politics didn’t really matter; my personal reason
why I liked Adobe bringing the specification to ISO was nicely phrased by Jim King:

From what I have been able to figure out there are over a billion PDF files being stored on
computers in this world—could be a lot bigger number. What we want to do is to help
ISO get an accurate specification under their control that documents the rules all those
PDF files obey. We think they all, well nearly all, obey Adobe’s current PDF 1.7
specification so a clean clear ISO version of that is what we’re after. Please note that this
is not tied in any significant way to Adobe products like Acrobat. It is your billion PDF
files we’re interested in documenting, not Acrobat. Once the ISO standard has been
established, Adobe will be just one other (key we hope) company working together with
other companies to make any changes to ISO PDF that are needed.

—The Future of PDF and Flash, Jim King

From now on, any company can write their own extensions to the Portable Document
Format and submit them to ISO as proposed changes to the PDF specification. ISO
may or may not accept these extensions; for instance, Adobe submitted a series of pro-
posals for inclusion in ISO-32000-2. This new ISO will be published in 2011 and will
result in PDF version 2.0. (There will be no PDF version 1.8.)

 Extensions to the PDF specification aren’t identified by PDF version identifiers.
They use the extension mechanism defined in ISO-32000-1. The new convention lets
companies and other entities identify their own extensions relative to a base version of
PDF. Additionally, the convention identifies extension levels relative to that base ver-
sion. Table 13.1 listed extension levels 3 and 5. These are two extensions published by
Adobe for Acrobat 9.0 and 9.1.

 The intent of the extensions convention is twofold:

■ To enable developers of PDF-producing applications to identify the use of com-
pany-specific extensions they have added to a PDF document and to associate
those extensions with their own publicly available specifications.

■ To enable developers of PDF-consuming applications to determine which exten-
sions are present in a PDF document and to associate those extensions with the
specifications that describe them.

To avoid collisions over company names and company-specific extension names, ISO
provides the prefix name registry. The prefix registry designates a 4-character, case-
sensitive prefix that identifies a company or other entity. This prefix is used for com-
pany-specific version identifiers. For example, ADBE is the prefix registered by Adobe;
ITXT is the prefix used for iText. For more info about the use of these prefixes, read
appendix E of ISO-32000-1.

 ISO-32000 wasn’t the first ISO standard for PDF, nor will it be the last.

13.1.4 PDF/X, PDF/A, PDF/E, PDF/UA, and other types of PDF

There are many different ways to create a valid PDF file. This freedom is an advan-
tage, but it can be a disadvantage too. Not all valid PDF files are usable in every
Licensed to Bruno Lowagie <bruno@lowagie.com>

420 CHAPTER 13 PDFs inside-out
context. To tackle this problem, different ISO standards were created, the first one
dating from 2001: PDF/X.

X FOR EXCHANGE

The prepress sector uses PDF for a very specific purpose: to create digital documents
that are meant to be produced on a printing press. Quality press output requires
depositing precise amounts of different colors of ink at resolutions as high as 5000
dots per inch. Such high resolution also calls for images to have been sampled at a
high rate. Not just any old PDF file can be used to produce high-quality press output
under these conditions.

 Confronted with a number of issues relating to parts of the PDF reference, a con-
sortium of prepress companies got together and released specifications for PDF/X.
This is a set of ISO standards (ISO 15930-1 to ISO 15930-8) describing well-defined
subsets of the PDF specification that promise predictable and consistent output for
press printing. Because these standards are subsets of PDF, files meeting these stan-
dards also meet the standard as normal PDF files. Each of these PDF/X standards has
its own specific requirements and constraints, but in general you can say that func-
tionality that will probably break PDF/X conformance includes encryption, the use of
fonts that aren’t embedded, RGB colors, layers, image masks, transparency, and some
blend modes.

 The two most useful PDF/X standards are supported by iText: PDF/X-1a:2001 and
PDF/X-3:2002. The main goal of PDF/X-1a is to support blind exchange of PDF docu-
ments. Blind exchange means you can deliver PDF documents to a print service
provider with hardly any technical discussion. PDF/X-3 is a superset of PDF/X-1a.
The primary difference is that a PDF/X-3 file can also contain color-managed data.
This listing shows how to set the PDF/X conformance. You can replace the param-
eter PdfWriter.PDFX1A2001 with PdfWriter.PDFX32002 to change the conformance
to PDF/X-3.

Document document = new Document();
PdfWriter writer = PdfWriter.getInstance(
 document, new FileOutputStream(filename));
writer.setPDFXConformance(PdfWriter.PDFX1A2001);
document.open();
Font font = FontFactory.getFont(FONT, BaseFont.CP1252,
 BaseFont.EMBEDDED,
 Font.UNDEFINED, Font.UNDEFINED,
 new CMYKColor(255, 255, 0, 0));
document.add(new Paragraph("Hello World", font));
document.close();

As soon as you introduce functionality that isn’t allowed in the PDF/X specification
you’ve chosen, iText will throw an exception explaining what went wrong. For
instance, try making these changes:

Listing 13.1 PdfXPdfA.java

Sets conformance
to PDF/X-1a

Embeds
font

B

Specifies
CMYK colorC
Licensed to Bruno Lowagie <bruno@lowagie.com>

421PDF, why and how?
■ Replace BaseFont.EMBEDDED B with BaseFont.NOT_EMBEDDED. Try executing
the example, and it will throw an exception saying, “All the fonts must be
embedded. This one isn’t: ArialMT.”

■ Replace the CMYKColor C used for the font color by an instance of the BaseColor
class. iText will throw the following error: “Colorspace RGB is not allowed.”

The exceptions help you discover what is missing.
 iText has similar functionality for PDF/A, although iText won’t always throw an

exception if you forget some of the requirements. You need a PDF validator after cre-
ating a PDF/A file with iText to see if you’ve met all the conditions and restrictions.

A FOR ARCHIVING

The PDF/A specification is also known as ISO 19005-1:2005: Document Management—Elec-
tronic Document File Format for Long-Term Preservation—Part 1: Use of PDF 1.4 (PDF/A-1). The
standard was approved in September 2005. The initiative for PDF/A was started by the
Association for Information and Image Management (AIIM) and the Association for
Suppliers of Printing, Publishing, and Converting Technology (NPES).

 There are many electronic formats and technologies to choose from for archiving
electronic data. The proprietary nature of many of these formats is one of the biggest
disadvantages. There’s no guarantee that a Word document created with the latest
Microsoft Word version will open up in the newest version ten years from now. And
even if you’re able to open it, you can’t expect it to look like it looked in the version of
Word that was used to create it.

 As opposed to most word-processing formats, PDF represents not only the data con-
tained in the document, but also the exact form the document takes. The file can be
viewed without the originating application. Adobe also made sure that all the revisions
of the PDF specification are backward compatible, so no matter the version number, the
PDF will always look the same even on newer PDF viewers. Even before PDF was published
as an ISO standard, the PDF version of the specification was available for free. Anyone,
at any time, using any hardware or software, can create programs to access PDF docu-
ments. This makes PDF (ISO-32000) an interesting candidate as a format for archiving.

 PDF/A goes a step further. It’s a subset of PDF-1.4, and like PDF/X, PDF/A imposes
requirements and constraints.

PDF/A LEVEL B

In order to meet level-B conformance, all fonts must be embedded, encryption isn’t
allowed, audio and video content are forbidden, JavaScript and executable file
launches are not permitted, and so forth. Each PDF/A document must contain meta-
data in the form of an XMP stream.

 Here is how to create a level-B PDF/A document using iText.

Document document = new Document();
PdfWriter writer = PdfWriter.getInstance(document,
 new FileOutputStream(filename));

Listing 13.2 PdfXPdfA.java
Licensed to Bruno Lowagie <bruno@lowagie.com>

422 CHAPTER 13 PDFs inside-out
writer.setPdfVersion(PdfWriter.PDF_VERSION_1_4);
writer.setPDFXConformance(PdfWriter.PDFA1B);
writer.createXmpMetadata();
document.open();
Font font = FontFactory.getFont(
 FONT, BaseFont.CP1252, BaseFont.EMBEDDED);
document.add(new Paragraph("Hello World", font));
ICC_Profile icc =
 ICC_Profile.getInstance(new FileInputStream(PROFILE));
writer.setOutputIntents("Custom", "",
 "http://www.color.org", "sRGB IEC61966-2.1", icc);
document.close();

In this example, you create XMP metadata B, embed the font C, and create a color
profile. The constant PROFILE refers to a color profile saved on disk. This profile is
used to set the output intents D. When color values are specified in a PDF file using
the device color spaces, those values are to directly control the quantity of colorant
(ink) used on a particular device or device class. The output intent supplies the color
characteristics of that device so that the actual colors to be produced can be know in a
device-independent way.

PDF/A LEVEL A

Level-A conformance includes all the requirements and constraints of level-B, but also
requires that the PDF be tagged. Tagged PDF is a stylized use of PDF; it defines a set of
standard structure types and attributes that allow page content to be extracted and
reused for other purposes. Page content is represented so that the characters, words,
and text order can be determined reliably. We’ll learn about some more advantages of
tagged PDFs when we discuss PDF/UA, and we’ll create tagged PDFs in chapter 15.

 Another important step in the history of PDF ISO specifications is PDF/E.

E FOR ENGINEERING

PDF/E, or ISO 24517-1:2008, was ratified by ISO as an open standard in June 2007.
Based on PDF 1.6, it’s meant to be used in engineering workflows. It was designed to
be an open and neutral exchange format for engineering and technical documenta-
tion. PDF/E provides secure distribution of intellectual property and reliable
exchange and change management. It also reduces costs associated with paper
(including the cost to store and archive paper). It covers three primary areas:

■ Compact, accurate printing of engineering drawings.
■ Support for exchanging and managing annotation and comment data.
■ Incorporation of complex data into PDF (3D, object-level data, and so on)

There’s no direct support for PDF/E in iText yet. But there’s already some functional-
ity added that will be mandatory for PDF/UA.

UA FOR UNIVERSAL ACCESSIBILITY

To make the document accessible for the visually impaired, a PDF file should contain a
logical reading order, images should be given alternate descriptions, and so on. All of
these requirements will be bundled in the soon to be published ISO/AWI 14289.

Sets conformance
to PDF/A level B

Creates XMP
metadataB

C Embeds
fonts

D Sets output
intents
Licensed to Bruno Lowagie <bruno@lowagie.com>

423PDF, why and how?
 The mission of PDF/UA is to develop technical and other standards for the author-
ing, remediation, and validation of PDF content to ensure accessibility for people who
use assistive technology, such as screen readers.

This is not meant to be a techniques (how to) specification, but rather a set of guidelines
for creating accessible PDF. The components and their structure are highly dependent
upon which objects (graphics, text, multimedia, form fields) are to be present in the PDF
file. The specification will describe such components and the conditions governing their
inclusion in a PDF file in order to be considered accessible for a particular document type.

—AIIM, PDF/UA, Universal Accessibility Committee Scope

The mechanism of tagged PDF offers a number of techniques for different aspects of
PDF accessibility. We’ll take a look at some of these techniques in section 15.2.2. For
instance, you can add extra tags that make it easier to understand a text that’s read
out loud by the speech software that’s integrated into Adobe Reader.

FAQ Can I use iText to convert a plain PDF document to PDF/X, PDF/A, …? This is not
possible out of the box for several reasons: external resources are needed (for
instance, fonts need to be embedded), iText doesn’t have the “intelligence” to
add tags (for PDF/A level A, you need to add structure information that isn’t
there), iText doesn’t convert RGB colors into CMYK, and so on. There are com-
mercial tools that can help you to turn a plain PDF into a PDF/X, PDF/A, ... doc-
ument, but these tools usually need human input to make decisions.

We’ve talked about different ISO specifications for PDF, but there are plenty of other
flavors of PDF files.

OTHER TYPES OF PDF

This is a nonexhaustive list of PDF and PDF-related types of documents you can
encounter:

■ Tagged PDF—As explained when we talked about PDF/A and PDF/UA, you can
add extra structure to a PDF file that allows a PDF consumer to “understand” the
content.

■ Linearized PDF—A linearized PDF file is organized in a special way to enable efficient
incremental access, thus enhancing the viewing performance. Its primary goal is
to display the first page as quickly as possible without the need to read all of the
rest of the file or to read the cross-reference table that normally is at the end of
the file. This enhances the experience when viewing a PDF file over a streaming
communications channel such as the internet. Linearized PDF is sometimes
referred to as PDF for “fast web view.” When data for a page is delivered over a slow
channel, you’d like to have the page content displayed incrementally as it arrives.
With the essential cross-reference table at the end of the file, this is not possible
unless the file is linearized.

Linearization can only be done after the PDF file is complete and after all
resources are known. iText can read linearized PDFs, but it can’t create a linear-
ized PDF, nor can you linearize an existing PDF using iText.
Licensed to Bruno Lowagie <bruno@lowagie.com>

424 CHAPTER 13 PDFs inside-out
■ PDF/H—PDF for the healthcare providers and consumers. PDF/H is described in
a “Best Practices Guide.” It aims to provide a more secure electronic container for
storing and transferring healthcare information, including documents, XML
data, DICOM images and data, clinical notes, lab reports, electronic forms,
scanned images, photographs, digital X-rays, and ECGs.

■ XML Data Package (XDP)—When we discussed dynamic XFA forms, we had a PDF
that was used as the container and an XML stream embedded in the PDF repre-
senting the content of the PDF. In an XDP file, it’s the other way around. An
XDP file is an XML file that packages a PDF file (base64 encoded), along with
XML form and template data. PDF and XDP are interchangeable representa-
tions of the same underlying electronic form. PDF offers advantages for large
documents, when file size is important, or when forms contain images. XDP
is interesting when forms have to fit in an XML workflow and data needs to
be manipulated by software that isn’t PDF-aware. XDP files aren’t supported
in iText.

There are other types of PDF in the works, such as PDF/VT (for the variable and trans-
actional printing industry). Some specifications have emerged, and then disappeared,
never to be heard about again; for example, Adobe Mars was another XML alternative
for PDF by Adobe.

 But that’s outside the scope of this book. Let’s return to the PDF and find out why
Jim King sometimes calls it object-oriented PostScript.

13.2 Understanding the Carousel Object System
Although Carousel was only a code name for what later became Acrobat, the name is
still used to refer to the way a PDF file is composed. In part 1 of this book, you worked
with the high-level API of iText, creating a document using objects that implement the
Element interface. On the lowest level, iText works with objects that are derived from
the abstract class PdfObject. This was one of the first iText classes that was written,
immediately followed by the basic PDF objects in the Carousel Object System.

13.2.1 Basic PDF objects

There are eight basic types of objects in PDF. They’re explained in sections 7.3.2
to 7.3.9 in ISO-32000-1. Table 13.2 lists these types as well as their corresponding
objects in iText.

Table 13.2 Overview of the basic PDF objects

PDF object iText object Description

Boolean PdfBoolean This type is similar to the Boolean type in programming languages
and can be true or false.

Numeric
object

PdfNumber There are two types of numeric objects: integer and real. You’ve
used them frequently to define coordinates, font sizes, and so on.
Licensed to Bruno Lowagie <bruno@lowagie.com>

425Understanding the Carousel Object System
You’ve used subclasses of these objects frequently in previous chapters:

■ PdfAction, PdfFormField, and PdfOutline are only a few of the many sub-
classes of the PdfDictionary class.

■ PdfRectangle is a special type of PdfArray because it’s a sequence of four values:
[llx, lly, urx, ury].

■ PdfDate extends PdfString because a date is a special type of string.

These objects are called direct when they’re used as shown in the following code snippet:

<<
 /CreationDate(D:20100219095234+01'00')
 /Producer(iText 5.0.2 \(c\) 1T3XT BVBA)
 /ModDate(D:20100219095234+01'00')
>>

String PdfString String objects can be written in two ways:

■ As a sequence of literal characters enclosed in parentheses: ()
■ As hexadecimal data enclosed in angle brackets: < >

Beginning with PDF 1.7, the type string is further qualified in the
documentation as text string, PDFDocEncoded string, ASCII string,
and byte string depending upon how the string is used in each par-
ticular context.

Name PdfName A name object is an atomic symbol uniquely defined by a
sequence of characters. You’ve been using names as keys for dic-
tionaries, to define a destination on a page, and so on. You can
easily recognize them in a PDF file because they’re all introduced
with a forward slash: /.

Array PdfArray An array is a one-dimensional collection of objects, arranged
sequentially between square brackets. You’ve used arrays to define
the size of a page; for instance, [0 0 595 842].

Dictionary PdfDictionary A dictionary is an associative table containing pairs of objects
known as dictionary entries. The key is always a name; the value
can be (a reference to) any other object. The collection of pairs is
enclosed by double angle brackets: << and >>.

Stream PdfStream Like a string object, a stream is a sequence of bytes. The main dif-
ference is that a PDF consumer reads a string entirely, whereas a
stream is best read incrementally. Strings are generally used for
small pieces of data; streams are used for large amounts of data.
Each stream consists of a dictionary followed by zero or more
bytes bracketed between the keywords stream (followed by new-
line) and endstream.

Null object PdfNull This type is similar to the null object in programming languages.
Setting the value of a dictionary to null is equivalent to omitting
the entry.

Table 13.2 Overview of the basic PDF objects (continued)

PDF object iText object Description
Licensed to Bruno Lowagie <bruno@lowagie.com>

426 CHAPTER 13 PDFs inside-out
This is a dictionary with three entries. The key of each entry is a name; in this case the
value of each entry is a string.

 An object can also be labeled as an indirect object:

5 0 obj
<<
 /Type/Catalog
 /Pages 3 0 R
>>
endobj

Using the keywords obj and endobj, the object is given a unique object identifier by
which other objects can refer to it. The value of the /Pages entry is such a refer-
ence: 3 0 R is an indirect reference to the indirect object with number 3.

NOTE A stream object may never be used as a direct object. For example, if
an entry in a dictionary is a stream, the value always has to be an indirect ref-
erence to an indirect object containing a stream. The stream dictionary
always has to be a direct object. This dictionary contains information about
the stream, such as its length in bytes and the filter that was used to compress
the stream.

When you look inside a PDF file, you’ll find out that a large part of the PDF consists of
a series of indirect objects.

13.2.2 The PDF file structure

Figure 13.2 shows two PDF files opened in Notepad++. Extra lines were added to iden-
tify the different parts.

 In general, a PDF has four parts:

■ The header—Discussed in section 1.3.3. It specifies the PDF version (which can
be overruled in the Catalog dictionary) and contains a comment section that
ensures that the file’s content is treated as binary content.

■ The body—Contains a sequence of indirect objects that make up the document:
pages, outlines, annotations, and so on.

■ The cross-reference table—Contains information that allows random access to the
indirect objects in the body.

■ The trailer—Gives the location of the cross-reference table and of certain special
objects in the body of the file.

You can see these four parts in the PDF in the background of figure 13.2. The PDF in the
foreground is slightly different. That PDF is fully compressed (see section 12.2.1). The
trailer is shorter. The cross-reference table isn’t missing, but it’s compressed in the
object with number 8. Object 5 is a so-called object stream, in which a sequence of indi-
rect objects may be stored as an alternative to their being stored at the outermost file
level. The purpose of such an object stream is to allow objects other than streams to be
stored more compactly by using the facilities provided by stream compression filters.
Licensed to Bruno Lowagie <bruno@lowagie.com>

427Understanding the Carousel Object System
It’s also possible to create a PDF in append mode. In this case, the four parts of the
original file are kept intact, and an extra body, cross-reference table, and trailer are
added. There are different reasons why you might choose to work in append mode:

■ To avoid signatures being invalidated when adding multiple signatures (see sec-
tion 12.4.3)

■ To preserve the usage rights when filling out Reader-enabled forms (see sec-
tion 8.7)

■ To make it possible to restore previous revisions of a document (see listings 13.4
and 13.5)

There will also be more than one body, xref, and trailer when you open a linearized
PDF in a text editor. Linearized PDF files have the first page’s cross-reference table at
the beginning of the file. This way, a PDF viewer has all the necessary information to
show the first page, even before the content of the second page is downloaded. Page
two can be shown before page three is downloaded, and so on. Linearized PDFs are
the exception to the rule. In all other cases, a PDF viewer has to start reading a PDF file
at the end.

Figure 13.2 Hello World PDFs opened in Notepad++
Licensed to Bruno Lowagie <bruno@lowagie.com>

428 CHAPTER 13 PDFs inside-out
EXAMINING THE CONTENT OF A PDF FILE

Let’s look at a simple PDF file that isn’t fully compressed and that isn’t linearized.

%PDF-1.4
%âãÏÓ
2 0 obj
<<
 /Filter/FlateDecode
 /Length 65
>>stream
... binary content ...
endstream
endobj
4 0 obj
<<
 /Type/Page
 /Contents 2 0 R
 /Parent 3 0 R
 /Resources<<
 /ProcSet [/PDF /Text /ImageB /ImageC /ImageI]
 /Font<</F1 1 0 R>>
 >>
 /MediaBox[0 0 595 842]
>>
endobj
1 0 obj
<<
 /Type/Font
 /BaseFont/Helvetica
 /Subtype/Type1
 /Encoding/WinAnsiEncoding
>>
endobj
3 0 obj
<<
 /Count 1
 /Type/Pages
 /Kids[4 0 R]
>>
endobj
5 0 obj
<<
 /Type/Catalog
 /Pages 3 0 R
>>
endobj
6 0 obj
<<
 /CreationDate(D:20100219095234+01'00')
 /Producer(iText 5.0.2 \(c\) 1T3XT BVBA)
 /ModDate(D:20100219095234+01'00')
>>
endobj

Listing 13.3 hello.pdf

File header

C Object 2: page
content stream

E Object 4: page
dictionary

B Object 1: font
dictionary

D Object 3: root
of page tree

F Object 5: root
dictionary

G Object 6: info
dictionary
Licensed to Bruno Lowagie <bruno@lowagie.com>

429Understanding the Carousel Object System
xref
0 7
0000000000 65535 f
0000000303 00000 n
0000000015 00000 n
0000000391 00000 n
0000000146 00000 n
0000000463 00000 n
0000000508 00000 n
trailer
<<
 /ID [<5e0d7cc9eb4cdc1e92194d99c3e312db>
 <c5a8419692ef5f80ea392700552701ae>]
 /Root 5 0 R
 /Size 7
 /Info 6 0 R
>>
startxref
647
%%EOF

Listing 13.3 shows the contents of the hello.pdf file. You created this file in listing 1.1
of chapter 1. Note that the file has been slightly reorganized to improve its readability.

 You need to start reading this file at the end. The last line of each PDF file should
contain the end-of-file marker, %EOF. The two preceding lines contain the keyword
startxref and the byte offset of the cross-reference table. That’s the position of the
word xref counted from the start of the file.

THE TRAILER

The trailer begins with the keyword trailer, followed by the trailer dictionary. In list-
ing 13.3, the first entry of this dictionary is a file identifier. The /Size entry shows the
total number of entries in the file’s cross-reference table. There are two references to
special dictionaries: the /Info key to the info dictionary and the /Root key to the cata-
log dictionary. The info dictionary contains the metadata discussed in section 12.1.1;
we’ll take a closer look at the catalog in section 13.3.

NOTE For fully compressed PDF files, startxref is followed by the byte offset
of the cross-reference stream. In the compressed file shown in figure 13.2, the
entries of the trailer dictionary were moved to the /XRef dictionary in the
cross-reference stream.

Other possible entries in the trailer dictionary are the /Encrypt key, which is required
if the document is encrypted, and the /Prev key, which is present only if the file has
more than one cross-reference section.

 This listing creates a PDF file with two cross-reference tables, reusing the hello.pdf
file created in listing 1.1.

PdfReader reader = new PdfReader(src);
PdfStamper stamper =
 new PdfStamper(reader, new FileOutputStream(dest), '\0', true);

Listing 13.4 AppendMode.java

Cross-reference
table

Trailer
Licensed to Bruno Lowagie <bruno@lowagie.com>

430 CHAPTER 13 PDFs inside-out
PdfContentByte cb = stamper.getUnderContent(1);
cb.beginText();
cb.setFontAndSize(BaseFont.createFont(), 12);
cb.showTextAligned(Element.ALIGN_LEFT, "Hello People!", 36, 770, 0);
cb.endText();
stamper.close();

At first sight, this looks like a typical PdfStamper example from part 2 of this book.
The only difference is that you use extra parameters to create the stamper object. The
binary null ('/0') ensures that the PDF version of the original PDF file won’t be
changed. The boolean value indicates whether the original file should be appended
(true) or not (false). This example tells iText to preserve the original file; the extra
content is added after the end-of-file marker of the original file.

 When you open the resulting file in a text editor, you’ll see the exact same content
as shown in listing 13.3, followed by the content of this listing.

... Unaltered content of listing 13.3 ...
7 0 obj
<<
 /Type/Font
 /BaseFont/Helvetica
 /Subtype/Type1
 /Encoding/WinAnsiEncoding
>>
endobj
8 0 obj
<<
 /Filter/FlateDecode
 /Length 63
>>stream
... binary content ...
endstream
endobj
4 0 obj
<<
 /Type/Page
 /Contents[8 0 R 2 0 R]
 /Parent 3 0 R
 /Resources<<
 /ProcSet [/PDF /Text /ImageB /ImageC /ImageI]
 /Font<</F1 1 0 R/Xi0 7 0 R>>
 >>
 /MediaBox[0 0 595 842]
>>
endobj
3 0 obj
<<
 /Count 1
 /Type/Pages
 /Kids[4 0 R]
>>
endobj

Listing 13.5 appended.pdf

H Object 7: font
dictionary

I Object 8: part of page
content stream

E Object 4: page
dictionary

D Object 3: root
of page tree
Licensed to Bruno Lowagie <bruno@lowagie.com>

431Understanding the Carousel Object System
6 0 obj
<<
 /CreationDate(D:20100220120417+01'00')
 /Producer(iText 5.0.2 \(c\) 1T3XT BVBA)
 /ModDate(D:20100220120417+01'00')
>>
endobj
xref
0 1
0000000000 65535 f
3 2
0000001324 00000 n
0000001150 00000 n
6 3
0000001396 00000 n
0000000933 00000 n
0000001021 00000 n
trailer
<<
 /Prev 647
 /ID [<a98da95e3ed2cce8ce81c963fab0f64f>
 <eabe5f84e63aa0be734786337345d78b>]
 /Root 5 0 R
 /Size 9
 /Info 6 0 R
>>
startxref
1535
%%EOF

You’ll recognize the indirect objects in the body. They can occur in any order; for
instance, C, E, B, D, F, G in listing 13.3, and H, I, E, D, G in listing 13.5. An
application reading the PDF (for instance, using the PdfReader class), can find the dif-
ferent objects thanks to the cross-reference table.

THE CROSS-REFERENCE TABLE

The cross-reference table stores the information required to locate every indirect
object in the body.

 For reasons of performance, a PDF consumer doesn’t read the entire file. Imagine
a document with 10,000 pages. If you only need to see the last page, a PDF viewer
doesn’t have to know what’s inside the 9999 previous pages. It can use the cross refer-
ence to find the resources for the requested page in no time.

 The cross-reference table contains two types of lines:

■ Lines with two numbers—For example, 6 3 in listing 13.5 means the next line is
about object 6 in a series of three consecutive objects: 6, 7, and 8.

■ Lines with exactly 20 bytes—A 10-digit number represents the byte offset; a 5-digit
number indicates the generation of the object. If these numbers are followed
by the keyword n, the object is in use. Otherwise, the keyword f is present,
meaning the object is free. These three parts are separated by a space character
and end with a 2-byte end-of-line sequence.

G Object 6: info
dictionary

Cross-reference
table

Trailer
Licensed to Bruno Lowagie <bruno@lowagie.com>

432 CHAPTER 13 PDFs inside-out
The first entry in the xref table is always free and has a generation number of 65,535.
Except for this 0 object, all objects in the cross-reference table have a generation num-
ber 0. In theory, the generation number of objects 3, 4, and 6 in listing 13.5 should
have been 1; these objects replace the objects with the same number in listing 13.3. In
practice, the use of generation numbers has been abandoned. It was one of the items
that was eligible for removal when writing ISO-32000-1, but eventually the concept
remained part of the specification, although not many products implement it.

 Now pretend that you’re a PDF viewer; how do you read a PDF file?

13.2.3 Climbing up the object tree

You need to start at the end to find the offset of the cross-reference tree. The first
object you need is the root object, aka the catalog. The trailer dictionary tells you that you
need object 5:

5 0 obj
<<
 /Type/Catalog
 /Pages 3 0 R
>>
endobj

The catalog contains a reference to a pages dictionary. This is the root of the page tree;
see the following indirect object:

3 0 obj
<<
 /Count 1
 /Type/Pages
 /Kids[4 0 R]
>>
endobj

Such a dictionary can refer to branches—other /Pages dictionaries—and leaves—
/Page dictionaries. This is a simple example containing only one page (/Count 1).

 The /Kids array only has one value, a reference to object 4:

4 0 obj
<<
 /Type/Page
 /Contents[8 0 R 2 0 R]
 /Parent 3 0 R
 /Resources<<
 /ProcSet [/PDF /Text /ImageB /ImageC /ImageI]
 /Font<</F1 1 0 R/Xi0 7 0 R>>
 <<
 /MediaBox[0 0 595 842]
>>
endobj

This page has references to the original content, the stream in indirect object C in
listing 13.3, and the new content added with listing 13.4, object I. Each page also has
Licensed to Bruno Lowagie <bruno@lowagie.com>

433Understanding the Carousel Object System
a back-reference to its parent, in this case object D in listing 13.3. The /Resources
dictionary tells you which resources are needed to render the page. In this case, you’ll
find references to font objects, but in more complex examples you’ll find references
to form and image XObjects. If a page has annotations, there will also be an /Annots
entry in the page dictionary. The size of the page is defined by the /MediaBox rectan-
gle (there’s no /CropBox in this example).

 A PDF viewer has no problem finding, using, and reusing the different objects that
compose a page. Although you’ve pretended to be a PDF viewer, you’re not. In the past,
I’ve “climbed the object tree” of many PDF files looking for bugs in the PDF, scrolling up
and down in a text editor. This may be easy for a simple file, as shown in listings 13.3
and 13.5, but it’s far from easy in larger files, especially if they contain more than one
trailer or if objects are compressed in a stream. That’s why I wrote a tool named RUPS.
Rups is a Dutch word meaning caterpillar. It’s also an acronym for Reading and Updating
PDF Syntax. It’s not possible to update the syntax of a PDF document yet, but you can
already use RUPS to browse through the internal structure like a caterpillar.

 Figure 13.3 shows the ebook version of the first edition of iText in Action opened in
RUPS.

Figure 13.3 The iText in Action, first edition ebook opened in RUPS
Licensed to Bruno Lowagie <bruno@lowagie.com>

434 CHAPTER 13 PDFs inside-out
In the left panel, you can see the objects that make up the PDF file in a tree. In this fig-
ure, I started with the catalog dictionary, opened the /Pages entry (object 31260),
went into the /Kids array, and selected indirect object 1325 which is in turn a /Pages
dictionary. I went into that /Kids array and selected object 1253. This is page 30 of the
PDF, labeled page 1 (the first 29 pages are numbered i, ii, iii, iv, and so on). To see
what’s inside that page, I opened the /Contents entry of the page dictionary. I clicked
the word Stream, which allows me to consult the stream dictionary in the bottom-left
panel. The actual stream is shown in the bottom-right panel.

 That’s one way to find page 30. A simpler way is to select page 30 in the Pages
panel on the right. The tree will open automatically, showing the /Page dictionary of
the selected page. The right pane also contains panels that allow you to jump to the
objects that form the outline tree, an AcroForm, or an XFA form, and there’s also a
complete overview of the cross-reference table.

 This tool is under development; the GUI may change, and more functionality may
be added in the near future, but I’m already using it extensively when people post
questions about “PDFs that don’t work.” If you know the PDF specification, you can use
RUPS to find out what’s wrong with a broken PDF.

 In the next section, we’ll dig into ISO-32000-1 to find out more about the entries
in the catalog dictionary that deal with viewer preferences, pages, destinations, and
AcroForms.

13.3 Exploring the root of a PDF file
Table 28 in ISO-32000-1 lists the possible entries in the catalog dictionary. Some of
these entries should already look familiar because we’ve discussed them before:

■ Version and Extensions—As explained in section 1.3.3, the PDF version can be
found in the header of a PDF file, but this version number can be overruled if
the /Version key is present in the catalog. As shown in table 13.1, you can also
specify which extensions from which company are used. The version is set using
the method PdfWriter.setPdfVersion(); the extension can be defined using
the PdfDeveloperExtension class, and it can be added to the PDF with Pdf-
Writer.addDeveloperExtension().

■ OpenAction and AA—In section 7.1.4, you added actions triggered by events to a
PDF: an open action and additional actions. If the document has an open action,
you’ll find an array specifying a destination or an action dictionary in the /Open-
Action entry. The /AA entry can contain a dictionary with keys referring to events
such as PdfWriter.WILL_PRINT or PdfWriter.DOCUMENT_CLOSE. If you look at the
source code of PdfWriter, you’ll see that these constants are PdfName objects.

■ Metadata—This refers to an XMP stream containing metadata about the complete
document; see section 12.1.2. Note that a stream always has to be added as an indi-
rect object, and that an XMP stream can never be compressed or encrypted.

■ OutputIntents—Listing 13.2 defines an output intent. The catalog contains an
array of dictionaries that specify the color characteristics of output devices on
which the document might be rendered.
Licensed to Bruno Lowagie <bruno@lowagie.com>

435Exploring the root of a PDF file
We won’t go into further detail as far as these entries are concerned, but we’ll select
some other entries for a closer look.

13.3.1 Page layout, page mode, and viewer preferences

If you open a document in Adobe Reader, and no viewer preferences are specified
inside the document, the Reader shows the document using default settings for the
zoom factor, the visibility of toolbars, and so on. The panes or panels to the left, show-
ing bookmarks, for example, are closed by default. You can change this default behav-
ior by setting three entries in the catalog dictionary: /PageLayout, /PageMode, and /
ViewerPreferences. You can do this using the setViewerPreferences() and
addViewerPreference() convenience methods, which are present in PdfWriter as
well as in PdfStamper. The setViewerPreferences() method expects an int value
that’s a combination of the values for the page layout (table 13.3) and the page mode
(table 13.4).

PAGE LAYOUT

With the values in table 13.3, you can specify the page layout to be used when a docu-
ment is opened.

Figure 13.4 shows documents that are opened using (from left to right) PageLayout-
TwoColumnLeft, PageLayoutTwoColumnRight, and PageLayoutOneColumn. You can
change the page layout by choosing View > Page Display. Note that features described
in the PDF reference are often referred to by another name in end-user products. In
Acrobat terminology, you have the choice of displaying Single Page, Single Page Con-
tinuous, Two-Up, and Two-Up Continuous.

 The version number is set to PDF 1.5 in listing 13.6, because that’s when the values
/TwoPageLeft and /TwoPageRight were introduced.

Table 13.3 Page layout values

Value Description

PageLayoutSinglePage Displays one page at a time (this is the default).

PageLayoutOneColumn Displays the pages in one column.

PageLayoutTwoColumnLeft Displays the pages in two columns, with odd-
numbered pages on the left.

PageLayoutTwoColumnRight Displays the pages in two columns, with odd-
numbered pages on the right.

PageLayoutTwoPageLeft Displays the pages two at a time, with odd-
numbered pages on the left.

PageLayoutTwoPageRight Displays the pages two at a time, with odd-
numbered pages on the right.
Licensed to Bruno Lowagie <bruno@lowagie.com>

436 CHAPTER 13 PDFs inside-out
PdfWriter writer
 = PdfWriter.getInstance(document, new FileOutputStream(filename));
writer.setPdfVersion(PdfWriter.VERSION_1_5);
writer.setViewerPreferences(viewerpreference);

With page layout preferences, you define how the pages are organized in the docu-
ment window. With page mode preferences, you can define how the document opens
in Adobe Reader.

PAGE MODE

Table 13.4 lists page mode preferences. This gives you an idea of the different panels
available in Adobe Reader.

Listing 13.6 PageLayoutExample.java

Table 13.4 Page mode values

Value Description

PageModeUseNone None of the tabs on the left are selected (this is the default).

PageModeUseOutlines The document outline is visible (bookmarks).

PageModeUseThumbs Images corresponding with the page are visible.

Figure 13.4 Page layout with columns
Licensed to Bruno Lowagie <bruno@lowagie.com>

437Exploring the root of a PDF file
Typically, these page modes are set to stress the fact that the document has book-
marks, optional content, and so on. We’ll discuss optional content in chapter 15 and
attachments in chapter 16.

 With page layout and page mode, you’re supposed to choose one option from
each list. It doesn’t make sense to choose two different page layout or page mode val-
ues, but you can always combine a page mode with a page layout option. For instance,

PdfWriter.PageLayoutTwoColumnRight | PdfWriter.PageModeUseThumbs

If you choose a full-screen mode, you can add another option related to the panel to
the left. This preference specifies how to display the document on exiting full-screen
mode; see table 13.5.

These options only make sense if the page mode is full screen. For instance,

PdfWriter.PageModeFullScreen | PdfWriter.NonFullScreenPageModeUseOutlines

Note that you can exit full-screen mode using the Escape key.
 The value that’s set when you choose one of these NonFullScreenPageMode

options can be found as an entry in the /ViewerPreferences dictionary.

VIEWER PREFERENCES

In the View menu of Adobe Reader, you can select toolbar items that must be shown
or hidden. You can control the initial state of some of these items by setting the viewer
preferences listed in table 13.6.

PageModeFullScreen Full-screen mode; no menu bar, window controls, or any other
windows are visible.

PageModeUseOC The optional content group panel is visible (since PDF 1.5).

PageModeUseAttachments The attachments panel is visible (since PDF 1.6).

Table 13.5 Page mode values on exiting full-screen mode

Value Description

NonFullScreenPageModeUseNone None of the tabs at the left are visible.

NonFullScreenPageModeUseOutlines The document outline is visible.

NonFullScreenPageModeUseThumbs Thumbnail images corresponding with the pages
are visible.

NonFullScreenPageModeUseOC The optional content group panel is visible.

Table 13.4 Page mode values (continued)

Value Description
Licensed to Bruno Lowagie <bruno@lowagie.com>

438 CHAPTER 13 PDFs inside-out
With the following preference values, you can determine the predominant order of
the pages.

■ DirectionL2R—Left to right (the default).
■ DirectionR2L—Right to left, including vertical writing systems such as Chinese,

Japanese, and Korean.

This preference also has an effect on the way pages are shown when displayed side by
side.

FAQ How can I show the title of the PDF in my browser window? How can I hide the
location bar of my browser? We’re talking about viewer preferences, not about
browser preferences. The Reader plug-in isn’t able to control the settings of
the browser, unless you embed the PDF as an object in an HTML page and use
JavaScript as described in section 9.3.

These viewer preferences can also be set using the setViewerPreferences() method.
For example,

writer.setViewerPreferences(PdfWriter.FitWindow | PdfWriter.HideToolbar);

You can also add the entries of the viewer preferences dictionary using the addView-
erPreference() method, like this:

writer.addViewerPreference(PdfName.FITWINDOW, PdfBoolean.TRUE);
writer.addViewerPreference(PdfName.HIDETOOLBAR, PdfBoolean.TRUE);

This method can also be used with the keys shown in table 13.7 and one of the page
boundaries discussed in section 5.3 as the value: PdfName.MEDIABOX, PdfName.CROP-
BOX, PdfName.BLEEDBOX, PdfName.TRIMBOX, or PdfName.ARTBOX.

Table 13.6 Values for the viewer preferences

Value Description

HideToolbar Hides the toolbar when the document is opened.

HideMenubar Hides the menu bar when the document is opened.

HideWindowUI Hides UI elements in the document’s window (such as scrollbars and naviga-
tion controls), leaving only the document’s contents displayed.

FitWindow Resizes the document’s window to fit the size of the first displayed page.

CenterWindow Puts the document’s window in the center of the screen.

DisplayDocTitle Displays the title that was added in the metadata in the top bar (otherwise
the filename is displayed).
Licensed to Bruno Lowagie <bruno@lowagie.com>

439Exploring the root of a PDF file
The viewer preferences also include a number of printing preferences.

PRINTING PREFERENCES

When an end user chooses to print a document, a Print dialog box is displayed, in
which the page range, the number of copies, and so on, can be set. You can help the
end user by predefining values for some of the keys listed in table 13.8.

Figure 13.5 shows a Print dialog box with some values that were set using viewer
preferences.

 Listing 13.7 shows how it was done.

Table 13.7 More viewer preferences

Key Description

PdfName.VIEWAREA Defines the area of the pages that will be displayed when viewing the docu-
ment on the screen.

PdfName.VIEWCLIP Clips the contents of the pages when viewing the document on the screen.

PdfName.PRINTAREA Defines the area of the pages that will be rendered when printing the document.

PdfName.PRINTCLIP Clips the contents of the pages when printing the document.

Table 13.8 Keys and values of printing preferences

Key Possible values

PdfName.PRINTSCALING Valid values are PdfName.NONE, which indicates no page scal-
ing, and PdfName.APPDEFAULT, which indicates the con-
forming Reader’s default print scaling.

PdfName.DUPLEX The value can be PdfName.SIMPLEX (print single-sided),
PdfName.DUPLEXFLIPSHORTEDGE (duplex printing, flip on
the short edge of the sheet), PdfName.DUPLEXFLIPLONG-
EDGE (duplex printing, flip on the long edge of the sheet).

PdfName.PICKTRAYBYPDFSIZE Expects a PdfBoolean. If set to PDFTRUE, the check box in
the Print dialog box associated with input paper tray will be
checked.

PdfName.PRINTPAGERANGE Expects a PdfArray containing an even number of integers to
be interpreted in pairs, with each pair specifying the first and
last pages in a subrange of pages to be printed. The first page
of the PDF file is denoted by 1.

PdfName.NUMCOPIES Expects a PdfNumber. Supported values are the integers 2
through 5. Values outside this range are ignored.
Licensed to Bruno Lowagie <bruno@lowagie.com>

440 CHAPTER 13 PDFs inside-out
PdfWriter writer
 = PdfWriter.getInstance(document, new FileOutputStream(filename));
writer.setPdfVersion(PdfWriter.VERSION_1_5);
writer.addViewerPreference(PdfName.PRINTSCALING, PdfName.NONE);
writer.addViewerPreference(PdfName.NUMCOPIES, new PdfNumber(3));
writer.addViewerPreference(PdfName.PICKTRAYBYPDFSIZE, PdfBoolean.PDFTRUE);

Not every viewer supports all these viewer preferences. ISO-32000-1 warns that most
viewers disregard /ViewArea, /ViewClip, /PrintArea, /PrintClip, and that /Pick-
TrayByPDFSize only works on operating systems that have the ability to pick the
input tray by size. You also can’t force an end user to use these preferences: they can
always change the page layout, the page mode, the properties of the viewer, and the
printer settings.

Listing 13.7 PrintPreferencesExample.java

Figure 13.5 Print dialog box with default values set using viewer preferences
Licensed to Bruno Lowagie <bruno@lowagie.com>

441Exploring the root of a PDF file
FAQ Why are the measurements not correct when I print a PDF? A lot of printers have
margin limitations; they can’t print anything close to the borders of the page.
The amount of space that’s left blank varies from printer to printer. If you look
at figure 13.5, you’ll see that there’s a property named Page Scaling. Possible val-
ues for this property are None, Fit to Printable Area, Shrink to Printable Area,
Multiple Pages per Sheet, and Booklet Printing. You need to set the page scaling
to none if you don’t want the measurements to be scaled down.

This concludes our overview of the viewer preferences that can be set for a PDF docu-
ment. Let’s continue with the catalog entries concerning pages.

13.3.2 Pages and page labels

The value of the /Pages entry in the catalog dictionary refers to the root of the page
tree. ISO-32000-1 explains how pages are organized inside a PDF document:

The pages of a document are accessed through a structure known as the page tree, which
defines the ordering of pages in the document. Using the tree structure, [PDF] readers
using only limited memory, can quickly open a document containing thousands of
pages. The tree contains nodes of two types—intermediate nodes, called page tree nodes,
and leaf nodes, called page objects—whose form is described in the subsequent sub-
clauses ... The simplest structure can consist of a single page tree node that references all
of the document’s page objects directly. However, to optimize application performance, a
[PDF] writer can construct trees of a particular form, known as balanced trees.

—ISO-32000-1 section 7.7.3.1

In section 5.2.4, you learned that iText automatically creates a balanced tree, unless
you use the setLinearPageMode() method. Linear page mode was necessary if you
wanted to be able to reorganize the order of the pages.

MANIPULATING PAGE DICTIONARIES

If you want to inspect the resources of a specific page, you don’t have to walk through
the page tree; iText can do this for you if you use the method getPageN(). The next
listing shows how you can get the page dictionary to change the page boundaries.

public void manipulatePdf(String src, String dest)
 throws IOException, DocumentException {
 PdfReader reader = new PdfReader(src);
 int n = reader.getNumberOfPages();
 PdfDictionary pageDict;
 PdfRectangle rect = new PdfRectangle(55, 76, 560, 816);
 for (int i = 1; i <= n; i++) {
 pageDict = reader.getPageN(i);
 pageDict.put(PdfName.CROPBOX, rect);
 }
 PdfStamper stamper
 = new PdfStamper(reader, new FileOutputStream(dest));
 stamper.close();
}

Listing 13.8 CropPages.java

Loops over
all pages

Adds entry

Creates
altered PDF
Licensed to Bruno Lowagie <bruno@lowagie.com>

442 CHAPTER 13 PDFs inside-out
Listing 13.8 demonstrates a technique that’s very powerful. In previous examples,
you’ve created PdfReader instances to retrieve properties from PDF files. Now you also
change some of the objects in the PDF. In this case, you add an extra entry to the page
dictionary of every page. Once you’ve applied all the changes, you create a new,
altered PDF document using PdfStamper. This is different from what you did in part 2;
you’re manipulating a PDF file at the lowest level.

 The next listing is similar to listing 13.8. Instead of adding an entry, you change
the /Rotate entry, adding 90 degrees to the original value.

public void manipulatePdf(String src, String dest)
 throws IOException, DocumentException {
 PdfReader reader = new PdfReader(MovieTemplates.RESULT);
 int n = reader.getNumberOfPages();
 int rot;
 PdfDictionary pageDict;
 for (int i = 1; i <= n; i++) {
 rot = reader.getPageRotation(i);
 pageDict = reader.getPageN(i);
 pageDict.put(PdfName.ROTATE, new PdfNumber(rot + 90));
 }
 PdfStamper stamper
 = new PdfStamper(reader, new FileOutputStream(RESULT));
 stamper.close();
}

Table 30 in ISO-32000-1 lists all the possible entries in the page dictionary. For
instance, you can find an array referring to all the annotations that are present on the
page (/Annots).

REMOVING LAUNCH ACTIONS

I was once asked to write code that removed every launch action. Launch actions are
triggered from an annotation on a page, but instead of looping over all the pages, I
wrote a loop over all the objects in the PDF file, looking for action dictionaries. When-
ever a launch action was encountered, I replaced it with a JavaScript action.

PdfReader reader = new PdfReader(src);
PdfObject object;
PdfDictionary action;
for (int i = 1; i < reader.getXrefSize(); i++) {
 object = reader.getPdfObject(i);
 if (object instanceof PdfDictionary) {
 action = ((PdfDictionary)object).getAsDict(PdfName.A);
 if (action == null) continue;
 if (PdfName.LAUNCH.equals(action.getAsName(PdfName.S))) {
 action.remove(PdfName.F);
 action.remove(PdfName.WIN);
 action.put(PdfName.S, PdfName.JAVASCRIPT);
 action.put(PdfName.JS, new PdfString(
 "app.alert('Launch Application Action removed by iText');\r"));
 }

Listing 13.9 RotatePages.java

Listing 13.10 RemoveLaunchActions.java

Gets
object

B

Licensed to Bruno Lowagie <bruno@lowagie.com>

443Exploring the root of a PDF file
 }
}
PdfStamper stamper = new PdfStamper(reader, new FileOutputStream(dest));
stamper.close();

Observe that you can ask the reader object for an indirect object with the getPdfOb-
ject() method, passing the number of the object as a parameter B. This code is used
on a mail server that needs to remove possible security hazards from attachments.

 There are no references to page numbers in the page dictionary. Every page is self-
contained and doesn’t care about the other pages in the page tree. The page number
is determined by the order of the page dictionaries in the page tree. When walking
through the page tree, the first page dictionary that’s encountered is the dictionary of
page 1, the second of page 2, and so on. If you want to create page numbers for
“human consumption”—for instance, i, ii, iii for pages 1 to 3, followed by 1, 2, 3 for
pages 4 to 6—you can define page labels.

ADDING PAGE LABELS

With the /PageLabels entry in the catalog, you can define the page labeling for the
document. You can define page label dictionaries for the page indices of your choice.
Each page index will denote the first page in a labeling range to which the specified
page label dictionary applies.

 Figure 13.6 shows a PDF opened on page 3 of 10, but the page label says it’s page 1,
because the first two pages in the page tree are labeled A and B. Starting with page 6
(labeled page 4), the page numbers get a prefix.

Figure 13.6 Page numbers versus page labels
Licensed to Bruno Lowagie <bruno@lowagie.com>

444 CHAPTER 13 PDFs inside-out
This listing shows how shows how the PDF in figure 13.6 was created.

PdfPageLabels labels = new PdfPageLabels();
labels.addPageLabel(1, PdfPageLabels.UPPERCASE_LETTERS);
labels.addPageLabel(3, PdfPageLabels.DECIMAL_ARABIC_NUMERALS);
labels.addPageLabel(6,
 PdfPageLabels.DECIMAL_ARABIC_NUMERALS, "Movies-", 4);
writer.setPageLabels(labels);

This example uses two of the six possible numbering types for the page labels. The
numbering types are listed in table 13.9.

There are different addPageLabel() methods in the PdfPageLabels class. They all
take a page number as the first and a numbering style as the second parameter.
Changing the numbering style resets the page number to 1.

 A method with three parameters can be used to add a String that serves as a pre-
fix. This method can also be used in combination with the EMPTY numbering style if
you want to create text-only page labels.

 The method with four parameters lets you define the first logical page number. In
listing 13.11, when you start labeling pages with "Movies-", you can define that the
first page labeled that way should be page 4.

RETRIEVING AND REPLACING PAGE LABELS

The PdfPageLabels class also has a static method that allows you to get an array of
Strings, containing the page labels of every page:

String[] labels = PdfPageLabels.getPageLabels(new PdfReader(src));

Now suppose you want to change the prefix Movies- shown in figure 13.6 to Film-,
and you want to restart the page count, changing Movies-4 into Film-1. You can do
this using the same technique you’ve used to crop and rotate pages.

Listing 13.11 PageLabelExample.java

Table 13.9 Page label numbering types

Type Description

DECIMAL_ARABIC_NUMERALS Decimal Arabic numerals

UPPERCASE_ROMAN_NUMERALS Uppercase Roman numerals

LOWERCASE_ROMAN_NUMERALS Lowercase Roman numerals

UPPERCASE_LETTERS Uppercase letters: A to Z for the first 26 pages,
AA to ZZ for the next 26, and so on

LOWERCASE_LETTERS Lowercase letters: a to z for the first 26 pages,
aa to zz for the next 26 and so on

EMPTY No page numbers
Licensed to Bruno Lowagie <bruno@lowagie.com>

445Exploring the root of a PDF file
PdfReader reader = new PdfReader(src);
PdfDictionary root = reader.getCatalog();
PdfDictionary labels = root.getAsDict(PdfName.PAGELABELS);
PdfArray nums = labels.getAsArray(PdfName.NUMS);
int n;
PdfDictionary pagelabel;
for (int i = 0; i < nums.size(); i++) {
 n = nums.getAsNumber(i).intValue();
 i++;
 if (n == 5) {
 pagelabel = nums.getAsDict(i);
 pagelabel.remove(PdfName.ST);
 pagelabel.put(PdfName.P, new PdfString("Film-"));
 }
}
PdfStamper stamper = new PdfStamper(reader, new FileOutputStream(dest));
stamper.close();

Here you don’t have a method, such as getPageN(), that takes you straight to the dic-
tionary you need. Instead, you climb up the object tree, jumping from object to object
starting from the root.

RETRIEVING OBJECTS FROM AN ARRAY OR DICTIONARY

PdfDictionary has a get() method that returns the PdfObject that corresponds with
a specific PdfName. This can be a PdfIndirectReference, in which case you have to
look up the corresponding indirect object; or it can be a direct object in the form of a
PdfObject that needs to be cast to the proper type. If you know in advance which type
of object you’ll get, you can use one of the convenience methods listed in table 13.10
(as was done in listing 13.12).

These methods exist for the classes PdfArray, PdfDictionary, and PdfStream. If you
don’t know which object to expect, you can use the getDirectObject() method . If
the value in the array is referenced, the reference will be resolved. If you want to get

Listing 13.12 PageLabelExample.java

Method Return value

getAsBoolean() A PdfBoolean or null

getAsNumber() A PdfNumber or null

getAsString() A PdfString or null

getAsName() A PdfName or null

getAsArray() A PdfArray or null

getAsDict() A PdfDictionary or null

getAsStream() A PdfStream or null

Loops over page
label definitions

Removes start value
for page number

Replaces
prefix

Table 13.10 Convenience
methods for getting specific
objects
Licensed to Bruno Lowagie <bruno@lowagie.com>

446 CHAPTER 13 PDFs inside-out
the PdfIndirectReference object instead of the actual object, you need the getAsIn-
directObject() method .

 You need the PDF reference to understand what happens in listing 13.12—as will
always be the case when you manipulate a PDF at the lowest level. Section 12.4.2
of ISO-32000-1 tells us that the value of the /PageLabels entry is a number tree: an array
(/Nums) with ordered pairs of numbers and values. Each number corresponds with
the index of a page for which a style was defined in listing 13.11. It’s important to note
that page 1 has index 0; if you want to change the page label with prefix Movie- (start-
ing on page 6), you have to look for the page label value corresponding with index 5.
This value is a dictionary whose entries are explained in table 159 of ISO-32000-1. The
key /St is used for the numeric portion for the first page label in the range. If you
remove this entry, the default value will be used: 1. The /P key is used for the label pre-
fix. You can replace it with Film-.

 The functionality offered by iText is comprehensive, but once in a while you’re
confronted with a requirement for which there is no high-level method. The exam-
ples in this chapter are inspired by some of the more exceptional requests that have
been posted to the mailing list. In cases like this, you need to manipulate the PDF at
the lowest level.

 Let’s continue with another not so trivial assignment and explore another feature:
how to add an extra object to an existing PDF file.

13.3.3 Outlines, destinations, and names

In section 7.1.1, you learned how to retrieve the named destinations from a docu-
ment. In section 7.2, you did the same with bookmarks. In the next listing you read
the /Outlines entry directly from the catalog dictionary. You can use the information
retrieved from the bookmarks to create named destinations.

public void manipulatePdf(String src, String dest)
throws IOException, DocumentException {
 PdfReader reader = new PdfReader(src);
 PdfDictionary root = reader.getCatalog();
 PdfDictionary outlines
 = root.getAsDict(PdfName.OUTLINES);
 if (outlines == null)
 return;
 PdfArray dests = new PdfArray();
 addKids(dests, outlines.getAsDict(PdfName.FIRST));
 if (dests.size() == 0)
 return;
 PdfIndirectReference ref = reader.addPdfObject(dests);
 PdfDictionary nametree = new PdfDictionary();
 nametree.put(PdfName.NAMES, ref);
 PdfDictionary names = new PdfDictionary();
 names.put(PdfName.DESTS, nametree);
 root.put(PdfName.NAMES, names);

Listing 13.13 Bookmarks2NamedDestinations.java

Gets
outlines

Creates
array

Fills
array

Adds
array to
readerConstructs

catalog
entry
Licensed to Bruno Lowagie <bruno@lowagie.com>

447Exploring the root of a PDF file
 PdfStamper stamper
 = new PdfStamper(reader, new FileOutputStream(dest));
 stamper.close();
}
public void addKids(PdfArray dests, PdfDictionary outline) {
 while (outline != null) {
 dests.add(outline.getAsString(PdfName.TITLE));
 dests.add(outline.getAsArray(PdfName.DEST));
 addKids(dests, outline.getAsDict(PdfName.FIRST));
 outline = outline.getAsDict(PdfName.NEXT);
 }
}

You’ve already worked with a number tree for page labels; now you’ll work with a name
tree: an array with ordered pairs of strings and values. In the addKids() method, you
use the title of the outlines as the key and the destination of the outline, an array, as
the value. You add the name tree to the document with the method addPdfObject().
An indirect object will be created, and you’ll receive a PdfIndirectReference object
that refers to this new object. You replace the /Names entry in the catalog with a new
one that has a /Dests item. This /Dests item has a /Names entry referring to the newly
created indirect object.

WARNING If the catalog already has a /Names entry, the put() method will
replace it, and you may break existing functionality. The examples in this
chapter explain a mechanism; you shouldn’t copy and paste the code snip-
pets and use them as definitive solutions.

Changing outlines into named destinations is one of the more exotic requirements
I’ve encountered. A more common situation where you may need low-level access to a
PDF involves forms.

13.3.4 AcroForms revisited

The catalog has two entries concerning forms: /AcroForm and /NeedsRendering. The
value of /NeedsRendering is a flag (a boolean). If true, documents containing XFA
forms will be regenerated when the document is first opened. You could check
whether there’s an XFA form inside a PDF by looking for an XFA entry in the Acro-
Form dictionary, but you’ve used easier methods in section 8.6 to get the same result.
In this section, we’ll have a closer look at some problems related to AcroForms that
can be solved using low-level functionality.

FIXING A BROKEN FORM

There’s a plethora of tools that are able to create PDF documents, but the quality of
the PDF that’s produced isn’t always as good. We regularly get questions on the mail-
ing list about forms created by a free UNIX tool. These forms can be filled out using
Acrobat, but not with iText. After inspecting such a form, we discovered that the wid-
get dictionaries of the form fields were present in the /Annots array of the page dic-
tionary, but were missing from the /Fields array of the AcroForm. As a result, the
widgets were rendered correctly on the page, but when seen from the perspective of

Adds entry to
name tree
Licensed to Bruno Lowagie <bruno@lowagie.com>

448 CHAPTER 13 PDFs inside-out
the AcroFields object, the form was empty. Such forms are broken, and iText can’t fill
them until they’re fixed. Let’s look at how to fix them.

 The next bit of code makes the assumption that every annotation in each page is a
widget annotation corresponding to one field. It loops over every page and puts the
references to each annotation into the fields array.

PdfReader reader = new PdfReader(src);
PdfDictionary root = reader.getCatalog();
PdfDictionary form = root.getAsDict(PdfName.ACROFORM);
PdfArray fields = form.getAsArray(PdfName.FIELDS);
PdfDictionary page;
PdfArray annots;
for (int i = 1; i <= reader.getNumberOfPages(); i++) {
 page = reader.getPageN(i);
 annots = page.getAsArray(PdfName.ANNOTS);
 for (int j = 0; j < annots.size(); j++) {
 fields.add(annots.getAsIndirectObject(j));;
 }
}
PdfStamper stamper
 = new PdfStamper(reader, new FileOutputStream(dest));
stamper.close();

The annots object is an array, and this listing assumes that all the elements in this
array are indirect references (instead of direct objects). You get these references with
the getAsIndirectObject() method.

 Although this code sample isn’t perfect, it has already helped many developers.

INSPECTING FIELDS AT A LOW LEVEL

In chapter 8, you used the AcroFields class to manipulate form fields in a PDF docu-
ment. This class offers the most common functionality you’ll need, but sometimes
you’ll need more. For instance, how could you find out whether a text field is a pass-
word field, or a multiline field?

 In the next listing, you’ll get the fields as instances of the inner class Acro-
Fields.Item. From this inner class, you’ll retrieve a dictionary that merges the field
and the widget dictionary. You’ll inspect the field flags, /FF, to see if the PASSWORD or
the MULTILINE bits are set.

PdfReader reader = new PdfReader(src);
AcroFields form = reader.getAcroFields();
Map<String,AcroFields.Item> fields = form.getFields();
AcroFields.Item item;
PdfDictionary dict;
int flags;
for (Map.Entry<String,AcroFields.Item> entry : fields.entrySet()) {
 out.write(entry.getKey());
 item = entry.getValue();

Listing 13.14 FixBrokenForm.java

Listing 13.15 InspectForm.java

Gets (empty)
field array

Gets annotations
array

Adds references
to annotations
Licensed to Bruno Lowagie <bruno@lowagie.com>

449Exploring the root of a PDF file
 dict = item.getMerged(0);
 flags = dict.getAsNumber(PdfName.FF).intValue();
 if ((flags & BaseField.PASSWORD) > 0)
 out.write("-> password");
 if ((flags & BaseField.MULTILINE) > 0)
 out.write("-> multiline");
 out.write('\n');
}

If you use this code to inspect the form used in section 8.5.2, the following output is
returned:

personal.loginname
personal.name
personal.reason -> multiline
personal.password -> password

You may wonder why the getMerged() method needs a parameter. In chapter 8, you
learned that a field can be represented by different widget annotations. You can ask
an Item object how many widgets are associated with the field by using the size()
method. In the form you’ve inspected here, there was only one widget per field, and it
had the index 0. You can get more info about a widget with index idx using the meth-
ods from table 13.11.

You can use these methods to inspect the widget annotations of a field, and even to
manipulate a field at the lowest level.

ADDING JAVASCRIPT TO A FIELD

Imagine an IRS form asking a citizen if they are married. This could be done using a
radio field named Married with possible values Yes and No. There could also be a Part-
ner text box to which a name could be added. This text field should only be filled in if
the value for Married is Yes.

 Listing 13.16 shows how to add the setReadOnly() JavaScript method to the radio
field button. The method is triggered when one of the buttons gets the focus. This

Table 13.11 AcroFields.Item methods

Method Description

getValue(idx) Returns a dictionary where the /V entry is present. This entry holds the field
value whose format varies depending on the field type.

getWidget(idx) Returns one of the widget dictionaries of the field.

getWidgetRef(idx) Returns the PdfIndirectReference for the widget.

getMerged(idx) Retrieves the merged dictionary for the given instance. This PdfDictionary
contains all the keys present in the parent fields, though they may have been
overwritten (or modified) by children.

getPage(idx) Retrieves the page number on which the widget with index idx is placed.

getTabOrder(idx) Returns the tab index of the given field widget.

Gets field
flags

Gets merged
dictionary
Licensed to Bruno Lowagie <bruno@lowagie.com>

450 CHAPTER 13 PDFs inside-out
method is written so that the content of the Partner field is blanked out and made
read-only if Married is set to No. When changed back to Yes, the read-only status is set
to false.

AcroFields form = stamper.getAcroFields();
AcroFields.Item fd = form.getFieldItem("married");
PdfDictionary dictYes =
 (PdfDictionary) PdfReader.getPdfObject(
 fd.getWidgetRef(0));
PdfDictionary yesAction
 = dictYes.getAsDict(PdfName.AA);
if (yesAction == null) yesAction = new PdfDictionary();
yesAction.put(new PdfName("Fo"),
 PdfAction.javaScript(
 "setReadOnly(false);", stamper.getWriter()));
dictYes.put(PdfName.AA, yesAction);
PdfDictionary dictNo =
 (PdfDictionary) PdfReader.getPdfObject(
 fd.getWidgetRef(1));
PdfDictionary noAction = dictNo.getAsDict(PdfName.AA);
if (noAction == null) noAction = new PdfDictionary();
noAction.put(new PdfName("Fo"),
 PdfAction.javaScript("setReadOnly(true);",
 stamper.getWriter()));
dictNo.put(PdfName.AA, noAction);

There’s more than one way to achieve this. This example uses the PdfReader.getPdf-
Object() method with a PdfIndirectReference to the widget as a parameter. You
fetch the additional actions dictionary from the widget dictionary; if such a dictionary
isn’t present, you create a new one. The JavaScript stream is added to stamper.get-
Writer() implicitly.

REPLACING THE URL OF A SUBMIT BUTTON

You could have used a shortcut to get the widget dictionary in listing 13.16. You’ll use
this shortcut in the next example to replace the submit URL of the Post button of an
AcroForm.

PdfReader reader = new PdfReader(src);
AcroFields form = reader.getAcroFields();
AcroFields.Item item = form.getFieldItem("post");
PdfDictionary field = item.getMerged(0);
PdfDictionary action = field.getAsDict(PdfName.A);
PdfDictionary f = action.getAsDict(PdfName.F);
f.put(PdfName.F, new PdfString("http://itextpdf.com:8080/book/request"));
PdfStamper stamper = new PdfStamper(reader, new FileOutputStream(dest));
stamper.close();

Listing 13.16 AddJavaScriptToForm.java

Listing 13.17 ReplaceURL.java

Adds
setReadOnly(false)
when married = Yes

Adds
setReadOnly(true)
when married = No
Licensed to Bruno Lowagie <bruno@lowagie.com>

451Summary
Almost every example in this chapter is what we call a hack. Each example solves a spe-
cific problem, but it probably won’t work for every PDF. Manipulating PDFs at the low-
est level gives you a lot of power, but you can seriously damage a PDF file if you add,
change, or remove objects directly. You should always remember the words of Spider-
Man’s Uncle Ben: “With great power comes great responsibility.” It’s your responsibil-
ity to check ISO-32000-1 to see if your changes result in a valid PDF file.

 You should also consult the ISO specification if you want to know more about the
following entries of the root dictionary: /Threads, /URI, /Lang, /SpiderInfo, /Pie-
ceInfo, /Legal, /Requirements, and /Perms. But please read on if you want to know
more about /OCProperties, /StructTreeRoot, /MarkInfo, or /Collection, because
these will be discussed in the upcoming chapters.

13.4 Summary
We started this chapter with a short historical overview: why did the world need PDF, and
how did PDF evolve from a de facto standard owned by a company to an ISO standard?
We looked at different flavors of PDF, such as PDF/A and PDF/X. The history lesson was
necessary to understand how and why the Carousel Object System was invented.

 You opened up one of the PDF documents you created in chapter 1 and learned
about the different objects that make a PDF file. You attempted to read this file the
same way a PDF viewer would read it, interpreting the different parts in the file struc-
ture. You jumped from indirect object to indirect object in the body, following the
path defined by indirect references. As you saw, you can do this for a small PDF file,
but you need a tool such as iText RUPS as soon as you want to inspect the objects of a
larger PDF document.

 The examples in this book solved specific problems by manipulating PDF docu-
ments at the lowest level. These examples were taken from the collection of code snip-
pets that accumulated in the “sandbox” directory on my computer. Most of these
snippets were written in answer to a question on the mailing list, but I selected them
in such a way that they explained the mechanisms that can be used to select, change,
add, or remove objects when manipulating an existing PDF document.

 One type of object was deliberately overlooked: PdfStream. When we studied the
structure of the Hello World document, we didn’t look at the part marked as binary
content, and we didn’t look at streams representing fonts and images. That’s what the
next chapters are about.
Licensed to Bruno Lowagie <bruno@lowagie.com>

The imaging model
We studied the Carousel Object System in the previous chapter. We used iText to
find, remove, change, and replace objects in a PDF file. In this chapter, we’ll look at
one specific type of object: the stream containing the syntax that makes up a page.

 First we’ll look at the PDF imaging model and learn how to draw graphics and
text using PDF syntax. Then we’ll look at the Java class java.awt.Graphics2D as an
alternative solution for achieving the same results. In both cases, we’ll add content
at absolute positions as we did in chapter 3. Chapter 3 explained the mechanisms
available in iText, but this chapter dives straight into the PDF syntax.

 This chapter includes different tables listing all the possible graphics and text
operators and operands. This chapter will serve as a reference that can be used to
look up the meaning of the syntax in a PDF file, and to find the iText methods that
correspond with this syntax.

This chapter covers
■ The PDF imaging model
■ All methods in PdfContentByte
■ Using Graphics2D to create PDF content
452

Licensed to Bruno Lowagie <bruno@lowagie.com>

453Examining the content stream
14.1 Examining the content stream
Let’s start by looking at the content streams of some PDF samples you’ve created in
previous parts of the book. A first step is to get the content of a page.

public void readContent(String src, String result) throws IOException {
 PdfReader reader = new PdfReader(src);
 FileOutputStream out = new FileOutputStream(result);
 out.write(reader.getPageContent(1));
 out.flush();
 out.close();
}

If you try this example on your Hello World example from chapter 1, you’ll get this
stream:

q
BT
36 806 Td
0 -18 Td
/F1 12 Tf
(Hello World!)Tj
0 0 Td
ET
Q

This stream contains mainly text operators, and using the tables in section 14.4, you’ll
be able to interpret every character in this stream. If you execute the code in listing 14.1
on the first superhero example in chapter 5, you’ll get the following stream:

q
BT
-1156 1649 Td
ET
Q
q 1 0 0 1 -1192 -1685 cm /Xf1 Do Q
-595 0 m
595 0 l
0 -842 m
0 842 l
S

This stream contains mainly graphics operators, but the syntax that draws Superman
is missing. We’ll look into where to find it, and we’ll discuss these operators, in sec-
tions 14.2 and 14.3.

PDF SYNTAX NOTATION

PDF (and PS) use a notation known as postfix, aka reverse Polish notation. In reverse
Polish notation, the operators follow their operands. Table 14.1 shows the different
notations that can be used to note down the addition of the integers 10 and 6.

Listing 14.1 GetContentStream.java
Licensed to Bruno Lowagie <bruno@lowagie.com>

454 CHAPTER 14 The imaging model
Interpreters of the postfix notation are often stack-based. Operands are pushed onto
a stack, and when an operation is performed, its operands are popped from a stack
and its result pushed back on. This has the advantage of being easy to implement and
very fast.

 When you look at the content stream snippets extracted from a PDF file using list-
ing 14.1, you’ll see operations such as -595 0 m, where -595 and 0 are the operands
(in this case, representing a translation), and where m is the operator (which will cause
the cursor to move 595 points to the left and 0 points up).

 In iText, this syntax is generated by the PdfContentByte class. This class was intro-
duced in section 3.1, where you used it to draw paths and text at absolute positions—
to create a movie calendar, for instance. One of the member variables of this object is
a ByteBuffer, storing the PDF syntax until it can be put into a stream object. This
stream can be added to a PDF file as the content of a page, as a form XObject, or as the
appearance of an annotation.

 This chapter contains a series of tables listing graphics and text operators in PDF,
along with the corresponding methods in the PdfContentByte class.

14.2 Path construction and painting operators
The first series of operators we’ll look at can be used to construct paths that will be
used to stroke lines and to fill shapes.

14.2.1 Constructing paths

Figure 14.1 shows a series of paths that are constructed using PdfContentByte methods.

Table 14.1 Mathematical notations

Notation Example Description

Prefix + 10 6 Polish notation

Infix 10 + 6 The common arithmetic and logical formula notation

Postfix 10 6 + Reverse Polish notation

Figure 14.1
Constructing and
painting paths
Licensed to Bruno Lowagie <bruno@lowagie.com>

455Path construction and painting operators
These methods and the corresponding PDF operators are listed in table 14.2.

You can move the cursor to specific coordinates using moveTo(). Straight lines are
constructed with the lineTo() method. The first series of paths shown in figure 14.1
are drawn using one moveTo() and three lineTo() operations. The first path is an
open shape because I didn’t “close the path” as was done for the second path.

 Curves are constructed using the curveTo() or curveFromTo() methods. The
curve segments added to the path are Bézier curves.

BÉZIER CURVES

Bézier curves are parametric curves developed in 1959 by Paul de Casteljau (using de
Casteljau’s algorithm). They were widely publicized in 1962 by Paul Bézier, who used
them to design automobile bodies. Nowadays they’re important in computer graphics.

 Cubic Bézier curves are defined by four points: the two endpoints—the current point
and point (x3,y3)—and two control points—(x1,y1) and (x2,y2). The curve starts
at the first endpoint going onward to the first control point, and it arrives at the sec-
ond endpoint coming from the second control point. In general, the curve doesn’t
pass through the control points. They’re there only to provide directional informa-
tion. The distance between an endpoint and its corresponding control point deter-
mines how long the curve moves toward the control point before turning toward the
other endpoint.

Table 14.2 PDF path construction operators and operands

PDF iText method Parameters Description

m moveTo (x, y) Moves the current point to coordinates (x,y), omitting any
connecting line segment. This begins a new (sub) path.

l lineTo (x, y) Moves the current point to coordinates (x,y), appending a
line segment from the previous to the new current point.

c curveTo (x1, y1,
x2, y2,
x3, y3)

Moves the current point to coordinates (x3,y3), appending a
cubic Bézier curve from the previous to the new current point,
using (x1,y1) and (x2,y2) as Bézier control points.

v curveTo (x2, y2,
x3, y3)

Moves the current point to coordinates (x3, y3), appending
a cubic Bézier curve from the previous to the new current point,
using the previous current point and (x2,y2) as Bézier con-
trol points.

y curveFromTo (x1, y1,
x3, y3)

Moves the current point to coordinates (x3, y3), appending
a cubic Bézier curve from the previous to the new current point,
using (x1,y1) and (x3,y3) as Bézier control points.

h closePath () Closes the current subpath by appending a straight line segment
from the current point to the starting point of the subpath.

re rectangle (x, y,
width,
height)

Appends a rectangle to the current path as a complete sub-
path. (x,y) is the lower-left corner; width and height
define the dimensions of the rectangle.
Licensed to Bruno Lowagie <bruno@lowagie.com>

456 CHAPTER 14 The imaging model
 The Bézier curves shown in figure 14.1 demonstrate the different curve methods
from table 14.2. The extra straight lines connect the endpoints with the corresponding
control points. In the second example, the endpoint to the left coincides with the first
control point (the PDF operator v is used instead of c). In the third example, the end-
point to the right coincides with the second control point (the PDF operator y was used).

14.2.2 Painting and clipping paths

The methods listed in table 14.2 can be used to construct a path, using different straight
and curved segments, but these methods won’t draw any line or shape on the page.

FAQ I’ve used methods such as moveTo(), lineTo(), and curveTo() to draw a
shape, but this shape doesn’t show up on my page. This is normal; you have been
constructing a path using different subpaths, but this path wasn’t drawn
because you forgot to stroke or fill the line or shape. Not all shapes are meant
to be drawn—a shape can also be used to clip content.

Table 14.3 lists the different path-painting and -clipping operators. Note that they
don’t have any operands.

Table 14.3 PDF path-painting and -clipping operators

PDF iText method Description

S stroke() Strokes the path (lines only; the shape isn’t filled).

s closePathStroke() Closes and strokes the path. This is the same as doing
closePath() followed by stroke().

f fill() Fills the path using the nonzero winding number rule. Open
subpaths are closed implicitly.

F - Deprecated! Equivalent to f, and included for compatibility.
ISO-32000-1 says that PDF writer applications should use f
instead.

f* eoFill() Fills the path using the even-odd rule.

B fillStroke() Fills the path using the nonzero winding number rule, and
then strokes the path. This is equivalent to fill() followed
by stroke().

B* eoFillStroke() Fills the path using the even-odd rule, and then strokes the
path. This is equivalent to eoFill() followed by stroke().

b closePathFillStroke() Closes, fills, and strokes the path, as is done with
closePath() followed by fillStroke().

b* closePathEoFillStroke() Closes, fills, and strokes the path, as is done with
closePath() followed by eoFillStroke().

n newPath() Ends the path object without filling or stroking it. Used primar-
ily after defining a clipping path.
Licensed to Bruno Lowagie <bruno@lowagie.com>

457Path construction and painting operators
When you construct a path using the methods from table 14.2, you can stroke those
paths. Stroking a path means you’re going to draw the line segments of the subpaths.
The color used by default is black, but you can change this color with one of the set-
ColorStroke() methods in table 14.8.

 Filling a path means you’re going to paint the entire region enclosed by the path.
By default, shapes are filled using the nonzero winding number rule.

NONZERO WINDING NUMBER RULE VERSUS EVEN-ODD RULE

When I close my eyes, I can still see how our professor of analytic geometry filled two
of his nine blackboards explaining how to determine whether or not a given point is
inside a path.

 With the nonzero winding number rule, you need to draw a line from that point in
any direction, and examine every intersection of the path with this line. Start with a
count of zero; add one each time a subpath crosses the line from left to right; subtract
one each time a subpath crosses from right to left. Do this until there are no more path
segments to cross. If the result is zero, the point is outside the path; otherwise, it’s inside.

 An alternative to the nonzero winding number rule is the even-odd rule. Again, you
need to draw a line from the point that’s being examined to infinity. Now count the
number of path segments that are crossed, regardless of the direction. If this number
is odd, the point is inside; if even, the point is outside.

 If you don’t like to read definitions, have a look at the stars and circles in figure 14.2.

W clip() Modifies the current clipping path by intersecting it with the
current path, using the nonzero winding rule.

W* eoClip() Modifies the current clipping path by intersecting it with the
current path, using the even-odd rule.

Table 14.3 PDF path-painting and -clipping operators (continued)

PDF iText method Description

Figure 14.2
Constructing and
painting shapes
Licensed to Bruno Lowagie <bruno@lowagie.com>

458 CHAPTER 14 The imaging model
The paths of the star and circle shapes are constructed using listing 14.2. Observe that
the star is composed of five straight lines, four of which are created using the
lineTo() method and one implicitly using closePath().

public static void createStar(PdfContentByte canvas, float x, float y) {
 canvas.moveTo(x + 10, y);
 canvas.lineTo(x + 80, y + 60);
 canvas.lineTo(x, y + 60);
 canvas.lineTo(x + 70, y);
 canvas.lineTo(x + 40, y + 90);
 canvas.closePath();
}
public static void createCircle(PdfContentByte canvas, float x, float y,
 float r, boolean clockwise) {
 float b = 0.5523f;
 if (clockwise) {
 canvas.moveTo(x + r, y);
 canvas.curveTo(x + r, y - r * b, x + r * b, y - r, x, y - r);
 canvas.curveTo(x - r * b, y - r, x - r, y - r * b, x - r, y);
 canvas.curveTo(x - r, y + r * b, x - r * b, y + r, x, y + r);
 canvas.curveTo(x + r * b, y + r, x + r, y + r * b, x + r, y);
 } else {
 canvas.moveTo(x + r, y);
 canvas.curveTo(x + r, y + r * b, x + r * b, y + r, x, y + r);
 canvas.curveTo(x - r * b, y + r, x - r, y + r * b, x - r, y);
 canvas.curveTo(x - r, y - r * b, x - r * b, y - r, x, y - r);
 canvas.curveTo(x + r * b, y - r, x + r, y - r * b, x + r, y);
 }
}

The circle is constructed using four Bézier curves. With the method createCircle(),
you can construct the path clockwise and counterclockwise.

 Now look at the next listing to see how the shapes in figure 14.2 were added.

createStar(canvas, x, y);
createCircle(canvas, x + radius, y - 70, radius, true);
createCircle(canvas, x + radius, y - 70, radius / 2, true);
canvas.fill();
x += 2 * radius + gutter;
createStar(canvas, x, y);
createCircle(canvas, x + radius, y - 70, radius, true);
createCircle(canvas, x + radius, y - 70, radius / 2, true);
canvas.eoFill();
x += 2 * radius + gutter;
createStar(canvas, x, y);
canvas.newPath();
createCircle(canvas, x + radius, y - 70, radius, true);
createCircle(canvas, x + radius, y - 70, radius / 2, true);
x += 2 * radius + gutter;
createStar(canvas, x, y);
createCircle(canvas, x + radius, y - 70, radius, true);

Listing 14.2 PathConstructionAndPainting.java

Listing 14.3 PathConstructionAndPainting.java (continued)

Fills using
nonzero winding
number rule

B

Fills using
even-odd rule

C

Discards
previous path

D

Licensed to Bruno Lowagie <bruno@lowagie.com>

459Path construction and painting operators

e

createCircle(canvas, x + radius, y - 70, radius / 2, false);
canvas.fillStroke();
x += 2 * radius + gutter;
createStar(canvas, x, y);
createCircle(canvas, x + radius, y - 70, radius, true);
createCircle(canvas, x + radius, y - 70, radius / 2, true);
canvas.eoFillStroke();

The paths for the stars and circles are filled in different ways. The first pair is filled
using the nonzero winding number rule B. The inner circle overlaps the outer circle,
but it has the same color; you can’t distinguish the inner circle from the outer one.

 In the second pair, the star and the circle are filled using the even-odd rule C. The
middle part of the star isn’t filled, nor is the inner circle.

 The star seems to be missing in the third example. This time the newPath() method
is used D, and it has discarded the subpaths that were on the stack. Only the circles are
drawn. They’re filled and stroked using the nonzero winding number rule E.

 Note the difference between the third and the fourth concentric circles. In the
third column, the subpaths of the circles are constructed clockwise—the curves are
drawn in that direction. In the fourth column, the path of the outer circle is con-
structed clockwise, and the path of the inner circle is constructed counterclockwise.

 By definition, the direction of the paths doesn’t matter when filling the circles
using the even-odd rule, as is the case in the fifth pair of circles F.

 Computing the values to draw Bézier curves representing a simple circle or an
ellipse isn’t easy. That’s why iText provides convenience methods.

14.2.3 Convenience methods to draw shapes

Table 14.4 lists the convenience methods that were used to draw the final row of shapes
shown in figure 14.2. These shapes can’t be drawn using a single operator in PDF. The
path is constructed using different subpaths as was done for the circle in listing 14.2.

Table 14.4 iText convenience methods for graphics

iText method Parameters Description

arc (x1, y1,
 x2, y2,
 startAng,
 extent)

Constructs the path of a partial ellipse inscribed within the
rectangle [x1 y1 x2 y2], starting at startAng
degrees and covering extent degrees. Angles start with
0 to the right and increase counterclockwise.

ellipse (x1, y1,
 x2, y2)

Constructs the path of an ellipse using the arc method,
starting at 0 degrees and covering 360 degrees.

circle (x, y, r) Constructs the path of a circle with center (x,y) and
radius r using one moveTo() and four curveTo()
instructions.

roundRectangle (x, y, w, h, r) Constructs the path of a rounded rectangle.

rectangle (rect) Draws a Rectangle object. Constructs the path, fills it
with the background color of rect (if any) and strokes the
borders.

Fills and strokes using
nonzero winding
number ruleE

Fills using even-odd rulF
Licensed to Bruno Lowagie <bruno@lowagie.com>

460 CHAPTER 14 The imaging model
The first four methods in this table construct the path, but don’t draw it; this is simi-
lar to what the rectangle() method in table 14.2 does. If you want to see the shapes,
you need to stroke() or fill() the paths, or both. The rectangle() method in
table 14.4 calls these methods implicitly, because there are different colors and line
widths involved.

 To draw lines and shapes using different stroke and fill properties, you’ll need to
change the graphics state.

14.3 Overview of the graphics state methods
The mechanism of the graphics state stack was explained in section 3.1.2, but we
didn’t get a complete overview of all the methods that were available. Table 14.5 lists a
series of graphics state operators.

 Let’s work through some examples involving lines and their characteristics, and
take a closer look at the different parameters that can be used for the methods that
change the graphics state for stroking lines.

Table 14.5 Graphics state operators

PDF iText method Parameters Description

w setLineWidth (width) Sets the line width. The parameter represents the
thickness of the line in user units (default = 1).

J setLineCap (style) Defines the line cap style.

j setLineJoin (style) Defines the line join style.

M setMiterLimit (miterLimit) Defines a limit for joining lines. When it’s exceeded,
the join is converted from a miter to a bevel.

d setLineDash (phase)
(unitsOn, phase)
(unitsOn,
unitsOff, phase)
(array, phase)

Sets the line dash type. The default line dash is a
solid line, but by using the different iText methods
that change the dash pattern, you can create all
sorts of dashed lines.

i setFlatness (flatness) Sets the maximum permitted distance, in device
pixels, between the mathematically correct path
and an approximation constructed from straight
line segments. This is a value between 0 and 100.
Smaller values yield greater precision at the cost
of more computation.

q saveState () Saves the current graphics state on the graphics
state stack.

Q restoreState () Restores the graphics state by removing the most
recently saved state from the stack, making it the
current stack.

gs setGState (gstate) Sets a group of parameters in the graphics state
using a graphics state parameter dictionary.
Licensed to Bruno Lowagie <bruno@lowagie.com>

461Overview of the graphics state methods
14.3.1 Line characteristics

Figure 14.3 shows some of the characteristics that can be defined for lines.

This listing demonstrates how all but the dashed lines in figure 14.3 were drawn.

canvas.saveState();
for (int i = 25; i > 0; i--) {
 canvas.setLineWidth((float) i / 10);
 canvas.moveTo(50, 806 - (5 * i));
 canvas.lineTo(320, 806 - (5 * i));
 canvas.stroke();
}
canvas.restoreState();
canvas.moveTo(350, 800); canvas.lineTo(350, 750);
canvas.moveTo(540, 800); canvas.lineTo(540, 750);
canvas.stroke();

/RI PdfGState
.setRenderingIntent

(name) Sets the color rendering intent in the graphics state.
Possible values are /AbsoluteColorimetric,
/RelativeColorimetric, /Saturation,
and /Perceptual.

cm concatCTM (a, b,
 c, d,
 e, f)

Modifies the current transformation matrix (CTM) by
concatenating the matrix defined by the parameters
a, b, c, d, e, and f.

Listing 14.4 GraphicsStateOperators.java

Table 14.5 Graphics state operators (continued)

PDF iText method Parameters Description

Figure 14.3 Examples of different line characteristics

Changes line width
Licensed to Bruno Lowagie <bruno@lowagie.com>

462 CHAPTER 14 The imaging model
canvas.saveState();
canvas.setLineWidth(8);
canvas.setLineCap(PdfContentByte.LINE_CAP_BUTT);
canvas.moveTo(350, 790); canvas.lineTo(540, 790);
canvas.stroke();
canvas.setLineCap(PdfContentByte.LINE_CAP_ROUND);
canvas.moveTo(350, 775); canvas.lineTo(540, 775);
canvas.stroke();
canvas.setLineCap(
 PdfContentByte.LINE_CAP_PROJECTING_SQUARE);
canvas.moveTo(350, 760); canvas.lineTo(540, 760);
canvas.stroke();
canvas.restoreState();
canvas.saveState();
canvas.setLineWidth(8);
canvas.setLineJoin(PdfContentByte.LINE_JOIN_MITER);
canvas.moveTo(387, 700); canvas.lineTo(402, 730);
canvas.lineTo(417, 700); canvas.stroke();
canvas.setLineJoin(PdfContentByte.LINE_JOIN_ROUND);
canvas.moveTo(427, 700); canvas.lineTo(442, 730);
canvas.lineTo(457, 700); canvas.stroke();
canvas.setLineJoin(PdfContentByte.LINE_JOIN_BEVEL);
canvas.moveTo(467, 700); canvas.lineTo(482, 730);
canvas.lineTo(497, 700); canvas.stroke();
canvas.restoreState();

In this code sample, you first draw a series of lines with widths varying from 0.1 pt to 2.5
pt. See the lines on the top-left of figure 14.3.

NOTE It’s important to understand that not all devices are able to render
lines with the widths you specify in your PDF. The actual line width can differ
from the requested width by as much as 2 device pixels, depending on the
positions of the lines with respect to the pixel grid. When drawing lines and
shapes, the flatness tolerance (i in table 14.5) controls the maximum permitted
distance in device pixels between the mathematically correct path and an
approximation constructed from straight line segments.

The three thick lines at the top right in figure 14.3 are drawn from x = 350 to x = 540,
but they appear to have different lengths. That’s because they’re drawn using differ-
ent line cap styles. The line cap styles are listed in table 14.6.

Table 14.6 Line cap styles

Style Description

LINE_CAP_BUTT The stroke is squared off at the endpoint of the path.
This is the default.

LINE_CAP_ROUND A semicircular arc with diameter equal to the line
width is drawn around the endpoint.

LINE_CAP_PROJECTING_SQUARE The stroke continues beyond the endpoint of the
path for a distance equal to half the line width.

Changes
line cap

Changes
line join
Licensed to Bruno Lowagie <bruno@lowagie.com>

463Overview of the graphics state methods
The three hook shapes under these thick lines demonstrate the different line join
styles shown in table 14.7.

When you define miter joins, and two line segments meet at a sharp angle, it’s possible
for the miter to extend far beyond the thickness of the line stroke. If ϕ is the angle
between both line segments, the miter limit equals the line width divided by sin(ϕ/2).

 You can define a maximum value for the ratio of the miter length to the line width.
This maximum is called the miter limit. When this limit is exceeded, the join is con-
verted from a miter to a bevel. Figure 14.3 shows two rows of hooks that were drawn
using the same PdfTemplate object hooks. The angle of the hooks decreases from left
to right. In spite of the fact that the PDF syntax to draw the hooks is identical, the
appearance of the third hook is different when comparing both lines because of the
different miter limit:

canvas.saveState();
canvas.setMiterLimit(2);
canvas.addTemplate(hooks, 300, 600);
canvas.restoreState();
canvas.saveState();
canvas.setMiterLimit(2.1f);
canvas.addTemplate(hooks, 300, 550);
canvas.restoreState();

Figure 14.3 also demonstrates how you can create dashed lines. The next listing shows
how these lines were created.

canvas.moveTo(50, 660); canvas.lineTo(320, 660);
canvas.stroke();
canvas.setLineDash(6, 0);
canvas.moveTo(50, 650); canvas.lineTo(320, 650);
canvas.stroke();
canvas.setLineDash(6, 3);
canvas.moveTo(50, 640); canvas.lineTo(320, 640);
canvas.stroke();
canvas.setLineDash(15, 10, 5);
canvas.moveTo(50, 630); canvas.lineTo(320, 630);
canvas.stroke();
float[] dash1 = { 10, 5, 5, 5, 20 };

Table 14.7 Line join styles

Style Description

LINE_JOIN_MITER The outer edges of the strokes for two segments are
extended until they meet at an angle. This is the default.

LINE_JOIN_ROUND An arc of a circle with diameter equal to the line width is
drawn around the point where the two line segments meet.

LINE_JOIN_BEVEL The two segments are finished with butt caps.

Listing 14.5 GraphicsStateOperators.java

Solid lineB

C Dashed line

D Dashed line

E Dashed line
Licensed to Bruno Lowagie <bruno@lowagie.com>

464 CHAPTER 14 The imaging model
canvas.setLineDash(dash1, 5);
canvas.moveTo(50, 620); canvas.lineTo(320, 620);
canvas.stroke();
float[] dash2 = { 9, 6, 0, 6 };
canvas.setLineCap(PdfContentByte.LINE_CAP_ROUND);
canvas.setLineDash(dash2, 0);
canvas.moveTo(50, 610); canvas.lineTo(320, 610);
canvas.stroke();

The first line is drawn using the default line style, which is solid B. For the second
line, the line dash is set to a pattern of 6 units with phase 0 C. This means that the
line starts with a dash of 6 units long, then there’s a gap of 6 units, and then there’s a
dash of 6 units, and so on. The same goes for the third line, but it uses a different
phase D. In line E, you have a dash of 15 units and a gap of 10 units. The phase is 5,
so the first dash is only 10 units long (15 – 5). Line F uses a more complex pattern.
You start with a dash of 5 (10 – 5), then there’s a gap of 5, followed by a dash of 5,
a gap of 5, and a dash of 20. The next sequence is as follows: a gap of 10, a dash of 5, a
gap of 5, a dash of 5, a gap of 20, and so on. Situation G is also special: a dash of 9, a
gap of 6, a dash of 0, and a gap of 6. The dash of 0 may seem odd, but as you’re using
round caps, a dot is drawn instead of a 0-length dash.

 Most of these characteristics can also be set outside the content stream, in a reus-
able graphics state parameter dictionary.

GRAPHICS STATE PARAMETER DICTIONARY

The graphics state stack is initialized at the beginning of each page using the default
value for every graphics state parameter. You can change the state with the operators
described in this chapter, and then save and restore the state with saveState() and
restoreState(). If you want to reuse a set of parameters, you can store them in an
external dictionary with /Type /ExtGState, and refer to that dictionary with the setG-
State() method.

 In such a dictionary, the key /LW is used for the line width parameter, /LC for the
line cap, /LJ for the line join, /ML for the miter limit, /D for the dash pattern, and so
on. For the complete list, see table 58 in ISO-32000-1.

 One of the operators in that table also appears in our table 14.5; with /RI, you can
set the color rendering intent by using a method in the PdfGState class. You used this
class earlier, when we discussed transparency and colors in chapter 10.

14.3.2 Colors

You can change the color of the current graphics state using the methods setColor-
Stroke() and setColorFill(). These methods accept an instance of the BaseColor
class. This class has many different subclasses, and the type of the subclass will deter-
mine which operator is used. Table 14.8 lists the different operators and operands
that are at play.

 Before we move on to the text operators, we need to discuss one more mechanism
in more detail: the coordinate system that’s used in PDF.

F Dashed line

G Dashed line
Licensed to Bruno Lowagie <bruno@lowagie.com>

465Overview of the graphics state methods
Table 14.8 Color and shading methods

PDF iText method Parameters Description

g setGrayFill (gray) Changes the current gray tint for filling paths to a float value
from 0 (black) to 1 (white),

G setGrayStroke (gray) Changes the current gray tint for stroking paths to a float
value from 0 (black) to 1 (white).

rg setRGBColorFill (red,
green,
blue)

Sets the color space to DeviceRGB and changes the current
color for filling paths. The color values are integers from 0
to 255.

RG setRGBColorStroke (gray) Sets the color space to DeviceRGB and changes the current
color for stroking paths. The color values are integers from 0
to 255.

rg setRGBColorFillF (red,
green,
blue)

Sets the color space to DeviceRGB and changes the current
color for filling paths. The color values are floats from 0 to 1.

RG setRGBColorStrokeF (gray) Sets the color space to DeviceRGB and changes the current
color for stroking paths. The color values are floats from 0 to 1.

k setCMYKColorFill (cyan,
magenta,
yellow,
black)

Sets the color space to DeviceCMYK and changes the current
color for filling paths. The color values are integers from 0
to 255.

K setCMYKColorStroke (cyan,
magenta,
yellow,
black)

Sets the color space to DeviceCMYK and changes the current
color for stroking paths. The color values are integers from 0
to 255.

k setCMYKColorFillF (cyan,
magenta,
yellow,
black)

Sets the color space to DeviceCMYK and changes the current
color for filling paths. The color values are floats from 0 to 1.

K setCMYKColorStrokeF (cyan,
magenta,
yellow,
black)

Sets the color space to DeviceCMYK and changes the current
color for stroking paths. The color values are floats from 0 to 1.

CS name Sets the color space for nonstroking operations. This is done
implicitly when necessary by iText.

cs name Sets the color space for nonstroking operations. This is done
implicitly when necessary by iText.

SC c1 c2 c3
...

Sets the color to use for stroking operations in a device, CIE-
based (other than ICCBased), or Indexed color space. Not
used in iText.

sc c1 c2 c3
...

Same as SC for nonstroking operations. Not used in iText.
Licensed to Bruno Lowagie <bruno@lowagie.com>

466 CHAPTER 14 The imaging model
Figure 14.4 The current transformation matrix

14.3.3 Changing the coordinate system

In chapter 3, you learned that the origin of the coordinate system can usually be
found in the lower-left corner of the page. For an A4 page in portrait orientation, the
upper-right corner has the coordinates (595,842). We amended this in chapter 5,
where you created a superhero PDF
with page size A0 with the origin of the
coordinate system centered in the mid-
dle of the page.

 Figure 14.4 is similar. The origin of
the coordinate system is marked by two
lines, where Y = 0 (the X axis) and X = 0
(the Y axis).

 To this page, the same logo was added
six times using the method addTemplate
(template, 0, 0). However, the tem-
plate is added at a different places and
the shape changes. It looks translated,
scaled, skewed, and rotated because the
current transformation matrix is
changed. This shows how it is done.

SCN c1 c2 c3
... name

Same as SC but also supports Pattern, Separation, DeviceN,
and ICCBased color spaces. It’s used in the methods
setColorStroke(PdfSpotColor sp, float tint),
setPatternStroke(PdfPatternPainter p),
setPatternStroke(PdfPatternPainter p,
BaseColor color),
setPatternStroke(PdfPatternPainter p,
BaseColor color, float tint), and
setShadingStroke(PdfShadingPattern
shading).

scn c1 c2 c3
... name

Same as SC but also supports Pattern, Separation, DeviceN,
and ICCBased color spaces. It’s used in the methods
setColorFill(PdfSpotColor sp, float tint),
setPatternFill(PdfPatternPainter p),
setPatternFill(PdfPatternPainter p,
BaseColor color),
setPatternFill(PdfPatternPainter p,
BaseColor color, float tint), and
setShadingFill(PdfShadingPattern shading).

sh paintShading (shading) Paints the shape and color shading described by a shading
dictionary. In iText the shading dictionary can be a
PdfShading or PdfShadingPattern object.

Table 14.8 Color and shading methods (continued)

PDF iText method Parameters Description
Licensed to Bruno Lowagie <bruno@lowagie.com>

467Overview of the graphics state methods
canvas.saveState();
canvas.addTemplate(template, 0, 0);
canvas.concatCTM(0.5f, 0, 0, 0.5f, -595, 0);
canvas.addTemplate(template, 0, 0);
canvas.concatCTM(1, 0, 0, 1, 595, 595);
canvas.addTemplate(template, 0, 0);
canvas.restoreState();
canvas.saveState();
canvas.concatCTM(1, 0, 0.4f, 1, -750, -650);
canvas.addTemplate(template, 0, 0);
canvas.restoreState();
canvas.saveState();
canvas.concatCTM(0, -1, -1, 0, 650, 0);
canvas.addTemplate(template, 0, 0);
canvas.concatCTM(0.2f, 0, 0, 0.5f, 0, 300);
canvas.addTemplate(template, 0, 0);
canvas.restoreState();

The six values of the concatCTM() method are elements of a matrix that has three
rows and three columns:

You can use this matrix to express a transformation in a two-dimensional system:

[x' y' 1] = [x y 1] x

Carrying out this multiplication results in this:

x' = a * x + c * y + e
y' = b * x + d * y + f

The third column in the matrix is fixed: you’re working in two dimensions, so you
don’t need to calculate a new z coordinate.

 There’s one big difference here from what you were taught at school; in most math
books you can read about transforming objects (points, lines, shapes), rather than
coordinate systems. This demands a slightly different point of view.

 To understand the mathematics of coordinate transformations in PDF, it’s vital to
remember what is written in ISO-32000-1 (section 8.3.4):

All objects painted before a transformation is applied shall be unaffected by the
transformation. Objects painted after the transformation is applied, shall be interpreted
in the transformed coordinate system.

Transformation matrices specify the transformation from the new (transformed)
coordinate system to the original (untransformed) coordinate system. All coordinates
used after the transformation shall be expressed in the transformed coordinate system.

Translating the coordinate system in direction (dX, dY) is done like this:

x' = 1 * x + 0 * y + dX
y' = 0 * x + 1 * y + dY

Listing 14.6 TransformationMatrix1.java

Scales and
translates

Translates

Skews and
translates

Rotates and
translates

Scales and
translates

a b 0
c f 0
e f 1

a b 0
c d 0
e f 1
Licensed to Bruno Lowagie <bruno@lowagie.com>

468 CHAPTER 14 The imaging model
These formulas scale the coordinate system with factors sX in the X direction and sY
in the Y direction:

x' = sX * x + 0 * y + 0
y' = 0 * x + sY * y + 0

To rotate the coordinate system with an angle ϕ, you need to use the following equations:

x' = cos(ϕ) * x - sin(ϕ) * y + 0
y' = sin(ϕ) * x + cos(ϕ) * y + 0

Skewing the coordinates is done like this:

x' = 1 * x + tan(β) * y + 0
y' = tan(α) * x + 1 * y + 0

where α is the new angle of the X axis and β is the new angle of the Y axis.
 You can use these formulas to compute the values for a, b, c, d, e, and f. For exam-

ple, if you want to combine a translation (dX, dY), a scaling (sX, sY), and a rotation
ϕ, you’d use these values:

a = sX * cos(ϕ);
b = sY * sin(ϕ);
c = sX * -sin(ϕ);
d = sY * cos(ϕ);
e = dX;
f = dY;

If you combine different concatCTM() operations, you can compute the resulting
transformation by multiplying the matrices with each other.

NOTE The order is important when performing transformations one after the
other. This can be demonstrated by switching the lines with concatCTM() meth-
ods in the sequence between saveState() and restoreState() in listing 14.6.

Suppose you want the same result as shown in figure 14.4 but without using con-
catCTM() directly. In that case, you’ll need a version of the addTemplate() method
that takes a, b, c, d, e, and f parameters.

ADDING TEMPLATES AND IMAGES

Listing 14.7 is exactly equivalent to listing 14.6. First you add the template without any
transformation B in listing 14.7. Then you add two templates, C and D, which are
scaled and translated: E skews and translates the template, and F rotates and trans-
lates the template. Finally, the template is rotated, scaled, and translated G.

canvas.addTemplate(template, 0, 0);
canvas.addTemplate(template, 0.5f, 0, 0, 0.5f, -595, 0);
canvas.addTemplate(template, 0.5f, 0, 0, 0.5f, -297.5f, 297.5f);
canvas.addTemplate(template, 1, 0, 0.4f, 1, -750, -650);
canvas.addTemplate(template, 0, -1, -1, 0, 650, 0);
canvas.addTemplate(template, 0, -0.2f, -0.5f, 0, 350, 0);

Listing 14.7 TransformationMatrix2.java

B
C

D
E

F
G

Licensed to Bruno Lowagie <bruno@lowagie.com>

469Overview of the graphics state methods
The transformation matrix elements in D are the result of the following multiplication:

The parameters in G were computed like this:

Observe that you get a different result if you switch the order of the multiplication:

This proves that the order of the concatCTM() methods in listing 14.6 matters.
 Table 14.9 lists the methods that can be used to add templates and images using

iText.

If you’re not familiar with PDF matrix calculations, you can also use an alternative way
to perform transformations.

Table 14.9 PdfTemplate and Image methods in PdfContentByte

PDF iText method Parameters Description

Do addTemplate (template, e, f)
(template, a, b,
c, d, e, f)

The operator Do, preceded by a name of a form XObject,
such as /Xf1, paints the XObject. iText will take care
of handling the template object, as well as saving the
state, performing a transformation of the CTM that’s
used for adding the XObject, and restoring the state.

Do addImage (image)
(image, false)
(image, a, b, c,
d, e, f)
(image, a, b, c,
d, e, f, false)

The operator Do, preceded by a name of an image
XObject, such as /img0, paints the image. iText will
take care of storing the image stream correctly, as
well as saving the state, performing a transformation
of the CTM that’s used for adding the image, and
restoring the state.

BI
EI

addImage (image, true)
(image, a, b, c,
d, e, f, true)

As discussed in section 3.4.1, images can also be
added inline. In that case, there’s no Do operator, but
the image properties and bytes are added inside a BI
and EI sequence.

1 0 0
0 1 0

595 595 1

0.5 0 0
0 0.5 0
595– 0 1

×
0.5 0 0
0 0.5 0

297.5– 297.5– 1

=

0.2 0 0
0 0.5 0
0 300 1

0 1– 0
1– 0 0

650 0 1

×
0 0.2 0
0.5– 0 0
350 0 1

=

0 1– 0
1– 0 0

650 0 1

0.2 0 0
0 0.5 0
0 300 1

×
0 0.5– 0

0.2– 0 0
130 0 1

=

Licensed to Bruno Lowagie <bruno@lowagie.com>

470 CHAPTER 14 The imaging model
14.3.4 Affine transformations using Java

Most Java programmers are more familiar with the java.awt package than with the
PDF reference. In section 14.5, we’ll look at how to draw graphics and text using stan-
dard Java methods available in the class PdfGraphics2D. Right now, we’ll use the class
java.awt.geom.AffineTransform as an alternative way to define a transformation.

 According to the Java API documentation, the AffineTransform class represents
“a 2D affine transform that performs a linear mapping from 2D coordinates to other 2D
coordinates. Affine transformations can be constructed using sequences of translations,
scales, flips, rotations, and shears.”

 The next bit of code is yet another rewrite of listings 14.6 and 14.7.

canvas.saveState();
canvas.addTemplate(template, 0, 0);
AffineTransform af = new AffineTransform();
af.translate(-595, 0);
af.scale(0.5, 0.5);
canvas.transform(af);
canvas.addTemplate(template, 0, 0);
canvas.concatCTM(AffineTransform.getTranslateInstance(595, 595));
canvas.addTemplate(template, 0, 0);
canvas.restoreState();
canvas.saveState();
af = new AffineTransform(1, 0, 0.4, 1, -750, -650);
canvas.addTemplate(template, af);
canvas.restoreState();
canvas.saveState();
af = new AffineTransform(0, -1, -1, 0, 650, 0);
canvas.addTemplate(template, af);
af = new AffineTransform(0, -0.2f, -0.5f, 0, 350, 0);
canvas.addTemplate(template, af);
canvas.restoreState();

Listing 14.8 demonstrates different ways to compose and use the affine transformation:

Create an AffineTransform class. In this listing, you add a translation and a scaling
operation and use the transform() method as an alternative for concatCTM().

Create an instance of AffineTransform using one of its many static methods. In the
listing, this method is used with the already discussed concatCTM() method.

Create AffineTransform objects using the same parameters as in listing 14.7, and use
these transformations as parameters for the addTemplate() method.

Table 14.10 lists the PdfContentByte methods that accept an AffineTransform object.
For more info about the AffineTransform class, please consult the Java documenta-
tion; for instance, see the tutorials on Oracle’s Sun Developer Network site (see
appendix B).

 One method in table 14.10 demands further explanation: setTextMatrix(). This
method results in a text-positioning operation.

Listing 14.8 TextStateOperators.java

B Creates and
applies affine
transformation

Applies
translation to CTM C

Adds template
using affine
transformation

D

B

C

D

Licensed to Bruno Lowagie <bruno@lowagie.com>

471Overview of the text and text state methods
14.4 Overview of the text and text state methods
A PDF text object consists of operators that may set the text state, move the text posi-
tion, and show text. A text object is defined using the text object operators shown in
table 14.11.

If you set the fill color in the graphics state outside a BT/ET sequence, this color will be
used as the color of the glyphs inside the text object, but PDF also has some text-spe-
cific state operators.

14.4.1 Text state operators

The text state is a subset of the graphics state. The available text state operators are
listed in table 14.12.

Table 14.10 AffineTransform methods

iText method Parameters Description

addTemplate (PdfTemplate template,
AffineTransform transform)

Equivalent to the addTemplate()
methods in table 14.7.

addImage (Image image,
AffineTransform transform)

Equivalent to the addImage()
methods in table 14.7.

concatCTM (AffineTransform transform) Modifies the current transformation
matrix (CTM).

transform (AffineTransform af) Alternative for concatCTM().

setTextMatrix (AffineTransform transform) Sets the text matrix and the text-line
matrix; see table 14.11.

Table 14.11 Text object operators

PDF iText method Description

BT beginText() Begins a text object. Initializes the text, text line, and identity matrix.
Don’t nest text objects; a second BT is forbidden before an ET.

ET endText() Ends a text object, discards the text matrix.

Table 14.12 Text state operators

PDF iText method Parameters Description

Tf setFontAndSize (font, size) Sets the text font (a BaseFont
object) and size. If you try showing text
without having set a font and a
size, an exception will be thrown.

Tc setCharacterSpacing (charSpace) Sets the character spacing (initially 0).

Tw setWordSpacing (wordSpace) Sets the word spacing (initially 0).
Licensed to Bruno Lowagie <bruno@lowagie.com>

472 CHAPTER 14 The imaging model
These aren’t the only text-specific operators. There are also operators to position and
show text.

14.4.2 Text-positioning and text-showing operators

A glyph is a graphical shape and is subject to all graphical manipulations, such as coor-
dinate transformations defined by the CTM, but there are also three matrices for text
that are valid inside a text object:

■ The text matrix—This is updated by the text-positioning and text-showing opera-
tors listed in table 14.13.

■ The text-line matrix—This captures the value of the text matrix at the beginning
of a line of text.

■ The text-rendering matrix—This is an intermediate result that combines the
effects of text state parameters, the text matrix, and the CTM.

Note that the value of these matrix parameters isn’t persisted from one text object to
another. Table 4.13 lists the operators that allow you to choose a position and put the
text on the page based on that position.

Tz setHorizontalScaling (scale) Sets the horizontal scaling (initially 100).

TL setLeading (leading) Sets the leading (initially 0)

Ts setTextRise (rise) Sets the text rise (initially 0).

Tr setTextRenderingMode (render) Specifies a rendering mode (a combina-
tion of stroking and filling). By default,
glyphs are filled.

/TK PdfGState.setTextKnockout (true |
false)

Determines whether text elements are
considered elementary objects for pur-
poses of color compositing in the trans-
parent imaging model.

Table 14.13 Text-positioning and -showing operators

PDF iText method Parameters Description

Td moveText (tx, ty) Moves to the start of the next line, offset from the
start of the current line by (tx,ty).

TD moveTextWithLeading (tx, ty) Same as moveText() but sets the leading to -ty.

Tm setTextMatrix (e, f)
(a, b, c,
d, e, f)

Sets the text matrix and the text-line matrix. The
parameters a, b, c, d, e, and f are the elements
of a matrix that will replace the current text matrix.

Table 14.12 Text state operators (continued)

PDF iText method Parameters Description
Licensed to Bruno Lowagie <bruno@lowagie.com>

473Overview of the text and text state methods
In figure 14.5, you can see some of these text state operators in action.

This listing shows how the seven lines at the left of figure 14.5 were drawn.

canvas.beginText();
canvas.setFontAndSize(bf, 16);
canvas.moveText(36, 806);
canvas.moveTextWithLeading(0, -24);
canvas.showText(text);
canvas.setWordSpacing(20);
canvas.newlineShowText(text);
canvas.setCharacterSpacing(10);
canvas.newlineShowText(text);
canvas.setWordSpacing(0);
canvas.setCharacterSpacing(0);
canvas.setHorizontalScaling(50);
canvas.newlineShowText(text);

T* newLineText () Moves to the start of the next line (depending on
the leading).

Tj showText (string) Shows a text string.

' newlineShowText (string) Moves to the next line, and shows a text string.

" newlineShowText (aw, ac,
string)

Moves to the next line, and shows a text string using
aw as word spacing and ac as character spacing.

TJ showText (array) Shows one or more text strings, allowing individual
glyph positioning.

Listing 14.9 TextStateOperators.java

Table 14.13 Text-positioning and -showing operators (continued)

PDF iText method Parameters Description

Figure 14.5
Demonstrating
the different text
state operators

B Font and
leading

C Word
spacing

D Character
spacing

E Horizontal
scaling
Licensed to Bruno Lowagie <bruno@lowagie.com>

474 CHAPTER 14 The imaging model
canvas.setHorizontalScaling(100);
canvas.newlineShowText(text);
canvas.setTextRise(15);
canvas.setFontAndSize(bf, 12);
canvas.setColorFill(BaseColor.RED);
canvas.showText("2");
canvas.setColorFill(GrayColor.GRAYBLACK);
canvas.setLeading(56);
canvas.newlineShowText("Changing the leading: " + text);
canvas.setLeading(24);
canvas.newlineText();
PdfTextArray array = new PdfTextArray("A");
array.add(120); array.add("W");
array.add(120); array.add("A");
array.add(95); array.add("Y again");
canvas.showText(array);
canvas.endText();

For the first line, you start a new line at position (36, 806). Then you immediately
move 24 pt down. This sets the leading to -24 because you use moveTextWithLead-
ing() instead of moveText(). You draw the text with showText().

There’s more space between the words “AWAY” and “again”. That’s because the word
spacing is changed to 20 pt.

The word spacing is still 20 pt, but now there’s also a character spacing of 10 pt. In sec-
tions 2.2.4, 3.3.1, and 4.2.1, you used the setSpaceCharRatio() method to fine-tune
the spacing of a justified line of text. Internally iText uses the word and character spac-
ing to achieve this.

Word and character spacing are changed back to their defaults (0 pt), and you scale
the glyphs horizontally to 50 percent.

You add a red exponent “2”. The color is changed using a graphics state operator, and
the glyph is raised 15 pt using setTextRise().

In B you implicitly set the leading to 24; now you change the leading to 56 pt with the
setLeading() method. Note that the text rise is still active, so the text is only moved
down 41 pt.

In previous lines, the characters of the word “AWAY” were added using the character
advance as described in the font program. Here you move the glyphs closer together.
You use the method showText() with a PdfTextArray as a parameter; this array contains
a sequence of strings and numbers. With the numbers, you specify extra positioning
information in glyph space (in thousandths of a unit). The amount is subtracted from
the current horizontal or vertical coordinate, depending on the writing mode. You don’t
have to construct this array yourself. If your font has kerning information, you can use
the method getKernArray(text, font), and use the return value as a parameter.

 The lines to the right in figure 14.5 demonstrate the different rendering modes.

RENDERING MODES

At first sight, there seem to be seven “AWAY again” lines at the right. But in reality,
there are eight. The first four are added using this code snippet:

F Text rise,
font and
color

G Leading

H Kerning

B

C

D

E

F

G

H

Licensed to Bruno Lowagie <bruno@lowagie.com>

475Overview of the text and text state methods
canvas.setColorFill(BaseColor.BLUE);
canvas.beginText();
canvas.setTextMatrix(360, 770);
canvas.setTextRenderingMode(PdfContentByte.TEXT_RENDER_MODE_FILL);
canvas.setFontAndSize(bf, 24);
canvas.showText(text);
canvas.endText();

This snippet is repeated four times using different coordinates and different render-
ing modes. See table 14.14.

The code for the final four lines looks like this:

PdfTemplate template = canvas.createTemplate(200, 36);
template.setLineWidth(2);
for (int i = 0; i < 6; i++) {
 template.moveTo(0, i * 6);
 template.lineTo(200, i * 6);
}
template.stroke();
canvas.saveState();
canvas.beginText();
canvas.setTextMatrix(360, 610);
canvas.setTextRenderingMode(
 PdfContentByte.TEXT_RENDER_MODE_FILL_CLIP);
canvas.setFontAndSize(bf, 24);
canvas.showText(text);
canvas.endText();
canvas.addTemplate(template, 360, 610);
canvas.restoreState();

These are the render modes that were used for the last four lines in figure 14.5:
■ TEXT_RENDER_MODE_FILL_CLIP
■ TEXT_RENDER_MODE_STROKE_CLIP
■ TEXT_RENDER_MODE_FILL_STROKE_CLIP
■ TEXT_RENDER_MODE_CLIP

They have the same meaning as the four render modes shown in table 14.14, except
that by adding _CLIP, the text will function as a clipping area for the content that’s
added afterwards.

Table 14.14 Rendering mode modes

Rendering mode Description

TEXT_RENDER_MODE_FILL This is the default: glyphs are shapes that are filled.

TEXT_RENDER_MODE_STROKE With this mode, the paths of the glyphs are stroked,
not filled.

TEXT_RENDER_MODE_FILL_STROKE Glyphs are filled and stroked.

TEXT_RENDER_MODE_INVISIBLE Glyphs are neither filled nor stroked: this is why the
fourth line is invisible.

Creates
template with
series of lines

Adds text (clip
render mode)

Adds template
(clipped)
Licensed to Bruno Lowagie <bruno@lowagie.com>

476 CHAPTER 14 The imaging model
 This chapter serves as a reference to the graphics and text operators in the PDF
imaging model. The methods in tables 14.12 and 14.13 could be useful one day, but in
general, you’ll probably use convenience classes (such as ColumnText) or methods.

14.4.3 Convenience methods for text

Table 14.15 lists the extra methods available in PdfContentByte that can be used to
draw text or to compute the text width, taking into account the text state.

Figure 14.6 demonstrates how these methods can be used.

Table 14.15 iText convenience methods for text

iText method Parameters Description

showTextKerned (text) This is the equivalent of
showText(getKernArray(text, bf)).

getEffectiveStringWidth (text,
kerned)

Computes the width of the given string taking into
account the current values of character spacing,
word spacing, and horizontal scaling. Takes the
kerning into account if kerned is true.

showTextAligned (alignment,
text, x, y,
rot)
(alignment,
text, x, y,
rot, k)

Shows the text at position (x,y) with rotation
rot, aligned left, right, or centered depending
on the value of alignment. The text will be
kerned if k is true.

showTextAlignedKerned (alignment,
text, x, y,
rot)

Same as showTextAligned(alignment,
text, x, y, rot, true).

Figure 14.6 Demonstrating the convenience methods for text
Licensed to Bruno Lowagie <bruno@lowagie.com>

477Using java.awt.Graphics2D
The code that produced the PDF in figure 14.6 is shown here.

String text = "AWAY again ";
BaseFont bf = BaseFont.createFont();
cb.beginText();
cb.setFontAndSize(bf, 12);
cb.setTextMatrix(50, 800);
cb.showText(text);
cb.showTextAligned(PdfContentByte.ALIGN_CENTER,
 text + " Center", 150, 760, 0);
cb.showTextAligned(PdfContentByte.ALIGN_RIGHT,
 text + " Right", 150, 700, 0);
cb.showTextAligned(PdfContentByte.ALIGN_LEFT,
 text + " Left", 150, 640, 0);
cb.showTextAlignedKerned(PdfContentByte.ALIGN_LEFT,
 text + " Left", 150, 628, 0);
cb.setTextMatrix(0, 1, -1, 0, 300, 600);
cb.showText("Position 300,600, rotated 90 degrees.");
for (int i = 0; i < 360; i += 30) {
 cb.showTextAligned(PdfContentByte.ALIGN_LEFT, text, 400, 700, i);
}
cb.endText();

Apart from these convenience methods for text, PdfContentByte has additional
methods that can be useful in special situations:

■ setLiteral()—Allows you to add literal PDF syntax to the ByteBuffer. Use this
method only if you know exactly what the syntax does and if you’re aware of all
the possible side effects.

■ add(PdfContentByte other)—Appends the content of another PdfContent-
Byte object to the current one (provided that both were created for the same
PdfWriter).

■ reset()—Empties the ByteBuffer.

If you have experience with imaging models in other programming or markup lan-
guages, such as in Flex, SVG, XAML, and so on, many of the concepts explained in this
chapter will have sounded familiar. Principles such as the nonzero winding number
rule and the even-odd rule exist for almost every language where you can describe
and fill shapes. Almost every programming language that allows you to create a GUI
has methods to draw text.

 Let’s conclude this chapter by taking a look at how it’s done in Java, and how iText
allows you to create PDFs using those methods.

14.5 Using java.awt.Graphics2D
In Star Trek, Dr. Leonard “Bones” McCoy is often heard to say things like “Dammit,
man! I’m a doctor, not a physicist!” After reading the previous sections, you may have
a similar reaction: “I’m a Java developer, not a PDF specialist. I want to use iText so that
I can avoid learning PDF syntax!” If that’s the case, I have good news for you.

Listing 14.10 TextMethods.java

Centered text

Right-aligned text

Left-aligned text

Left-aligned and kerned text
Licensed to Bruno Lowagie <bruno@lowagie.com>

478 CHAPTER 14 The imaging model
 In this section, you’ll learn how to draw paths, shapes, and text using Java’s
Graphics2D API. Although this seems easy to achieve, you’ll also learn how to avoid
common pitfalls.

14.5.1 Drawing content to PdfGraphics2D

Swing is an API for providing a GUI for Java programs. It consists of different GUI com-
ponents and a series of graphical classes, including an abstract class named
Graphics2D. PdfContentByte has a series of createGraphics() methods that allow
you to create a special implementation of this class called PdfGraphics2D. This sub-
class overrides all the Graphics2D methods, translating them into the PdfContentByte
calls described in the previous sections.

DRAWING SHAPES TO SWING OBJECTS

The Java API says that java.awt.Graphics is “the abstract base class for all graphics con-
texts that allow an application to draw onto components that are realized on various
devices, as well as onto off-screen images.” The abstract class java.awt.Graphics2D
extends this Graphics class “to provide more sophisticated control over geometry, coor-
dinate transformations, color management, and text layout. This is the fundamental
class for rendering 2-dimensional shapes, text and images on the Java platform.”

 If you go to Oracle’s Sun Developer Network (SDN), you’ll find a tutorial “Con-
structing Complex Shapes from Geometry Primitives.” There’s an example named
Pear.java in this tutorial for drawing a shape as shown in figure 14.7.

 The window on the right in figure 14.7 is a JFrame containing a JPanel. The
JPanel was constructed and painted using the next bit of code. This code snippet is
almost identical to the sample that can be found on SDN.

Figure 14.7
Graphics2D for
Swing and PDF; the
Pear example from
the Java tutorial
Licensed to Bruno Lowagie <bruno@lowagie.com>

479Using java.awt.Graphics2D
public class PearExample extends JPanel {
 Ellipse2D.Double circle, oval, leaf, stem;
 Area circ, ov, leaf1, leaf2, st1, st2;
 public PearExample() {
 circle = new Ellipse2D.Double();
 oval = new Ellipse2D.Double();
 leaf = new Ellipse2D.Double();
 stem = new Ellipse2D.Double();
 circ = new Area(circle);
 ov = new Area(oval);
 leaf1 = new Area(leaf);
 leaf2 = new Area(leaf);
 st1 = new Area(stem);
 st2 = new Area(stem);
 }
 public void paint(Graphics g) {
 Graphics2D g2 = (Graphics2D)g;
 double ew = 75; double eh = 75;
 g2.setColor(Color.GREEN);
 leaf.setFrame(ew - 16, eh - 29, 15.0, 15.0);
 leaf1 = new Area(leaf);
 leaf.setFrame(ew - 14, eh - 47, 30.0, 30.0);
 leaf2 = new Area(leaf);
 leaf1.intersect(leaf2);
 g2.fill(leaf1);
 leaf.setFrame(ew + 1, eh - 29, 15.0, 15.0);
 leaf1 = new Area(leaf);
 leaf2.intersect(leaf1);
 g2.fill(leaf2);
 g2.setColor(Color.BLACK);
 stem.setFrame(ew, eh - 42, 40.0, 40.0);
 st1 = new Area(stem);
 stem.setFrame(ew + 3, eh - 47, 50.0, 50.0);
 st2 = new Area(stem);
 st1.subtract(st2);
 g2.fill(st1);
 g2.setColor(Color.YELLOW);
 circle.setFrame(ew - 25, eh, 50.0, 50.0);
 oval.setFrame(ew - 19, eh - 20, 40.0, 70.0);
 circ = new Area(circle);
 ov = new Area(oval);
 circ.add(ov);
 g2.fill(circ);
 }
}

This is a book about PDF, not a book about Java, so we won’t go into detail discussing
the different geometry primitives and how to use them. That is all explained on SDN.
Instead, we’ll try to draw this complex shape to PDF as shown in the window to the
right in figure 14.7.

DRAWING SHAPES TO PDFGRAPHICS2D

In listing 14.12 you’ll reuse the code from listing 14.11. You’ll construct a JPanel, more
specifically a PearExample object, create a PdfGraphics2D instance, and draw the

Listing 14.11 PearExample.java

Initializes different
shapes

Draws green
leaves

Draws black
stem

Draws yellow
pear body
Licensed to Bruno Lowagie <bruno@lowagie.com>

480 CHAPTER 14 The imaging model
JPanel to PdfGraphics2D using the paint() method. Don’t forget to use the dispose()
method B, or you’ll end up with unpredictable errors in the resulting PDF file.

Document document = new Document(new Rectangle(150, 150));
PdfWriter writer
 = PdfWriter.getInstance(document, new FileOutputStream(filename));
document.open();
PdfContentByte canvas = writer.getDirectContent();
PearExample pear = new PearExample();
Graphics2D g2 = canvas.createGraphics(150, 150);
pear.paint(g2);
g2.dispose();
document.close();

Observe that there’s not a single line referring to iText in the PearExample construc-
tor, nor in its paint() method. This is a very powerful feature. If you have an existing
application that draws shapes to a Graphics2D object, you can use this code snippet to
add these shapes to a PDF file.

 Figure 14.8 shows how you can integrate charts generated with the JFreeChart
library into a PDF file through the PdfGraphics2D mechanism.

Listing 14.12 PearToPdf.java

Warning: don’t
forget dispose ()

B

Figure 14.8 Combining
JFreeChart and iText
Licensed to Bruno Lowagie <bruno@lowagie.com>

481Using java.awt.Graphics2D
The pie chart in figure 14.8 was created using the next code snippet. It charts the
result of a database query selecting nine directors and the number of movies by these
directors in the movie database.

public static JFreeChart getPieChart()
 throws SQLException, IOException {
 DatabaseConnection connection
 = new HsqldbConnection("filmfestival");
 Statement stm = connection.createStatement();
 ResultSet rs = stm.executeQuery(QUERY1);
 DefaultPieDataset dataset = new DefaultPieDataset();
 Director director;
 while (rs.next()) {
 director = PojoFactory.getDirector(rs);
 dataset.setValue(String.format("%s, %s",
 director.getName(), director.getGivenName()),
 rs.getInt("c"));
 }
 connection.close();
 return ChartFactory.createPieChart(
 "Movies / directors", dataset, true, true, false);
}

Again, there’s no reference to iText in this method. The iText magic happens here:

PdfContentByte cb = writer.getDirectContent();
float width = PageSize.A4.getWidth();
float height = PageSize.A4.getHeight() / 2;
PdfTemplate pie = cb.createTemplate(width, height);
Graphics2D g2d1 = pie.createGraphics(
 width, height, new DefaultFontMapper());
Rectangle2D r2d1
 = new Rectangle2D.Double(0, 0, width, height);
getPieChart().draw(g2d1, r2d1);
g2d1.dispose();
cb.addTemplate(pie, 0, height);

In this code snippet, you obtain a PdfGraphics2D object from a PdfTemplate. This
makes it easier to position the chart on the page.

TROUBLESHOOTING PDFGRAPHICS2D APPLICATIONS

So far, the Graphics2D examples have been simple compared to the previous exam-
ples in this chapter. It would be surprising if there weren’t any caveats.

 Numerous developers have posted problems to the mailing list that can be avoided
by following these guidelines:

■ Don’t forget to call the dispose() method once you’ve finished drawing to the
PdfGraphics2D object (B in listing 14.12). Seriously, this is an FNA: a Fre-
quently Needed Answer.

Listing 14.13 DirectorCharts.java

Listing 14.14 DirectorCharts.java (continued)

Creates and executes
database query

Creates and
fills data set

Creates pie chart

Creates
PdfTemplate

Creates Graphics2D

Draws
chart

Adds
template
Licensed to Bruno Lowagie <bruno@lowagie.com>

482 CHAPTER 14 The imaging model
■ The coordinate system in Java’s Graphics2D is different from the default coordi-
nate system in PDF’s graphics state. The origin of user space in Java Graphics is
the upper-left corner of the component’s drawing area. The X coordinate
increases to the right; the Y coordinate increases downward.

■ Java works in standard Red-Green-Blue (sRGB) as the default color space inter-
nally, but colors need to be translated. Be aware that anything with four color
values is assumed to be ARGB, even when it’s probably CMYK. (ARGB includes
the RGB components plus an alpha transparency factor that specifies what hap-
pens when one color is drawn over another.)

■ Watch out when using fonts. There’s a big difference between the
java.awt.Font and com.itextpdf.text.Font font classes. We’ll discuss this in
section 14.5.2.

■ It’s possible that you’ll need to install a virtual X11 server to make the examples
involving Java’s Abstract Window Toolkit (AWT), such as the Graphics2D exam-
ples, work on Linux servers.

Let’s have a closer look at the last point in the list. If you use java.awt classes in appli-
cations on Linux servers, you can get exceptions like, “Can’t connect to X11 window
server using xyz as the value of the DISPLAY variable” or “No X11 DISPLAY variable was
set, but this program performed an operation which requires it.” The former error
message occurs when a DISPLAY variable was set, but there was no X display server run-
ning. The latter occurs when there’s no DISPLAY variable set at all.

 The Sun AWT classes on UNIX and Linux have a dependency on the X Window Sys-
tem. You must have X installed in the machine; otherwise none of the packages from
java.awt will be installed. If you use these classes, they’ll attempt to load X client
libraries and try to talk to an X display server. This makes sense if your client has a
GUI. Unfortunately, it’s required even if your application uses AWT but, like iText,
doesn’t have a GUI.

 In some cases, you can work around this issue by running the AWT in headless
mode. This can be achieved by starting the Java Virtual Machine (JVM) with the
parameter java.awt.headless=true. In other cases, you’ll have to install a virtual X
server. Xvfb, for instance, emulates an X server without outputting it to the monitor.

 Suppose you’re working on Fedora Linux—you could install Xvfb using this line:

yum install xorg-x11-server-Xvfb

Once Xvfb is started, you can execute it like this:

Xvfb :100 -ac

Before starting your application, export the DISPLAY variable like this:

export DISPLAY=:100.0

You’ll have to do something similar for other Linux distributions; Please consult your
Linux manual for the correct commands to install a virtual X server.

 In the next section, we’ll look at how to render text using Graphics2D.
Licensed to Bruno Lowagie <bruno@lowagie.com>

483Using java.awt.Graphics2D
14.5.2 Drawing text to PdfGraphics2D

Drawing text to a Graphics2D object is straightforward:

g2d.setFont(new java.awt.Font("SansSerif", Font.PLAIN, 12));
g2d.drawString("Hello World", 36, 54);

Drawing the same text to a PdfGraphics2D object isn’t as trivial as the previous exam-
ples suggest. In the code snippet, you tell Java to use a java.awt.Font named “Sans-
Serif”, but how does iText know where to find such a font?

USING A FONTMAPPER

One way to deal with the difference between the way fonts are handled in AWT and in
PDF is to create the PdfGraphics2D object and pass in an instance of the FontMapper
interface:

FontMapper mapper = new DefaultFontMapper();
Graphics2D g2d = cb.createGraphics(width, height, mapper);

The font mapper interface has two methods. One returns an iText BaseFont when
you pass a Java AWT Font, and the other returns a Java AWT Font when you pass an
iText BaseFont:

public BaseFont awtToPdf(java.awt.Font font);
public java.awt.Font pdfToAwt(BaseFont font, int size);

Every class implementing this interface needs to establish a mapping between the two
font objects.

 There’s a default font mapper class called DefaultFontMapper. This class maps the
following AWT font names to the standard Type 1 fonts:

■ DialogInput, Monospaced, and Courier—Mapped to a font from the Courier family.
■ Serif and TimesRoman—Mapped to a font from the Times-Roman family.
■ Dialog and SansSerif—Mapped to a font from the Helvetica family (this is also

the default if the font name isn’t recognized).

You can get the names of the font families that are available in AWT like this:

GraphicsEnvironment ge = GraphicsEnvironment.getLocalGraphicsEnvironment();
String[] fontFamily = ge.getAvailableFontFamilyNames();

On Windows, you’ll get names such as these:

Arial
Arial Black
Arial Narrow
Arial Unicode MS

These names won’t be recognized by the DefaultFontMapper unless you help the
mapper by inserting a directory. In the next listing, you add all the fonts that are pres-
ent in the directory c:/windows/fonts and list the fonts that were registered.

Licensed to Bruno Lowagie <bruno@lowagie.com>

484 CHAPTER 14 The imaging model
DefaultFontMapper mapper = new DefaultFontMapper();
mapper.insertDirectory("c:/windows/fonts/");
PrintStream out2 = new PrintStream(new FileOutputStream(RESULT2));
for (Entry<String,BaseFontParameters> entry
 : mapper.getMapper().entrySet()) {
 out2.println(String.format("%s: %s",
 entry.getKey(), entry.getValue().fontName));
}
out2.flush();
out2.close();

The insertDirectory() method will examine all the font files in that directory, get
the name of each font, and add it to a map. You can get the entries in this map with
the getMapper() method.

 If you search the results of listing 14.15 for the Arial family, you’ll see that
DefaultMapper has found four matches in the fonts directory on Windows:

Arial: c:\windows\fonts\arial.ttf
Arial Bold: c:\windows\fonts\arialbd.ttf
Arial Italic: c:\windows\fonts\ariali.ttf
Arial Bold Italic: c:\windows\fonts\arialbi.ttf

In addition to getMapper(), there’s a getAliases() method that returns all the
names that can be used to create the Java AWT Font object. This includes the name of
the font in different languages, provided that the translations are present in the font
file. You can also add your own aliases with the putAlias() method. All of these
aliases can be used when creating a java.awt.Font object.

 We’ve solved one major problem with DefaultFontMapper: how to map the name
of a font in Java with the path to a font for iText. But what about the encoding?

CHOOSING A DIFFERENT ENCODING

Figure 14.9 shows a JPanel containing English and Japanese text.

Listing 14.15 Graphics2DFonts.java

Inserts a directory

Shows all the
mapped fonts

Figure 14.9 Demonstration and solution of the encoding problem
Licensed to Bruno Lowagie <bruno@lowagie.com>

485Using java.awt.Graphics2D
The text was added to the JPanel in the paint() method of the next listing. It speci-
fies a SansSerif font and MS PGothic.

public class TextExample1 extends JPanel {
 private static AttributedString akira;
 public TextExample1() {
 akira = new AttributedString(
 "Akira Kurosawa: \u9ed2\u6fa4 \u660e or \u9ed2\u6ca2 \u660e; "
 + "23 March 1910 – 6 September 1998.");
 akira.addAttribute(TextAttribute.FONT,
 new Font("SansSerif", Font.PLAIN, 12));
 akira.addAttribute(TextAttribute.FONT,
 new Font("SansSerif", Font.BOLD, 12), 0, 15);
 akira.addAttribute(TextAttribute.FONT,
 new Font("MS PGothic", Font.PLAIN, 12), 16, 20);
 akira.addAttribute(TextAttribute.FONT,
 new Font("MS PGothic", Font.PLAIN, 12), 24, 28);
 }
 public void paint(Graphics g) {
 Graphics2D g2d = (Graphics2D) g;
 g2d.drawString(akira.getIterator(), 10, 16);
 }
}

In this listing, you try to draw the content of the JPanel to PDF.

DefaultFontMapper mapper = new DefaultFontMapper();
mapper.insertDirectory("c:/windows/fonts/");
Graphics2D g2 = canvas.createGraphics(600, 60, mapper);
TextExample1 text = new TextExample1();
text.paint(g2);
g2.dispose();

If you search the map generated by the example listing, you’ll discover that the map-
per is able to find the correct font:

MS PGothic: c:\windows\fonts\msgothic.ttc,1

But the Japanese text isn’t rendered because the DefaultFontMapper assumes that
each font uses the encoding Cp1252 (WinAnsi). This won’t work for Japanese.

 You can fix this by adding a custom BaseFontParameters object to the mapper as
was done here.

DefaultFontMapper mapper = new DefaultFontMapper();
BaseFontParameters parameters = new BaseFontParameters(
 "c:/windows/fonts/msgothic.ttc,1");
parameters.encoding = BaseFont.IDENTITY_H;
mapper.putName("MS PGothic", parameters);
Graphics2D g2 = canvas.createGraphics(600, 60, mapper);

Listing 14.16 TextExample1.java

Listing 14.17 Text1ToPdf1.java

Listing 14.18 Text1ToPdf2.java

Creates font
mapping Adds it to

mapper
Licensed to Bruno Lowagie <bruno@lowagie.com>

486 CHAPTER 14 The imaging model
An alternative to this approach would be to subclass the DefaultFontMapper so that it
uses a different encoding, or even a different font.

CUSTOM IMPLEMENTATIONS OF THE FONTMAPPER

You can render the text shown in figure 14.10 to PDF using three different strategies:
by creating a custom FontMapper forcing the PdfGraphics2D object to use MS Arial
Unicode with encoding Identity-H, by using AsianFontMapper, or by adding the
glyphs as shapes instead of characters stored in a font.

 Experienced Java programmers won’t like the paint() method in the next listing,
but we’ll look at rewriting the code in listing 14.21.

private LineBreakMeasurer lineMeasurer;
public static final String AKIRA =
 "Akira Kurosawa (\u9ed2\u6fa4 \u660e or \u9ed2\u6ca2 \u660e, " +
 "Kurosawa Akira, 23 March 1910 – 6 September 1998) was a " +
 "Japanese film director, producer, screenwriter and editor. " +
 "In a career that spanned 50 years, Kurosawa directed 30 films. " +
 "He is widely regarded as one of the most important and " +
 "influential filmmakers in film history.";
public TextExample2() {
 akira = new AttributedString(AKIRA);
 akira.addAttribute(

Listing 14.19 TextExample2.java

Figure 14.10 Different strategies for drawing Asian fonts
Licensed to Bruno Lowagie <bruno@lowagie.com>

487Using java.awt.Graphics2D
 TextAttribute.FONT, new Font("Arial Unicode MS", Font.PLAIN, 12));
}
public void paint(Graphics g) {
 Graphics2D g2d = (Graphics2D) g;
 g2d.setFont(new Font("Arial Unicode MS", Font.PLAIN, 12));
 if (lineMeasurer == null) {
 AttributedCharacterIterator paragraph = akira.getIterator();
 paragraphStart = paragraph.getBeginIndex();
 paragraphEnd = paragraph.getEndIndex();
 FontRenderContext frc = g2d.getFontRenderContext();
 lineMeasurer = new LineBreakMeasurer(paragraph, frc);
 }
 float breakWidth = (float)getSize().width;
 float drawPosY = 0;
 lineMeasurer.setPosition(paragraphStart);
 int start = 0;
 int end = 0;
 while (lineMeasurer.getPosition() < paragraphEnd) {
 TextLayout layout = lineMeasurer.nextLayout(breakWidth);
 drawPosY += layout.getAscent();
 end = start + layout.getCharacterCount();
 g2d.drawString(AKIRA.substring(start, end), 0, drawPosY);
 start = end;
 drawPosY += layout.getDescent() + layout.getLeading();
 }
}

The drawString() method is similar to iText’s showTextAligned() method. It doesn’t
wrap the text when the end of the line is reached. Figure 14.10 shows a longer text
containing English and Japanese spanning multiple lines.

 Here, you’re dividing the long AKIRA text into smaller String objects using the
LineBreakMeasurer object with an AttributedString. The substrings are added
using the drawString() method.

CREATING A CUSTOM FONTMAPPER

The first of the three proposed strategies for rendering the text shown in figure 14.10
to PDF is to create a custom FontMapper class.

FontMapper arialuni = new FontMapper() {
 public BaseFont awtToPdf(Font font) {
 try {
 return BaseFont.createFont(
 "c:/windows/fonts/arialuni.ttf",
 BaseFont.IDENTITY_H, BaseFont.EMBEDDED);
 } catch (DocumentException e) {
 e.printStackTrace();
 } catch (IOException e) {
 e.printStackTrace();
 }
 return null;
 }

Listing 14.20 Text2ToPdf1.java
Licensed to Bruno Lowagie <bruno@lowagie.com>

488 CHAPTER 14 The imaging model
 public Font pdfToAwt(BaseFont font, int size) {
 return null;
 }
};
Graphics2D g2 = canvas.createGraphics(300, 150, arialuni);

This is a quick and dirty solution that forces PdfGraphics2D to use arialuni.ttf no
matter which font was selected on the Java side.

USING ASIANFONTMAPPER

A similar solution is to use the AsianFontMapper class, as is done in the Text2ToPdf2
class, which demonstrates the second strategy for rendering the text:

Graphics2D g2 = canvas.createGraphics(300, 150,
 new AsianFontMapper(AsianFontMapper.JapaneseFont_Min,
 AsianFontMapper.JapaneseEncoding_H));

The AsianFontMapper class contains static String values corresponding with the CJK
fonts discussed in section 11.3.3. One of the most difficult problems when using this
approach lies with the font metrics. As far as the Java part is concerned, the font Arial
Unicode is used. This choice is respected in the Text2ToPdf1 example in listing 14.20,
but you use a different font in the Text2ToPdf2 example. This different font may have
different metrics. If that’s the case, the size of each line will be different from what was
expected. The text may even exceed the designated area.

 Let’s consider a third strategy. You can drop the idea of using a FontMapper and let
the Java code draw the shapes of the glyphs.

DRAWING GLYPH SHAPES INSTEAD OF USING A PDF FONT

If you create a PdfGraphics2D object using the createGraphicsShapes() method
instead of createGraphics(), you don’t need to map any fonts. This is what happens
in the example named Text2ToPdf3:

Graphics2D g2 = canvas.createGraphicsShapes(300, 150);

Internally, iText will use the Java object java.awt.font.TextLayout to draw the
glyphs to the Graphics2D object. This object will address the font program directly
and copy the path of each glyph to the page.

 There’s a significant difference between this approach and using a FontMapper. If
you open the Fonts tab in File > Properties, you won’t find any font. This has the fol-
lowing consequences:

■ The file size will generally be larger because the glyph descriptions will be
repeated in the content stream instead of being stored in a font stream from
which they can be reused.

■ Selecting text will be impossible because there is no text. Each glyph is a path
that has been filled.

■ Glyph resolution for glyphs that are stored in a font will render much better
than glyphs drawn as shapes, such as when printed on low-resolution printers.
Licensed to Bruno Lowagie <bruno@lowagie.com>

489Using java.awt.Graphics2D
These are all disadvantages. An advantage could be that you will prevent end users
from copying and pasting, or that you can obfuscate email addresses in your docu-
ment so that they can’t be “harvested” by engines spidering your PDF. Finally, there’s
the advantage that Java supports Hindic languages, whereas iText can’t make the liga-
tures when writing Hindi.

 This phenomenon is also a side effect of using the LineBreakMeasurer correctly.
The following example is a rewrite of listing 14.19.

private LineBreakMeasurer lineMeasurer;
private static AttributedString akira;
public TextExample3() {
 akira = new AttributedString(
 "Akira Kurosawa (\u9ed2\u6fa4 \u660e or \u9ed2\u6ca2 \u660e, " +
 "Kurosawa Akira, 23 March 1910 – 6 September 1998) was a " +
 "Japanese film director, producer, screenwriter and editor. " +
 "In a career that spanned 50 years, Kurosawa directed 30 films. " +
 "He is widely regarded as one of the most important and " +
 "influential filmmakers in film history.");
 akira.addAttribute(
 TextAttribute.FONT, new Font("SansSerif", Font.PLAIN, 12));
 akira.addAttribute(
 TextAttribute.FONT, new Font("SansSerif", Font.BOLD, 12), 0, 14);
 akira.addAttribute(
 TextAttribute.FONT, new Font("MS PGothic", Font.PLAIN, 12), 16, 20);
 akira.addAttribute(
 TextAttribute.FONT, new Font("MS PGothic", Font.PLAIN, 12), 24, 28);
}
public void paint(Graphics g) {
 Graphics2D g2d = (Graphics2D) g;
 if (lineMeasurer == null) {
 AttributedCharacterIterator paragraph = akira.getIterator();
 paragraphStart = paragraph.getBeginIndex();
 paragraphEnd = paragraph.getEndIndex();
 FontRenderContext frc = g2d.getFontRenderContext();
 lineMeasurer = new LineBreakMeasurer(paragraph, frc);
 }
 float breakWidth = (float)getSize().width;
 float drawPosY = 0;
 lineMeasurer.setPosition(paragraphStart);
 while (lineMeasurer.getPosition() < paragraphEnd) {
 TextLayout layout = lineMeasurer.nextLayout(breakWidth);
 drawPosY += layout.getAscent();
 layout.draw(g2d, 0, drawPosY);
 drawPosY += layout.getDescent() + layout.getLeading();
 }
}

You draw() the substring available in the TextLayout object instead of taking sub-
strings of the long text and using drawString(). Using TextLayout.draw() has the
same effect as using createGraphicsShapes() instead of createGraphics(). The
same disadvantages apply: problems with file sizes, selecting text, and resolution.

Listing 14.21 TextExample3.java
Licensed to Bruno Lowagie <bruno@lowagie.com>

490 CHAPTER 14 The imaging model
Suppose that you want to mix different fonts and styles in one String, force line breaks,
and avoid the disadvantages of using draw(). To do this, you’ll need another solution.

 The upper-right PDF in figure 14.11 is drawn using listing 14.21. There are no fonts
in the PDF; the glyph descriptions are added as PDF syntax in the content stream.

 The lower-right PDF uses a different mechanism. It’s the result of printing a JText-
Pane to a PdfGraphics2D object.

PRINTING SWING COMPONENTS TO PDF

The Java class java.awt.Component has a method named print() that takes a Graph-
ics object as a parameter. You can use this method to print any component to a
PdfGraphics2D object: JTables, JTrees, and so on.

 The next listing creates a JTextPane and adds the different components of a text
to a StyledDocument. The JTextPane will make sure the content is distributed over
different lines, and render it correctly using the right fonts. The JTextPane is shown
in the bottom-left window in figure 14.11.

public class TextExample4 {
 public static final String[] AKIRA = {
 "Akira Kurosawa", " (", "\u9ed2\u6fa4 \u660e",
 " or ",

Listing 14.22 TextExample4.java

Figure 14.11 Different strategies for using mixed fonts

Contains text
snippets
Licensed to Bruno Lowagie <bruno@lowagie.com>

491Using java.awt.Graphics2D
 "\u9ed2\u6ca2 \u660e",
 ", Kurosawa Akira, 23 March 1910" +
 " – 6 September 1998) was a Japanese film director,"
 + " producer, screenwriter and editor. In a career "
 + "that spanned 50 years, Kurosawa directed 30 "
 + "films. He is widely regarded as one of the most "
 + "important and influential filmmakers in film "
 + "history." };
 public static final String[] STYLES = {
 "bold", "regular", "japanese", "regular",
 "japanese", "regular" };
 public static void initStyles(StyledDocument doc) {
 Style def = StyleContext.getDefaultStyleContext()
 .getStyle(StyleContext.DEFAULT_STYLE);
 StyleConstants.setFontFamily(def, "SansSerif");
 Style regular = doc.addStyle("regular", def);
 Style bold = doc.addStyle("bold", regular);
 StyleConstants.setBold(bold, true);
 Style japanese = doc.addStyle("japanese", def);
 StyleConstants.setFontFamily(
 japanese, "MS PGothic");
 }
 public static JTextPane createTextPane()
 throws BadLocationException {
 JTextPane textPane = new JTextPane();
 StyledDocument doc = textPane.getStyledDocument();
 initStyles(doc);
 for (int i=0; i < AKIRA.length; i++) {
 doc.insertString(doc.getLength(), AKIRA[i],
 doc.getStyle(STYLES[i]));
 }
 return textPane;
 }
}

The JTextPane class extends the Component class, and you’ll use its print() method
in the next listing.

DefaultFontMapper mapper = new DefaultFontMapper();
BaseFontParameters parameters = new BaseFontParameters(
"c:/windows/fonts/msgothic.ttc,1");
parameters.encoding = BaseFont.IDENTITY_H;
mapper.putName("MS PGothic", parameters);
Graphics2D g2 = canvas.createGraphics(300, 150, mapper);
JTextPane text = TextExample4.createTextPane();
text.setSize(new Dimension(300, 150));
text.print(g2);
g2.dispose();

This technique is frequently used in Swing applications. For instance, if you have an
application with a JTable that’s shown on the screen, you can print that JTable to PDF
using its print() method instead of using PdfPTable.

Listing 14.23 Text4ToPdf.java

Contains text
snippets

Lists corresponding
styles

Initializes
styles

Creates
JTextPane

Adds snippets
of text

Creates font
mapper

Creates
Graphics2DCreates

JTextPane
Prints JTextPane
to PDF
Licensed to Bruno Lowagie <bruno@lowagie.com>

492 CHAPTER 14 The imaging model
NOTE The two methods for creating a PdfGraphics2D object, createGraph-
ics() and createGraphics2D(), also exist with two extra parameters: con-
vertImagesToJPEG and quality. Use these parameters to tell iText that it
should convert all the images that are added to JPEGs. This can be an interest-
ing way to reduce the size of the resulting PDF document. The quality
parameter has the same meaning as the parameter with the same name in sec-
tion 10.2.6.

In the next chapter, you’ll use the PdfGraphics2D class to convert files in the Scalable
Vector Graphics (SVG) format to PDF. Right now, it’s time to summarize what this
chapter was about.

14.6 Summary
We started this chapter by peeking into the content stream of a page, and we were
confronted with PDF syntax for stroking and filling paths and shapes. To understand
this syntax, we first looked at path construction and painting operators, and then we
moved on to the operators that change the graphics state. The coordinate system
received our special attention. Along the way, you learned about some convenience
methods provided by iText.

 We did the same for text and text state, looking at reference tables listing all the
methods that are available in the PdfContentByte object. Then we repeated more or
less what we did before, drawing paths and shapes and drawing text, but we didn’t use
any of the methods discussed previously. Instead, we used the standard Java methods
that are available in the abstract class PdfGraphics2D.

 In the next chapter, we’ll continue examining the content of a PDF page, but we’ll
focus on optional content and PDF tags. We’ll also try to parse a content stream to
extract text from a page.

Licensed to Bruno Lowagie <bruno@lowagie.com>

Page content
 and structure
The previous chapter was devoted entirely to page content; you learned how to add
content the PDF way and the Java way. We’ll continue discussing content in this
chapter. We’ll add operators and operands to make part of the content optional.
We’ll use marked content to add custom parameters to graphical objects, to make
the content accessible for the visually impaired, and to store the structure of the
document. Finally, we’ll make a fair attempt at parsing a PDF document and
extracting content from a page.

15.1 Making content visible or invisible
All the content you’ve added to a page so far was either visible or it was invisible,
whether because it was clipped or because the rendering mode was set to invisible.
Beginning with PDF 1.5, you can also add optional content: content that can be
selectively viewed or hidden by document authors or consumers.

This chapter covers
■ Making content optional
■ Working with marked content
■ Parsing PDF files
493

Licensed to Bruno Lowagie <bruno@lowagie.com>

494 CHAPTER 15 Page content and structure
15.1.1 Optional content groups

Graphics and text that can be made visible or invisible dynamically are grouped in
an optional content group (OCG). Content that belongs to a certain group is visible
when the group is on, and invisible when the group is off. Figure 15.1 demonstrates
this functionality.

The text, “Do you see me?” is added as normal content. The text, “Peek-a-Boo!!!” is
added as optional content that’s visible in the upper window, but not in the lower win-
dow. In both windows, the Layers panel is opened. “Do you see me?” is the caption of
a layer (which is another name for an OCG). By clicking the group’s check box in the
Layers panel, end users can make the content visible or invisible.

 The next listing shows how the “Do you see me?” layer was created using iText’s
PdfLayer object, and how the “Peek-a-Boo!!!” text was made optional using the Pdf-
ContentByte methods beginLayer() and endLayer().

Document document = new Document();
PdfWriter writer
 = PdfWriter.getInstance(document, new FileOutputStream(filename));
writer.setViewerPreferences(PdfWriter.PageModeUseOC);
writer.setPdfVersion(PdfWriter.VERSION_1_5);
document.open();
PdfLayer layer = new PdfLayer("Do you see me?", writer);
layer.setOn(on);
BaseFont bf = BaseFont.createFont();
PdfContentByte cb = writer.getDirectContent();
cb.beginText();
cb.setFontAndSize(bf, 18);
cb.showTextAligned(Element.ALIGN_LEFT,
 "Do you see me?", 50, 790, 0);

Listing 15.1 PeekABoo.java

Figure 15.1
Making content
visible and invisible

Creates layer

Adds normal
content
Licensed to Bruno Lowagie <bruno@lowagie.com>

495Making content visible or invisible
cb.beginLayer(layer);
cb.showTextAligned(Element.ALIGN_LEFT,
 "Peek-a-Boo!!!", 50, 766, 0);
cb.endLayer();
cb.endText();
document.close();

Note that in this listing the viewer preferences are set so that the optional content
panel is shown when the document is opened. The state of the layers can be specified
with the setOn() method, which expects a Boolean value. If true, the layer will be vis-
ible (this is the default). If false, the layer will be hidden.

 If you peek into the content stream of the resulting page, you’ll see this construct:

/OC /Pr1 BDC
1 0 0 1 50 766 Tm
(Peek-a-Boo!!!)Tj
EMC

The optional content is put between the marked-content operators BDC and EMC. This
marked content is recognized as optional because of the /OC tag. The operand /Pr1
was created by iText.

 You’ll find a reference to the OCG in the resources dictionary of the page:

/Properties<</Pr1 1 0 R>>

The indirect object 1 looks like this:

1 0 obj
<</Type/OCG/Name(Do you see me?)>>
endobj

The OCGs and their properties are listed in the catalog (see section 13.3):

<<
 /Type/Catalog
 /Pages 4 0 R
 /OCProperties<<
 /D<<
 /Order[1 0 R]
 /ListMode/VisiblePages
 >>
 /OCGs[1 0 R]
 >>
 /PageMode/UseOC
>>

The optional content of a group can reside anywhere in the document. It doesn’t have
to be consecutive in drawing order or belong to the same content stream (or page).

 The previous example was simple, with one layer and one sequence of optional
content. Let’s see how to work with different layers that are organized in structures.

15.1.2 Adding structure to layers

Figure 15.2 shows different features of the PdfLayer object.

Adds optional
content
Licensed to Bruno Lowagie <bruno@lowagie.com>

496 CHAPTER 15 Page content and structure
We’ll start with the structure that is visible in the Layers tab. It shows a tree with
branches: Nested Layers, Grouped Layers, and Radio Group.

NESTED LAYERS

The nested layers in figure 15.2 are visible by default; if you click the eye icon next to
Nested Layer 1, the words “nested layer 1” disappear from the page on the right. You
can’t change the visibility of “nested layer 2” separately because it has been locked, but
if you click the eye icon next to the Nested Layers parent layer, everything that is
added to the parent layer is made invisible, as well as everything that is added to its
children. This is how it’s done.

PdfContentByte cb = writer.getDirectContent();
PdfLayer nested = new PdfLayer(
 "Nested layers", writer);
PdfLayer nested_1 = new PdfLayer(
 "Nested layer 1", writer);
PdfLayer nested_2 = new PdfLayer(
 "Nested layer 2", writer);
nested.addChild(nested_1);
nested.addChild(nested_2);
writer.lockLayer(nested_2);

Listing 15.2 OptionalContentExample.java

Figure 15.2 Different groups of optional content

Creates a
parent layer

Adds children
to parent
Licensed to Bruno Lowagie <bruno@lowagie.com>

497Making content visible or invisible
cb.beginLayer(nested);
ColumnText.showTextAligned(cb, Element.ALIGN_LEFT,
 new Phrase("nested layers"), 50, 775, 0);
cb.endLayer();
cb.beginLayer(nested_1);
ColumnText.showTextAligned(cb, Element.ALIGN_LEFT,
 new Phrase("nested layer 1"), 100, 800, 0);
cb.endLayer();
cb.beginLayer(nested_2);
ColumnText.showTextAligned(cb, Element.ALIGN_LEFT,
 new Phrase("nested layer 2"), 100, 750, 0);
cb.endLayer();

The nested structure is defined by using the addChild() method. It’s not necessary to
nest the beginLayer() and endLayer() sequences, but it isn’t forbidden either. Layers
can be locked with the lockLayer() method. The visibility of a locked layer can’t be
changed using the eye icon in the Layers panel.

 Grouped layers are similar to nested layers.

GROUPED LAYERS

If you look at the Layers panel, you’ll see that the Grouped Layers layer can’t be
clicked. This layer was constructed with the createTitle() method.

PdfLayer group
 = PdfLayer.createTitle("Grouped layers", writer);
PdfLayer layer1
 = new PdfLayer("Group: layer 1", writer);
PdfLayer layer2
 = new PdfLayer("Group: layer 2", writer);
group.addChild(layer1);
group.addChild(layer2);
cb.beginLayer(layer1);
ColumnText.showTextAligned(cb, Element.ALIGN_LEFT,
 new Phrase("layer 1 in the group"), 50, 700, 0);
cb.endLayer();
cb.beginLayer(layer2);
ColumnText.showTextAligned(cb, Element.ALIGN_LEFT,
 new Phrase("layer 2 in the group"), 50, 675, 0);
cb.endLayer();

The parent of this group can’t be used as a parameter for the beginLayer() method.
The PdfLayer object returned by createTitle() is a structural element and doesn’t
represent an OCG.

RADIO GROUP

This listing uses the same method to create a parent object for a radio group.

PdfLayer radiogroup
 = PdfLayer.createTitle("Radio group", writer);
PdfLayer radio1

Listing 15.3 OptionalContentExample.java

Listing 15.4 OptionalContentExample.java

Adds content
parent

Adds content
children

Creates parent
layer

Creates
children

Adds children
to parent

Creates
parent layer
Licensed to Bruno Lowagie <bruno@lowagie.com>

498 CHAPTER 15 Page content and structure
 = new PdfLayer("Radiogroup: layer 1", writer);
radio1.setOn(true);
PdfLayer radio2
 = new PdfLayer("Radiogroup: layer 2", writer);
radio2.setOn(false);
PdfLayer radio3
 = new PdfLayer("Radiogroup: layer 3", writer);
radio3.setOn(false);
radiogroup.addChild(radio1);
radiogroup.addChild(radio2);
radiogroup.addChild(radio3);
ArrayList<PdfLayer> options
 = new ArrayList<PdfLayer>();
options.add(radio1);
options.add(radio2);
options.add(radio3);
writer.addOCGRadioGroup(options);
cb.beginLayer(radio1);
ColumnText.showTextAligned(cb, Element.ALIGN_LEFT,
 new Phrase("option 1"), 50, 600, 0);
cb.endLayer();
cb.beginLayer(radio2);
ColumnText.showTextAligned(cb, Element.ALIGN_LEFT,
 new Phrase("option 2"), 50, 575, 0);
cb.endLayer();
cb.beginLayer(radio3);
ColumnText.showTextAligned(cb, Element.ALIGN_LEFT,
 new Phrase("option 3"), 50, 550, 0);
cb.endLayer();

If you open the PDF shown in figure 15.2 in Adobe Reader, clicking another option in
the radio group makes “option 1” invisible. Depending on the layer you chose,
“option 2” or “option 3” becomes visible.

 The PDF shown in the screenshot also contains two sequences of optional content
for which there’s no entry in the Layers panel. These layers are visible or invisible
depending on the usage of the PDF file.

VISIBILITY DEPENDING ON USAGE

In listing 15.5, two PdfLayer objects are created, and setOnPanel(false) is used for
both. An extra method determines the visibility: The method setPrint() was used to
create a layer that will only be visible on screen; the content won’t be printed on
paper. The method setZoom() ensures that the layer is only visible if the zoom factor
is between 75% and 125% (in the screenshot, the zoom factor is 100%).

PdfLayer not_printed = new PdfLayer("not printed", writer);
not_printed.setOnPanel(false);
not_printed.setPrint("Print", false);
cb.beginLayer(not_printed);
ColumnText.showTextAligned(cb, Element.ALIGN_CENTER,
 new Phrase("PRINT THIS PAGE"), 300, 700, 90);
cb.endLayer();
PdfLayer zoom = new PdfLayer("Zoom 0.75-1.25", writer);
zoom.setOnPanel(false);

Listing 15.5 OptionalContentExample.java

Creates
children

Adds children
to parent

Groups
children in
ArrayList

Defines list as
radio group
Licensed to Bruno Lowagie <bruno@lowagie.com>

499Making content visible or invisible
zoom.setZoom(0.75f, 1.25f);
cb.beginLayer(zoom);
ColumnText.showTextAligned(cb, Element.ALIGN_LEFT,
 new Phrase("Only visible if the zoomfactor is between 75 and 125%"),
 30, 530, 90);
cb.endLayer();

Table 15.1 lists the different methods that can be used to add entries to the usage dictionary
of an OCG. This dictionary describes the nature of the content controlled by the OCG.

Table 15.1 PdfLayer methods for changing the usage dictionary

Method Parameters Description

setCreatorInfo (creator,
subtype)

Stores application-specific data associated with this OCG.
The creator parameter is a String specifying the group;
subtype defines the type of content, such as "Artwork"
or "Technical".

setLanguage (lang,
preferred)

Specifies the language of the content controlled by this OCG.
The lang parameter is a String defining the locale, such
as "en-US". If you’ve specified a language, the layer that
matches the system language is visible (ON), unless
preferred is set to true.

setExport (export) Indicates the recommended state for content in this group
when the document is saved by an application to a format
that doesn’t support optional content. If export is true,
the layer is visible (ON).

setZoom (min, max) Specifies a range of magnifications at which the content is
best viewed. The parameters min and max are the minimum
and maximum recommended zoom factors. Using a negative
value for min sets the default to 0; for max a negative value
corresponds with the largest possible magnification sup-
ported by the viewer.

setPrint (subtype,
printstate)

Specifies the state if the content in this group is to be
printed. Possible values for subtype are "Print",
"Trapped", "PrinterMarks", and "Watermark";
printstate is a boolean.

setView (view) Indicates that the group should be set to that state when the
document is opened in a viewer application. If view is
true, the layer is visible (ON).

setUser (type,
names)

Specifies one or more users for whom this OCG is primarily
intended. Possible values for type are "Ind" (individual),
"Ttl" (title), or "Org" (organization). The names parame-
ter can be one or more String objects.

setPageElement (pe) Indicates that the OCG contains a pagination artifact. Possi-
ble values include "HF" (header or footer), "FG" (fore-
ground image or graphic), "BG" (background image or
graphic), or "L" (logo).
Licensed to Bruno Lowagie <bruno@lowagie.com>

500 CHAPTER 15 Page content and structure
The decision as to whether or not an object should be visible can depend on the state
of a series of other layers that are grouped in an optional content membership.

15.1.3 Optional content membership

In the previous examples, you’ve added content to a single OCG. This content is visi-
ble if the status of the group is on and invisible when it’s off. Consider more complex
visibility possibilities, with content not belonging directly to a specific layer, but where
the visibility depends on the states of different layers.

DEFINING A VISIBILITY POLICY

Suppose you have three layers, one with the word “dog”, one with the word “tiger”,
and one with the word “lion”. Next, define a membership with the word “cat” that is
visible only if either of the words “tiger” or “lion” are visible, and a membership with
the words “no cat” if none of these words are visible.

 This can be achieved with this code.

PdfLayer dog = new PdfLayer("layer 1", writer);
PdfLayer tiger = new PdfLayer("layer 2", writer);
PdfLayer lion = new PdfLayer("layer 3", writer);
PdfLayerMembership cat
 = new PdfLayerMembership(writer);
cat.addMember(tiger);
cat.addMember(lion);
PdfLayerMembership no_cat
 = new PdfLayerMembership(writer);
no_cat.addMember(tiger);
no_cat.addMember(lion);
no_cat.setVisibilityPolicy(PdfLayerMembership.ALLOFF);
cb.beginLayer(dog);
ColumnText.showTextAligned(cb, Element.ALIGN_LEFT,
 new Phrase("dog"), 50, 775, 0);
cb.endLayer();
cb.beginLayer(tiger);
ColumnText.showTextAligned(cb, Element.ALIGN_LEFT,
 new Phrase("tiger"), 50, 750, 0);
cb.endLayer();
cb.beginLayer(lion);
ColumnText.showTextAligned(cb, Element.ALIGN_LEFT,
 new Phrase("lion"), 50, 725, 0);
cb.endLayer();
cb.beginLayer(cat);
ColumnText.showTextAligned(cb, Element.ALIGN_LEFT,
 new Phrase("cat"), 50, 700, 0);
cb.endLayer();
cb.beginLayer(no_cat);
ColumnText.showTextAligned(cb, Element.ALIGN_LEFT,
 new Phrase("no cat"), 50, 700, 0);
cb.endLayer();

Listing 15.6 LayerMembershipExample1.java

Defines three
normal layers

Defines cat layer
membership

Defines no_cat
layer membership

Displays if layers 2
or 3 are on

Displays if layers 2
and 3 are off
Licensed to Bruno Lowagie <bruno@lowagie.com>

501Making content visible or invisible
In this listing, you first create three normal PdfLayer objects. Then you create two
PdfLayerMembership objects, cat and no_cat.

 This example uses two out of four possible visibility policies:

■ ALLON—Visible if all the entries are on.
■ ANYON—Visible if any of the entries are on.
■ ANYOFF—Visible if any of the entries are off.
■ ALLOFF—Visible if all of the entries are off.

You didn’t explicitly define a visibility policy for the cat membership. It was set to
ANYON, which is the default value.

DEFINING A VISIBILITY EXPRESSION

Since PDF 1.6, visibility policies are still accepted, but preference is given to a visibility
expression. This allows you to specify an arbitrary Boolean expression for computing
the visibility from the states of OCGs. The layer memberships in the next listing are
equivalent to those in listing 15.6. The end user will not notice any difference.

PdfLayerMembership cat = new PdfLayerMembership(writer);
PdfVisibilityExpression ve1
 = new PdfVisibilityExpression(PdfVisibilityExpression.OR);
ve1.add(tiger);
ve1.add(lion);
cat.setVisibilityExpression(ve1);
PdfLayerMembership no_cat = new PdfLayerMembership(writer);
PdfVisibilityExpression ve2
 = new PdfVisibilityExpression(PdfVisibilityExpression.NOT);
ve2.add(ve1);
no_cat.setVisibilityExpression(ve2);

Using a PdfVisibilityExpression offers a more general way to define a layer mem-
bership. Possible values for the parameter when constructing a PdfVisibilityEx-
pression are AND, OR, and NOT. You can add PdfLayer objects to a visibility expression,
and you can nest PdfVisibilityExpression objects. If the value is NOT, you may only
add one element. If it’s AND or OR, you can add more elements.

 Another way to switch content on or off is by using actions.

15.1.4 Changing the state of a layer with an action

You used the PdfAction class in chapter 7 to jump to another location in a PDF file, to
execute JavaScript, and so on. In this section, you’ll create actions to change the visi-
bility of an OCG.

 Figure 15.3 shows three questions about movies. The answers are also added to the
document, but each answer is added to a separate OCG. They aren’t visible by default,
so that you can test your own knowledge about movies and directors.

 In this example, the layers are added to the Layers panel, so that you can switch the
answers on or off, but the more questions and answers there are in your questionnaire,

Listing 15.7 LayerMembershipExample2.java
Licensed to Bruno Lowagie <bruno@lowagie.com>

502 CHAPTER 15 Page content and structure
the less user-friendly this panel will be. It would be better to add clickable areas to the
document that allow you to make one or more answers visible. This is illustrated in the
next example.

PdfLayer a1 = new PdfLayer("answer 1", writer);
PdfLayer a2 = new PdfLayer("answer 2", writer);
PdfLayer a3 = new PdfLayer("answer 3", writer);
a1.setOn(false);
a2.setOn(false);
a3.setOn(false);
...
ArrayList<Object> stateOn = new ArrayList<Object>();
stateOn.add("ON");
stateOn.add(a1);
stateOn.add(a2);
stateOn.add(a3);
PdfAction actionOn
 = PdfAction.setOCGstate(stateOn, true);
ArrayList<Object>stateOff = new ArrayList<Object>();
stateOff.add("OFF");
stateOff.add(a1);
stateOff.add(a2);
stateOff.add(a3);
PdfAction actionOff
 = PdfAction.setOCGstate(stateOff, true);
ArrayList<Object> stateToggle = new ArrayList<Object>();
stateToggle.add("Toggle");
stateToggle.add(a1);
stateToggle.add(a2);
stateToggle.add(a3);
PdfAction actionToggle
 = PdfAction.setOCGstate(stateToggle, true);
Phrase p = new Phrase("Change the state of the answers:");
Chunk on = new Chunk(" on ").setAction(actionOn);
p.add(on);

Listing 15.8 OptionalContentActionExample.java

Figure 15.3 Changing visibility using actions

Creates three
layers

Creates list
for ON state

Creates
action

Creates list
for OFF state

Creates list
for Toggle
state
Licensed to Bruno Lowagie <bruno@lowagie.com>

503Making content visible or invisible
Chunk off = new Chunk("/ off ").setAction(actionOff);
p.add(off);
Chunk toggle = new Chunk("/ toggle").setAction(actionToggle);
p.add(toggle);
document.add(p);

The setOCGState() static method returns a PdfAction object B. The first parameter
is an ArrayList, and the first element in this list defines the action: the layers that are
added can be turned on ("ON"), turned off ("OFF"), or toggled ("Toggle"). The sec-
ond parameter makes sense only if you’ve defined radio groups. If it’s false, the fact
that a layer belongs to a radio group is ignored. If it’s true, turning on a layer that
belongs to a radio group turns off the other layers in the radio group.

 Up until now, you’ve marked content as optional in the content stream, using Pdf-
ContentByte methods. You can also mark specific objects as optional.

15.1.5 Optional content in XObjects and annotations

Three types of iText objects are often drawn in an OCG: Images, PdfTemplates, and
PdfAnnotations. For convenience, these objects have a setLayer() method that can
be used to define the OCG to which the object belongs.

 Figure 15.4 shows a map of Foobar. People from all over the world will be coming
to the Foobar Film Festival, and to make sure these people find their way to the movie
theater, you’ll create a map of the city. You’ll add the street names in three lan-
guages—English, French, and Dutch—and put these street names in different layers,
organized as a radio group, so that only one layer is visible at a time. You’ll also add
more layers showing information about restaurants, movie theaters, and so on. End
users can switch these layers on and off depending on what they’re looking for in the
city of Foobar.

 This PDF is created from an SVG file, foobarcity.svg containing the map (lines and
shapes), and three SVG files, foobarstreets.svg, foobarrues.svg, and foobarstraten.svg,
containing the street names in English, French, and Dutch (text only). iText can’t

Figure 15.4 The interactive map of Foobar
Licensed to Bruno Lowagie <bruno@lowagie.com>

504 CHAPTER 15 Page content and structure
interpret these files. You could try to write your own SVG handler (as was done in the
first edition of this book), but it’s easier to use a library that already exists, such as
Apache Batik. This listing creates the map without the optional content layers.

protected SAXSVGDocumentFactory factory;
protected BridgeContext ctx;
protected GVTBuilder builder;
public SvgToPdf() {
 String parser
 = XMLResourceDescriptor.getXMLParserClassName();
 factory = new SAXSVGDocumentFactory(parser);
 UserAgent userAgent = new UserAgentAdapter();
 DocumentLoader loader = new DocumentLoader(userAgent);
 ctx = new BridgeContext(userAgent, loader);
 ctx.setDynamicState(BridgeContext.DYNAMIC);
 builder = new GVTBuilder();
}
public void drawSvg(PdfTemplate map, String resource)
 throws IOException {
 Graphics2D g2d = map.createGraphics(6000, 6000);
 SVGDocument city = factory.createSVGDocument(
 new File(resource).toURL().toString());
 GraphicsNode mapGraphics = builder.build(ctx, city);
 mapGraphics.paint(g2d);
 g2d.dispose();
}
public void createPdf(String filename)
 throws IOException, DocumentException {
 Document document = new Document(new Rectangle(6000, 6000));
 PdfWriter writer
 = PdfWriter.getInstance(document, new FileOutputStream(RESULT));
 document.open();
 PdfContentByte cb = writer.getDirectContent();
 PdfTemplate map = cb.createTemplate(6000, 6000);
 drawSvg(map, CITY);
 cb.addTemplate(map, 0, 0);
 PdfTemplate streets = cb.createTemplate(6000, 6000);
 drawSvg(streets, STREETS);
 cb.addTemplate(streets, 0, 0);
 document.close();
}

The listing could easily have been an example from the previous chapter, where you
used the PdfGraphics2D functionality to write to a java.awt.Graphics2D object. The
lines and shapes are drawn to a PdfTemplate, and so are the street names. The
streets template is added on top of the map template.

 In the next listing you’ll create three PdfTemplate objects for the street names.
You’ll add these templates on top of each other but define an OCG for each of the
templates, making sure that only one layer is visible at a time.

Listing 15.9 SvgToPdf.java

Performs
Batik-specific
initializations

Draws SVG to
PdfTemplate

Creates and adds
city template

Creates and adds
streets template
Licensed to Bruno Lowagie <bruno@lowagie.com>

505Making content visible or invisible
PdfLayer streetlayer = PdfLayer.createTitle(
 "Streets / Rues / Straten", writer);
PdfLayer streetlayer_en
 = new PdfLayer("English", writer);
streetlayer_en.setOn(true);
streetlayer_en.setLanguage("en", true);
PdfLayer streetlayer_fr
 = new PdfLayer("Fran\u00e7ais", writer);
streetlayer_fr.setOn(false);
streetlayer_fr.setLanguage("fr", false);
PdfLayer streetlayer_nl
 = new PdfLayer("Nederlands", writer);
streetlayer_nl.setOn(false);
streetlayer_nl.setLanguage("nl", false);
streetlayer.addChild(streetlayer_en);
streetlayer.addChild(streetlayer_fr);
streetlayer.addChild(streetlayer_nl);
ArrayList<PdfLayer> radio = new ArrayList<PdfLayer>();
radio.add(streetlayer_en);
radio.add(streetlayer_fr);
radio.add(streetlayer_nl);
writer.addOCGRadioGroup(radio);
PdfContentByte cb = writer.getDirectContent();
PdfTemplate map = cb.createTemplate(6000, 6000);
drawSvg(map, CITY);
cb.addTemplate(map, 0, 0);
PdfTemplate streets = cb.createTemplate(6000, 6000);
drawSvg(streets, STREETS);
streets.setLayer(streetlayer_en);
cb.addTemplate(streets, 0, 0);
PdfTemplate rues = cb.createTemplate(6000, 6000);
drawSvg(rues, RUES);
rues.setLayer(streetlayer_fr);
cb.addTemplate(rues, 0, 0);
PdfTemplate straten = cb.createTemplate(6000, 6000);
drawSvg(straten, STRATEN);
straten.setLayer(streetlayer_nl);
cb.addTemplate(straten, 0, 0);
cb.saveState();

The setLayer() method is often used for watermark images, such as for a layer that is
only visible when a document is printed, or for specific form fields (widget annotations)
that need to be made visible or invisible depending on the values of other fields.

 This listing uses a method from table 15.1 to set the language of the street layers.
For a watermark image, you’ll use the setPageElement() method with the parameter
"BG". The interactive map of Foobar is meant as an inspiring example, showing that
you can create really interesting interactive PDF files using the OCG functionality.

 Optional content uses the marked-content operators BDC and EMC. In the next sec-
tion, you’ll learn about more features involving marked content.

Listing 15.10 SvgLayers.java

Creates street
layers

Adds layers to
radio group

Sets layers for
PdfTemplate
Licensed to Bruno Lowagie <bruno@lowagie.com>

506 CHAPTER 15 Page content and structure
15.2 Working with marked content
Marked-content operators are used to identify a portion of a PDF content stream as an
element of interest to a particular application or PDF plug-in extension. In this sec-
tion, we’ll take a closer look at three situations in which marked content is important:
adding custom data to objects, making a PDF accessible, and storing the structure of a
document along with its content.

15.2.1 Object data

In the map of Foobar, you have icons of movie theaters, but you may want to add extra
information, such as the theater name, address, and so on. Figure 15.5 shows different
movie posters with the names of the directors added.

 The properties of each poster in figure 15.5 are shown in the Model Tree panel.
This panel is opened if you activate the object data tool by selecting Tools > Analysis >
Object Data Tool in the menu. You can check whether this tool is activated by looking
at the Analysis toolbar; if it is, there will be an icon with a page, an information sym-
bol, and a crosshair. If this option is selected, you can click a poster of a movie.

 When a poster is clicked, the Model Tree panel will open. In this case, there are
seven sets of object data, named director1 to director7, one for each director who has
a poster in the PDF. In figure 15.5, one of the six posters of movies by Akira Kurosawa
has been clicked on, so director2 is selected. You can see more information about this
entry in the lower panel:

■ Name: Kurosawa
■ Given name: Akira
■ Posters: 6

All the objects for which these properties are valid—six posters—are highlighted in
the page with a red border around the poster.

Figure 15.5 Using marked content for object data
Licensed to Bruno Lowagie <bruno@lowagie.com>

507Working with marked content
The next bit of code creates the structure tree that makes this possible.

writer.setTagged();
writer.setUserProperties(true);
...
PdfStructureTreeRoot tree
 = writer.getStructureTreeRoot();
PdfStructureElement top = new PdfStructureElement(
 tree, new PdfName("Directors"));
Map<Integer,PdfStructureElement> directors
 = new HashMap<Integer,PdfStructureElement>();
Statement stm = connection.createStatement();
ResultSet rs = stm.executeQuery(SELECTDIRECTORS);
int id;
Director director;
PdfStructureElement e;
while (rs.next()) {
 id = rs.getInt("id");
 director = PojoFactory.getDirector(rs);
 e = new PdfStructureElement(
 top, new PdfName("director" + id));
 PdfDictionary userproperties = new PdfDictionary();
 userproperties.put(
 PdfName.O, PdfName.USERPROPERTIES);
 PdfArray properties = new PdfArray();
 PdfDictionary property1 = new PdfDictionary();
 property1.put(PdfName.N, new PdfString("Name"));
 property1.put(
 PdfName.V, new PdfString(director.getName()));
 properties.add(property1);
 PdfDictionary property2 = new PdfDictionary();
 property2.put(
 PdfName.N, new PdfString("Given name"));
 property2.put(
 PdfName.V, new PdfString(director.getGivenName()));
 properties.add(property2);
 PdfDictionary property3 = new PdfDictionary();
 property3.put(PdfName.N, new PdfString("Posters"));
 property3.put(
 PdfName.V, new PdfNumber(rs.getInt("c")));
 properties.add(property3);
 userproperties.put(PdfName.P, properties);
 e.put(PdfName.A, userproperties);
 directors.put(id, e);
}

If you tell the PdfWriter to create a tagged PDF B, the getStructureTreeRoot()
method will create a /StructTreeRoot entry for the root dictionary of the document.
The children of the top element contain attributes (/A) that are owned (/O) by user
properties (/UserProperties). These properties are defined as an array of dictionar-
ies with a name (/N) and a value (/V). Don’t forget to tell the writer that the structure

Listing 15.11 ObjectData.java

B
C

Gets root of
structure tree

Creates top
element

Creates
branch

Creates user
properties

Adds
properties
to branch
Licensed to Bruno Lowagie <bruno@lowagie.com>

508 CHAPTER 15 Page content and structure
contains elements that have user properties C; otherwise the object data tool won’t
be able to identify objects.

 If you have a map containing Movie objects and director IDs, you can create the
PDF shown in figure 15.5 using the next listing.

for (Map.Entry<Movie,Integer> entry : map.entrySet()) {
 img = Image.getInstance(
 String.format(RESOURCE, entry.getKey().getImdb()));
 img.scaleToFit(1000, 60);
 img.setAbsolutePosition(x + (45 - img.getScaledWidth()) / 2, y);
 canvas.beginMarkedContentSequence(
 directors.get(entry.getValue()));
 canvas.addImage(img);
 canvas.endMarkedContentSequence();
 x += 48;
 if (x > 578) {
 x = 11.5f;
 y -= 84.2f;
 }
}

User properties are one type of attribute that can be added to a marked content
sequence. You’ll find more in ISO-32000-1. In the next section, we’ll work with the
optional entries that can be added for accessibility support.

15.2.2 Section 508 and accessibility

In the U.S., federal agencies are required to make their electronic and information
technology accessible to people with disabilities. This is enforced by law: section 508,
an amendment to the Rehabilitation Act of 1973.

 Section 508 is about electronic information in general, so it also applies to PDF.
We’ve briefly discussed PDF/UA (aka ISO/AWI 14289) in chapter 13. This standard is
currently under development. It will be to PDF what the World Wide Web Consortium
(W3C)’s Web Content Accessibility Guidelines (WCAG) are to web pages. The Web
Accessibility Initiative (WAI) is an effort to improve the accessibility of the web for peo-
ple with disabilities by defining principles, guidelines, success criteria, benefits, and
examples that explain the requirements for making web-based information and appli-
cations accessible.

FAQ Does iText support the creation of PDF documents that are compliant with sec-
tion 508? You can use iText to create a document that passes all the criteria
that are listed in section 508. It’s technically impossible, however, to provide
a setPDFUAConformance() method that checks whether the PDF you’re cre-
ating is accessible. This is true for any PDF creator, not just for iText. Even a
“pass” from Acrobat’s Accessibility Checker doesn’t verify compliance with
section 508. Many of the accessibility requirements, such as alternate text,
tooltips, and color use, will always require human validation.

Listing 15.12 ObjectData.java (continued)

Writes BDC and
its operands

Writes
EDC
Licensed to Bruno Lowagie <bruno@lowagie.com>

509Working with marked content
PDF includes several facilities in support of accessibility. Documents can be made avail-
able for the visually impaired by using screen readers. In Adobe Reader, you can select
View > Read out Loud, but you need marked content to enable proper vocalization.
Consider the document shown in figure 15.6.

 A screen reader doesn’t know that “Dr.” should be read as “Doctor,” nor that
EWS is the abbreviation of the movie title Eyes Wide Shut. Viewers will render the
poster of 2001: A Space Odyssey, but you should provide alternate text so that the
screen reader knows this too. Also, you want Adobe Reader to say “Seven Samurai”
instead of the Japanese title.

 To achieve this, you’ll use a marked-content operator with /Span as the first oper-
and, and a dictionary with the extra information as the second operand. You could
add these elements as PdfStructureElement objects that are part of the structure
tree, as was done in listing 15.11, but in this case you’ll add the marked content tag
and dictionary directly to the content stream.

EXPANSION OF ABBREVIATIONS AND ACRONYMS

This demonstrates how to use the /E entry to expand abbreviations.

cb.beginText();
cb.moveText(36, 788);
cb.setFontAndSize(bf, 12);
cb.setLeading(18);
cb.showText("These are some famous movies by Stanley Kubrick: ");
dict = new PdfDictionary();
dict.put(PdfName.E, new PdfString("Doctor"));
cb.beginMarkedContentSequence(new PdfName("Span"), dict, true);
cb.newlineShowText("Dr.");
cb.endMarkedContentSequence();
cb.showText(" Strangelove or: How I Learned to Stop Worrying and Love

➥ the Bomb.");
dict = new PdfDictionary();

Listing 15.13 ReadOutLoud.java

Figure 15.6
Content that can
be read out loud
Licensed to Bruno Lowagie <bruno@lowagie.com>

510 CHAPTER 15 Page content and structure
dict.put(PdfName.E, new PdfString("Eyes Wide Shut."));
cb.beginMarkedContentSequence(new PdfName("Span"), dict, true);
cb.newlineShowText("EWS");
cb.endMarkedContentSequence();
cb.endText();

Instead of passing a PdfStructureElement, you now pass three parameters to the
beginMarkedContentSequence() method: the name of the tag (/Span), the dictionary
with the entries, and a parameter that specifies whether the dictionary has to be
added inline (inside the content stream) or as a reference to an indirect object.

ALTERNATE DESCRIPTIONS AND LANGUAGE

If you know HTML, you know that the img tag has an attribute named alt. This attri-
bute can be used to specify alternate text for the image, which can be used if the
image is missing on the server, or if your browser doesn’t download images to save
bandwidth, or to conform with accessibility standards. The first two reasons don’t
apply for PDF, but to make your document compliant with PDF/UA and section 508,
you have to use marked content with an /Alt entry to define alternate text for images,
formulas, or other items that are part of the content and that do not translate natu-
rally into text. This is done here.

dict = new PdfDictionary();
dict.put(PdfName.LANG, new PdfString("en-us"));
dict.put(new PdfName("Alt"), new PdfString("2001: A Space Odyssey."));
cb.beginMarkedContentSequence(new PdfName("Span"), dict, true);
Image img = Image.getInstance(RESOURCE);
img.scaleToFit(1000, 100);
img.setAbsolutePosition(36, 640);
cb.addImage(img);
cb.endMarkedContentSequence();

Note that the listing also uses the /Lang entry to indicate that it’s using the English
title.

REPLACEMENT TEXT

Just as alternate descriptions can be provided for images, replacement text can be
specified for content that translates into text but that is represented in a nonstandard
way: glyphs for ligatures or custom characters, inline graphics corresponding to
dropped capitals or to letters in an illuminated manuscript, and so on. The next list-
ing shows the title of the movie Seven Samurai in Japanese, but it uses the English title
as /ActualText.

cb.beginText();
cb.moveText(36, 620);
cb.setFontAndSize(bf, 12);
cb.showText("This is a movie by Akira Kurosawa: ");
dict = new PdfDictionary();

Listing 15.14 ReadOutLoud.java

Listing 15.15 ReadOutLoud.java
Licensed to Bruno Lowagie <bruno@lowagie.com>

511Working with marked content
dict.put(PdfName.ACTUALTEXT, new PdfString("Seven Samurai."));
cb.beginMarkedContentSequence(new PdfName("Span"), dict, true);
cb.setFontAndSize(bf2, 12);
cb.showText("\u4e03\u4eba\u306e\u4f8d");
cb.endMarkedContentSequence();
cb.endText();

If you try this example, open the document in Adobe Reader and listen to the result.
“Dr.” will be vocalized as “Doctor,” “EWS” as “Eyes Wide Shut,” you’ll hear text for the
image, and “Seven Samurai” for the Japanese title.

15.2.3 Adding structure

We talked about marked content in chapter 13 when we discussed standards such as
PDF/UA and PDF/A. In the previous section, you saw why marked content is important
for PDF/UA. In this section, we’ll discuss the extra requirement for PDF/A level A con-
formance: the PDF needs to be tagged. Tagged PDF is a stylized use of PDF.

 In part 1 of this book, you added all kinds of objects to the Document: paragraphs,
lists, tables, and so on. Once PdfWriter translated these objects to PDF syntax, all
structure was lost; if you have a PDF file, it’s not possible to extract a Paragraph, List,
or PdfPTable object. The content inside a PDF consists of a series of operators such as
showText(), and there’s no way to know if a snippet of PDF syntax is part of a para-
graph, a list, or a table.

 When you create a tagged PDF file that conforms with PDF/A level A, you use
marked content to store information about the document structure along with the
content. The standard structure types that can be used for this purpose are defined in
ISO-32000-1. They are divided into these four categories:

■ Grouping elements—These group other elements into sequences and hierar-
chies, but they have no direct effect on layout. For example, /Document, /Part,
/Sect, /Div, /TOC, and so on.

■ Block-level structure elements (BLSEs)—These describe the overall layout of
content on the page: paragraph-like elements (/P, /H, /H1-/H6), list elements
(/L, /LI, /Lbl, /LBody), and the table element (/Table).

■ Inline-level structure elements (ILSEs)—These describe the layout of content
within a BLSE: /Span, /Quote, /Note, /Reference, and so on.

■ Illustration elements—These compact sequences of content that are considered
to be unitary objects with respect to page layout: /Figure, /Formula, and /Form.

The content of such a structure is enclosed in a marked-content sequence, such as the
/Span element used in the previous example. For a full list of all the available ele-
ments, see ISO-32000-1 section 14.8.4.

CREATING A TAGGED PDF

Suppose that you have an XML file containing the first paragraphs of the book Moby
Dick. This XML file uses the custom tags chapter, title, and para. You want to convert
Licensed to Bruno Lowagie <bruno@lowagie.com>

512 CHAPTER 15 Page content and structure
this XML file into a tagged PDF file and use the structure elements, but keep the origi-
nal tags.

 The following listing demonstrates the first step in doing this. It creates the root of
a structure tree and maps the custom tags to structure elements listed in ISO-32000-1.
That way, you can use your custom tags in the rest of the document.

Document document = new Document(PageSize.A5);
PdfWriter writer
 = PdfWriter.getInstance(document, new FileOutputStream(RESULT));
writer.setTagged();
document.open();
PdfStructureTreeRoot root
 = writer.getStructureTreeRoot();
root.mapRole(new PdfName("chapter"), PdfName.SECT);
root.mapRole(new PdfName("title"), PdfName.H);
root.mapRole(new PdfName("para"), PdfName.P);
PdfStructureElement top = new PdfStructureElement(
 root, new PdfName("chapter"));
SAXParser parser = SAXParserFactory.newInstance().newSAXParser();
List<PdfStructureElement> elements
 = new ArrayList<PdfStructureElement>();
parser.parse(new InputSource(new FileInputStream(RESOURCE)),
 new StructureParser(top, elements));
parser.parse(new InputSource(new FileInputStream(RESOURCE)),
 new ContentParser(document, writer, elements));
document.close();

In listing 15.16, you create a top element for the structure using the custom tag chap-
ter. A PDF reader will look up what this tag means in the /RoleMap and find out it’s a
/Sect element. The XML file containing the first paragraphs of Moby Dick is parsed
twice: once to examine the structure B and once to read the content C.

 This listing reads the structure elements into a List.

public class StructureParser extends DefaultHandler {
 protected PdfStructureElement top;
 protected List elements;
 public StructureParser(
 PdfStructureElement top, List<PdfStructureElement> elements) {
 this.top = top;
 this.elements = elements;
 }
 public void startElement(
 String uri, String localName, String qName, Attributes attributes)
 throws SAXException {
 if ("chapter".equals(qName)) return;
 elements.add(new PdfStructureElement(top, new PdfName(qName)));
 }
}

Listing 15.16 StructuredContent.java

Listing 15.17 StructureParser.java

Indicates PDF
will be tagged

Gets root
element

Creates role
map

Creates top
element

B Parses
structure

C Parses
content
Licensed to Bruno Lowagie <bruno@lowagie.com>

513Working with marked content
The structure elements obtained in listing 15.17 are used in the ContentParser,
whose two most important methods are shown here.

public void startElement(
 String uri, String localName, String qName, Attributes attributes)
 throws SAXException {
 if ("chapter".equals(qName)) return;
 current = elements.get(0);
 elements.remove(0);
 canvas.beginMarkedContentSequence(current);
}
public void endElement(String uri, String localName, String qName)
 throws SAXException {
 if ("chapter".equals(qName)) return;
 try {
 String s = buf.toString().trim();
 buf = new StringBuffer();
 if (s.length() > 0) {
 Paragraph p = new Paragraph(s, font);
 p.setAlignment(Element.ALIGN_JUSTIFIED);
 column.addElement(p);
 int status = column.go();
 while (ColumnText.hasMoreText(status)) {
 canvas.endMarkedContentSequence();
 document.newPage();
 canvas.beginMarkedContentSequence(current);
 column.setSimpleColumn(36, 36, 384, 569);
 status = column.go();
 }
 }
 } catch (DocumentException e) {
 e.printStackTrace();
 }
 canvas.endMarkedContentSequence();
}

Creating tagged PDFs with iText is possible, but it demands a lot of discipline. It’s cer-
tainly an area where there’s still a lot of work for the iText developers to do. The same
goes for parsing tagged PDF files.

PARSING A TAGGED PDF

The code in this listing parses the Moby Dick PDF into an XML file.

public static void main(String[] args)
 throws IOException, DocumentException,
 SAXException, ParserConfigurationException {
 StructuredContent.main(args);
 TaggedPdfReaderTool reader = new TaggedPdfReaderTool();
 reader.convertToXml(new PdfReader(StructuredContent.RESULT),
 new FileOutputStream(RESULT));
}

Listing 15.18 ContentParser.java

Listing 15.19 ParseTaggedPdf.java
Licensed to Bruno Lowagie <bruno@lowagie.com>

514 CHAPTER 15 Page content and structure
The TaggedPdfReaderTool class fetches the /StructTreeRoot object from the cata-
log. Then it recursively inspects all the children of the tree:

PdfDictionary catalog = reader.getCatalog();
PdfDictionary struct = catalog.getAsDict(PdfName.STRUCTTREEROOT);
inspectChild(struct.getDirectObject(PdfName.K));

The convertToXml() method writes an XML file to the OutputStream that is the equiv-
alent of the XML file originally used to create the PDF. Because the structure is stored
in the PDF document, you can convert an XML file to PDF and back. The tagged PDF
reader tool won’t work for PDF documents that don’t have any structure (which is the
case for most PDF files), but it will work for most tagged PDF files.

NOTE This functionality is very new (it was originally written as an example
for this book) and there’s plenty of room for improvement.

The tool is built on top of the PDF parsing classes that were recently added to iText.
Parsing traditional PDFs is extremely difficult, but we’ll make a fair attempt in the next
section.

15.3 Parsing PDFs
The first edition of iText in Action had a section named “Why iText doesn’t do text
extraction.” It was preceded by an example that demonstrated how to retrieve the
content stream of a page using the getPageContent() method, just like you did in
section 14.1. The simple Hello World example from chapter 1 resulted in the follow-
ing stream:

q
BT
36 806 Td
0 -18 Td
/F1 12 Tf
(Hello World!)Tj
0 0 Td
ET
Q

The PDF string (Hello World!) followed by the text operator Tj is visible in clear text.
Surely it must be possible to write some code to extract that string? When the first edi-
tion was written, the only way to achieve this was by using the PRTokeniser class (mind
the British s in the name, instead of the American z).

 In this section, we’ll learn how iText has evolved, and find out how to parse the
content of PDF content streams to retrieve text and images.

15.3.1 Examining the content stream with PRTokeniser

With PRTokeniser, you can split a PDF content stream into its most elementary parts.
Each part has a specific type. The possible types, shown in table 15.2, are enumerated
in the enum named TokenType.
Licensed to Bruno Lowagie <bruno@lowagie.com>

515Parsing PDFs
This listing shows the simplest PDF parser one could write. It gets the page content of
page 1, passes the content to a PRTokeniser object, and writes all the tokens with
TokenType.STRING to a PrintWriter.

public void parsePdf(String src, String dest) throws IOException {
 PdfReader reader = new PdfReader(src);
 byte[] streamBytes = reader.getPageContent(1);
 PRTokeniser tokenizer = new PRTokeniser(streamBytes);
 PrintWriter out = new PrintWriter(new FileOutputStream(dest));
 while (tokenizer.nextToken()) {
 if (tokenizer.getTokenType() == PRTokeniser.TokenType.STRING) {
 out.println(tokenizer.getStringValue());
 }
 }
 out.flush();
 out.close();
}

If you try this example with your first Hello World example, you’ll have a very good
result:

Hello World!

But as soon as you have more complex PDF files, this simple parser won’t work. List-
ing 15.21 creates a PDF file with the text “Hello World”, but those words are added
in different parts: first “ld”, then “Wor”, then “llo”, and finally “He”. Because of the
choice of coordinates, the text reads “Hello World” when opened in a PDF viewer. It
also adds the text “Hello People” as a form XObject.

Table 15.2 Overview of the token types

TokenType Symbol Description

NUMBER The current token is a number.

STRING () The current token is a string.

NAME / The current token is a name.

COMMENT % The current token is a comment.

START_ARRAY [The current token starts an array.

END_ARRAY] The current token ends an array.

START_DIC << The current token starts a dictionary.

END_DIC >> The current token ends a dictionary.

REF R The current token ends a reference.

OTHER The current token is probably an operator.

ENDOFFILE There are no more tokens.

Listing 15.20 ParsingHelloWorld.java
Licensed to Bruno Lowagie <bruno@lowagie.com>

516 CHAPTER 15 Page content and structure
PdfContentByte cb = writer.getDirectContent();
BaseFont bf = BaseFont.createFont();
cb.beginText();
cb.setFontAndSize(bf, 12);
cb.moveText(88.66f, 367);
cb.showText("ld");
cb.moveText(-22f, 0);
cb.showText("Wor");
cb.moveText(-15.33f, 0);
cb.showText("llo");
cb.moveText(-15.33f, 0);
cb.showText("He");
cb.endText();
PdfTemplate tmp = cb.createTemplate(250, 25);
tmp.beginText();
tmp.setFontAndSize(bf, 12);
tmp.moveText(0, 7);
tmp.showText("Hello People");
tmp.endText();
cb.addTemplate(tmp, 36, 343);

When you use the simple parser from listing 15.20, you’ll get the following output:

ld
Wor
llo
He

PRTokeniser offers the strings in the order they appear in the content stream, not in
the order they are shown on the screen. Moreover, the text “Hello People” is missing
because it’s not part of the content stream. It’s inside an external object that is
referred to from the page dictionary.

 Even if all the characters are in the right order, there may be kerning information
between substrings, adjusting the space between letters so they look better (for
instance between the two letter ls of the word “Hello”). However, the spacing can also
be used instead of a whitespace character. That’s one aspect that should be considered
and that makes it difficult to extract text from a content stream.

 Another aspect is the encoding. It’s possible for a PDF to have a font containing
characters that appear in a content stream as a, b, c, and so on, but for which the
shapes drawn in the PDF file show a completely different glyph, such as α, β, γ, and so
on. An application can create a different encoding for each specific PDF document—
for example, in an attempt to obfuscate. More likely, the PDF-generating software does
this deliberately, such as when a font with many characters is used but all the text can
be shown using only 256 different glyphs. In this case, the software picks character
names at random according to the glyphs that are used. Another possibility is that the
content stream consists of raw glyph indexes; you then have to write code that goes
through the character mappings and finds the right letters.

Listing 15.21 ParsingHelloWorld.java

“Hello World”
in reverse
order

“Hello People”
as XObject
Licensed to Bruno Lowagie <bruno@lowagie.com>

517Parsing PDFs
 You’ll also encounter PDF files that were created from scanned images. The con-
tent stream of each of the pages in such a document contains a reference to an image
XObject. There will be no PDF strings in the stream. In the previous chapter, you cre-
ated PDF documents with the glyphs drawn by the Java TextLayout object, and you
wouldn’t find any strings in this case either. Optical character recognition (OCR) will
be your only recourse if you want to extract text from such a PDF document.

 The section about text extraction in the first edition was followed by a section enti-
tled “Why you shouldn’t use PDF as a format for editing.” Again, an example and a list
of reasons was given for why it’s extremely difficult and not very wise to edit a content
stream. But that was then, and this is now. It’s still true that you shouldn’t edit a PDF,
but with regards to text extraction, we’ve welcomed a new iText developer, Kevin Day,
who has contributed a package (com.itextpdf.text.pdf.parser) containing classes
that are able to parse and interpret PDF content.

WARNING The API of this package is subject to change, because other devel-
opers—including myself—are still experimenting with it, adding new fea-
tures, and fixing bugs.

Given the different obstacles I’ve outlined, not every PDF document that can be found
in the wild can be parsed effectively, but the functionality does make a good effort at
trying to find words and sentences, even if they’re drawn on a page in random order,
as was the case with our second “Hello World” example.

15.3.2 Processing content streams with PdfContentStreamProcessor

If you look at the com.itextpdf.text.pdf.parser package, you’ll find utility classes
such as ContentByteUtils with static methods to extract byte arrays from a PDF file,
and tools such as PdfContentReaderTool with methods to create a String representa-
tion of objects and to output lists of objects and contents. For instance,

PdfContentReaderTool.listContentStream(new File(pdf), out);

This code snippet will write all the information that is needed to extract the content
of a page, including the extracted text.

 The next listing gives an idea of what to expect. Note that the content streams are
replaced by ellipses (...).

==============Page 1====================
- - - - - Dictionary - - - - - -
(/Type=/Page, /Contents=Stream, /Parent=Dictionary of type: /Pages,
/Resources=Dictionary, /MediaBox=[0, 0, 595, 842], /Rotate=90)
 Subdictionary /Parent = (/Count=8, /Type=/Pages, /ITXT=5.0.2_SNAPSHOT,
 /Kids=[6 0 R, 8 0 R, 10 0 R, 12 0 R, 14 0 R, 16 0 R, 18 0 R, 20 0 R])
 Subdictionary /Resources = (/ProcSet=[/PDF, /Text, /ImageB, /ImageC,

Listing 15.22 calendar_info.txt generated with InspectPageContent.java
Licensed to Bruno Lowagie <bruno@lowagie.com>

518 CHAPTER 15 Page content and structure
 /ImageI], /XObject=Dictionary, /Font=Dictionary)
 Subdictionary /XObject = (/Xf2=Stream of type: /XObject,
 /Xf1=Stream of type: /XObject)
 Subdictionary /Font = (/F1=Dictionary of type: /Font)
 Subdictionary /F1 = (/Type=/Font, /BaseFont=/Helvetica,
 /Subtype=/Type1, /Encoding=/WinAnsiEncoding)
- - - - - XObject Summary - - - - - -
------ /Xf2 - subtype = /Form = 671 bytes ------
...
------ /Xf2 - subtype = /FormEnd of Content------
------ /Xf1 - subtype = /Form = 162 bytes ------
...
------ /Xf1 - subtype = /FormEnd of Content------
- - - - - Content Stream - - - - - -
...
- - - - - Text Extraction - - - - - -
Day 1 FOOBAR FILM FESTIVAL 2011-10-12
...

This is the first step toward text extraction: collecting all the resources. Now you need
to process the information. Listing 15.23 shows a new version of parsePdf() from list-
ing 15.20. The PRTokeniser class is still used, but its complexity is hidden by the Pdf-
ContentStreamProcessor class.

public void extractText(String src, String dest) throws IOException {
 PrintWriter out = new PrintWriter(new FileOutputStream(dest));
 PdfReader reader = new PdfReader(src);
 RenderListener listener
 = new MyTextRenderListener(out);
 PdfContentStreamProcessor processor
 = new PdfContentStreamProcessor(listener);
 PdfDictionary pageDic = reader.getPageN(1);
 PdfDictionary resourcesDic
 = pageDic.getAsDict(PdfName.RESOURCES);
 processor.processContent(ContentByteUtils
 .getContentBytesForPage(reader, 1), resourcesDic);
 out.flush();
 out.close();}

The output of this listing depends on the listener. This is an instance of the Render-
Listener interface to which the processor passes information about the text and
images in the page. The following listing is an experimental implementation that will
help you understand the mechanism.

public class MyTextRenderListener implements RenderListener {
 protected PrintWriter out;
 public MyTextRenderListener(PrintWriter out) {

Listing 15.23 ParsingHelloWorld.java

Listing 15.24 MyTextRenderListener.java

Creates processor
with listener

Gets resources
for page

Processes content
and resources
Licensed to Bruno Lowagie <bruno@lowagie.com>

519Parsing PDFs
 this.out = out;
 }
 public void beginTextBlock() {
 out.print("<");
 }
 public void endTextBlock() {
 out.println(">");
 }
 public void renderImage(ImageRenderInfo renderInfo) {
 }
 public void renderText(TextRenderInfo renderInfo) {
 out.print("<");
 out.print(renderInfo.getText());
 out.print(">");
 }
}

You’re not concerned with images yet. Angle brackets are placed at the start and end
of text blocks, and every text segment is enclosed in angle brackets. If you use this
method on the PDF created with listing 15.21, you’ll get the following results:

<>
<<ld><Wor><llo><He>>
<<Hello People>>

The words “Hello World” are still mangled, but the text “Hello People” is picked up
correctly.

 In listing 15.24, you use the class TextRenderInfo to get a chunk of text with the
getText() method, but the render info class also provides methods to get LineSeg-
ment objects containing information about the location of the text on the page, to get
the font that was used, and so on. With this information, you could write a RenderLis-
tener implementation that returns a result that is much better than the output pro-
vided by MyTextRenderListener.

 Fortunately, this has already been done for you in the form of text-extraction strat-
egies. The TextExtractionStrategy interface extends RenderListener, adding a
getResultantText() method. The different implementations of this interface, in
combination with the PdfReaderContentParser or PdfTextExtractor, dramatically
reduce the number of code lines needed to extract text.

15.3.3 Extracting text with PdfReaderContentParser and
PdfTextExtractor

Figure 15.7 shows two pages—the preface from the first edition of iText in Action. The
PDF was extracted from the eBook version of the book. It’s a traditional PDF without
structure.

 Let’s try to convert the content from these two pages to a plain text file.

BT is
encountered

ET is
encountered

Info about text
content
Licensed to Bruno Lowagie <bruno@lowagie.com>

520 CHAPTER 15 Page content and structure
SIMPLE TEXT EXTRACTION

The next example shows how to use SimpleTextExtractionStrategy in combination
with PdfReaderContentParser to create a plain text file with the content of the preface.

PdfReader reader = new PdfReader(pdf);
PdfReaderContentParser parser = new PdfReaderContentParser(reader);
PrintWriter out = new PrintWriter(new FileOutputStream(txt));
TextExtractionStrategy strategy;
for (int i = 1; i <= reader.getNumberOfPages(); i++) {
 strategy = parser.processContent(i, new SimpleTextExtractionStrategy());
 out.println(strategy.getResultantText());
}
out.flush();
out.close();

The PdfReaderContentParser uses the PdfContentStreamProcessor internally. The
processContent() method performs the same actions you did in listing 15.23, saving
you a handful of lines of code.

 The SimpleTextExtractionStrategy class is a special implementation of the Ren-
derListener. It stores all the TextRenderInfo snippets in the order they occur in the
stream, but it’s intelligent enough to detect which snippets should be combined into
one word, and which snippets should be separated with a space character.

Listing 15.25 ExtractPageContent.java

Figure 15.7 Preface from the first edition
Licensed to Bruno Lowagie <bruno@lowagie.com>

521Parsing PDFs
 This TextExtractionStrategy object, containing all the text of a specific page, is
returned by the processContent() method. When you get the resulting text of the
first page of the Preface, it starts like this:

xix
preface
I have lost count of the number of PCs I have worn out since I started my
career as a software developer—but I will never forget my first computer.
 I was only 12 years old when I started programming in BASIC. I had to
learn English at the same time because there simply weren’t any books on
computer programming in my mother tongue (Dutch). This was in 1982. Win-
dows didn’t exist yet; I worked on a TI99/4A home computer from Texas
Instruments. When I told my friends at school about it, they looked at
me as if I had just been beamed down from the Starship Enterprise.

The first text element in the content stream is “xix”, the Roman page number that
appears at the bottom of the page. The fact that the rest of the text reads correctly is a
coincidence. It’s not necessary for an application to put all the paragraphs in the cor-
rect order.

LOCATION-BASED TEXT EXTRACTION

Let’s change one line in listing 15.25:

PdfReader reader = new PdfReader(pdf);
PdfReaderContentParser parser = new PdfReaderContentParser(reader);
PrintWriter out = new PrintWriter(new FileOutputStream(txt));
TextExtractionStrategy strategy;
for (int i = 1; i <= reader.getNumberOfPages(); i++) {
 strategy
 = parser.processContent(i, new LocationTextExtractionStrategy());
 out.println(strategy.getResultantText());
}
out.flush();
out.close();

The LocationTextExtractionStrategy class will accept all the TextRenderInfo
objects from the processor, just like the simple text-extraction strategy, but it will sort
all the snippets of text based on their position on the page, before creating the resul-
tant text.

 The next example makes this code even more compact by using the PdfTextEx-
tractor class.

PdfReader reader = new PdfReader(pdf);
PrintWriter out = new PrintWriter(new FileOutputStream(txt));
for (int i = 1; i <= reader.getNumberOfPages(); i++) {
 out.println(PdfTextExtractor.getTextFromPage(reader, i));
}
out.flush();
out.close();

Listing 15.26 ExtractPageContentSorted1.java

Listing 15.27 ExtractPageContentSorted2.java
Licensed to Bruno Lowagie <bruno@lowagie.com>

522 CHAPTER 15 Page content and structure
Listings 15.26 and 15.27 have the same output. If you look at the resulting text file,
you’ll see that it starts with the word “preface”, and that the page number has moved
to the middle:

... As a compromise with
xix
xx PREFACE
my parents, I studied civil architectural engineering at Ghent University.

The strings “xix” and “xx” are page numbers; “PREFACE” is a running header. In
tagged documents, these elements would have been referred to as artifacts. Screen
readers would have ignored these snippets of text because they are not part of the
actual content. When parsing our preface, it would be nice to add a filter that removes
the page numbers and headers from the resulting text.

USING RENDER FILTERS

The special FilteredTextRenderListener text-extraction strategy combines a nor-
mal TextExtractionStrategy implementation with one or more render filters. The
next listing uses a subclass of the abstract RenderFilter class, named RegionText-
RenderFilter.

PdfReader reader = new PdfReader(pdf);
PrintWriter out = new PrintWriter(new FileOutputStream(txt));
Rectangle rect = new Rectangle(70, 80, 420, 500);
RenderFilter filter = new RegionTextRenderFilter(rect);
TextExtractionStrategy strategy;
for (int i = 1; i <= reader.getNumberOfPages(); i++) {
 strategy = new FilteredTextRenderListener(
 new LocationTextExtractionStrategy(), filter);
 out.println(PdfTextExtractor
 .getTextFromPage(reader, i, strategy));
}
out.flush();out.close();

In this listing, you create a Rectangle whose dimensions are chosen in such a way that
the page numbers and the running headers are outside the rectangle. You then use this
rectangle to create a RegionTextRenderFilter. This filter will examine all the text and
images that are processed and ignore everything that falls outside the chosen area.

NOTE The rect object is currently not an instance of com.itextpdf.text.
Rectangle; it’s a java.awt.Rectangle (internally, a java.awt.geom.
Rectangle2D object is used). This may change in the future; the API of the
PDF parsing functionality hasn’t been finalized yet.

The filter is combined with a text-extraction strategy in a FilteredTextRenderListener
object, and from there on the code is similar to the code in listing 15.27, with the excep-
tion that you now pass a custom strategy as a parameter for the getTextFromPage()
method. The result is the preface text without page numbers and running headers.

Listing 15.28 ExtractPageContentArea.java

Creates region
filter

Creates filtered text-
extraction strategy

Extracts text
Licensed to Bruno Lowagie <bruno@lowagie.com>

523Parsing PDFs
15.3.4 Finding text margins

The goal of parsing the content of a page isn’t always to retrieve text. A frequently
asked question involves finding the position where the last line of text ends on a
page, so that extra text can be added. This can be done using a special RenderLis-
tener implementation.

 Figure 15.8 shows the same pages as figure 15.7, but with bounding rectangles for
the text added.

 The positions needed to draw these rectangles were retrieved using a TextMar-
ginFinder:

PdfReader reader = new PdfReader(src);
PdfReaderContentParser parser = new PdfReaderContentParser(reader);
PdfStamper stamper = new PdfStamper(reader, new FileOutputStream(RESULT));
TextMarginFinder finder;
for (int i = 1; i <= reader.getNumberOfPages(); i++) {
 finder = parser.processContent(i, new TextMarginFinder());
 PdfContentByte cb = stamper.getOverContent(i);
 cb.rectangle(finder.getLlx(), finder.getLly(),
 finder.getWidth(), finder.getHeight());
 cb.stroke();
}
stamper.close();

Listing 15.29 ShowTextMargins.java

Figure 15.8 Finding the location of text in existing PDFs
Licensed to Bruno Lowagie <bruno@lowagie.com>

524 CHAPTER 15 Page content and structure
Note that only text is taken into account. Graphics, such as the line that is drawn
under the title “preface,” are ignored by the parser in its current version. The content
stream processor only returns objects of type TextRenderInfo and ImageRenderInfo.

15.3.5 Extracting images

Just like TextRenderInfo gives you information about a snippet of text, ImageRender-
Info will give you info about an image: the position of the image and an instance of
the PdfImageObject class that encapsulates the image XObject dictionary and the raw
image bytes. The next listing processes all the pages of a PDF document and uses a cus-
tom ImageRenderListener to extract the images to a file.

PdfReader reader = new PdfReader(filename);
PdfReaderContentParser parser = new PdfReaderContentParser(reader);
MyImageRenderListener listener = new MyImageRenderListener(RESULT);
for (int i = 1; i <= reader.getNumberOfPages(); i++) {
 parser.processContent(i, listener);
}

The following example shows a special implementation of the RenderListener to
extract images. The methods you implemented in the custom text render listener in
listing 15.24 are left empty. In this case, you’re not interested in the text; only the ren-
derImage() method is implemented.

public class MyImageRenderListener implements RenderListener {
 protected String path = "";
 public MyImageRenderListener(String path) {
 this.path = path;
 }
 public void beginTextBlock() { }
 public void endTextBlock() { }
 public void renderImage(ImageRenderInfo renderInfo) {
 try {
 String filename;
 FileOutputStream os;
 PdfImageObject image = renderInfo.getImage();
 PdfName filter = (PdfName)image.get(PdfName.FILTER);
 if (PdfName.DCTDECODE.equals(filter)) {
 filename = String.format(path,
 renderInfo.getRef().getNumber(), "jpg");
 os = new FileOutputStream(filename);
 os.write(image.getStreamBytes());
 os.flush();
 os.close();
 }
 else if (PdfName.JPXDECODE.equals(filter)) {
 filename = String.format(path,
 renderInfo.getRef().getNumber(), "jp2");
 os = new FileOutputStream(filename);
 os.write(image.getStreamBytes());

Listing 15.30 ExtractImages.java

Listing 15.31 MyImageRenderListener.java

Deals with
JPEG images

Deals with
JPEG2000 images
Licensed to Bruno Lowagie <bruno@lowagie.com>

525Summary
 os.flush();
 os.close();
 }
 else {
 BufferedImage awtimage =
 renderInfo.getImage().getBufferedImage();
 if (awtimage != null) {
 filename = String.format(path,
 renderInfo.getRef().getNumber(), "png");
 ImageIO.write(awtimage, "png",
 new FileOutputStream(filename));
 }
 }
 } catch (IOException e) {
 e.printStackTrace();
 }
 }
 public void renderText(TextRenderInfo renderInfo) { }
}

In listing 15.31, the filename that is chosen for each image has a reference to the indirect
object number of the image stream. The bytes of image streams with the filter /DCTDE-
CODE or /JPXDECODE will be written to a file as is, resulting in valid JPEG and JPEG2000
files. For the other types of images, you also need to inspect the stream dictionary for
values such as the number of bits per component, the color space, the width and the
height, and so on. The getBufferedImage() method will attempt to do this in your
place, and return an instance of java.awt.image.BufferedImage. But when you try this
example on your own system, you’ll notice that not all images are extracted.

 Please don’t report this as a bug. Not all the different types of images are sup-
ported yet. This is only a preview of new functionality that has been added to iText
recently. Just like with parsing text, a best effort is done; when more types of images
are supported will depend on code contributors and paying iText users.

15.4 Summary
This chapter was like a sequel to chapter 14. We continued talking about the content
stream of a page, but in the first two sections we added structures that made part of
the content optional or that added extra information to the content, like extra prop-
erties that belong to objects on the screen, information that improves the accessibility
of the document, and structures that allow you to discover elements from the original
source, such as paragraphs, lists, and tables.

 To demonstrate the power of these structure elements, you’ve seen how to convert
an existing PDF document to XML. This only works for PDF documents that are tagged.
Other PDF documents can’t be converted to XML, but you can parse them and write the
output to a plain text file. We’ve discussed the different strategies that are at play and
looked at how you can extract text from a PDF, find margins, and even extract images.

 In the next chapter, we’ll start by looking at image and other streams. We won’t
return to content streams, but we’ll look at fonts streams and embedded files, and
we’ll even look at how to integrate a Flash application into a PDF document.

Deals with
JPEG2000 images

Handles other
image types
Licensed to Bruno Lowagie <bruno@lowagie.com>

PDF streams
We’ve arrived at the final chapter of part 4. In this part, we’re turning PDF files
inside out. In chapter 13, we explored the file structure and discussed the different
objects. We focused on the content stream of pages in chapters 14 and 15.

 In this chapter, we’ll continue working with streams: we’ll look at image and
font streams, and you’ll find out how to add streams containing other files as
attachments, and how to organize these files in a portable collection. We’ll finish
this chapter with some really cool examples of adding multimedia annotations to a
document and integrating a Flash application into a PDF document.

16.1 Finding and replacing image and font streams
When you create an image using the Image class, or a font using the Font or Base-
Font class, you don’t have to worry about the way these objects are stored in the fin-
ished document. For example, when you use a standard Type 1 font, iText will add

This chapter covers
■ Image and font streams
■ Adding and extracting file attachments
■ Creating portable collections
■ Integrating rich media
526

Licensed to Bruno Lowagie <bruno@lowagie.com>

527Finding and replacing image and font streams
a font dictionary to the PDF file. When you use a font that is embedded, the font dic-
tionary will also refer to a stream with a full or partial font program that is copied into
the PDF file.

 In this section, we’ll look at advanced techniques that address the lowest level
of PDF creation and manipulation with iText. The examples that follow were inspired
by questions that were posted to the mailing list (see appendix B for more info about
the list).

16.1.1 Adding a special ID to an Image

In the previous chapter, you learned how to extract all the images from a page, but
what if you want to pick one specific image programmatically?

 An image is a stored in a stream object. Each stream consists of a dictionary fol-
lowed by zero or more bytes bracketed between the keywords stream and endstream
(see table 13.2). The entries of the stream dictionary are filled in by iText. In the case
of images, you’ll have at least entries for the width and the height of the image, and a
value defining the compression filter, but there’s no reference to the original file-
name. The original bits and bytes of the image may have been changed completely.

 One of the mailing-list subscribers wanted to solve the problem of retrieving spe-
cific images by adding an extra entry to the image stream dictionary. Listing 16.1 was
written in answer to his question.

Image img = Image.getInstance(RESOURCE);
img.scaleAbsolute(400, 300);
img.setAbsolutePosition(0, 0);
PdfImage stream = new PdfImage(img, "", null);
stream.put(new PdfName("ITXT_SpecialId"), new PdfName("123456789"));
PdfIndirectObject ref = writer.addToBody(stream);
img.setDirectReference(ref.getIndirectReference());
document.add(img);

You create an instance of the high-level Image object, and set some properties, as
described in chapter 2.

You use this Image object to create a low-level PdfImage object. This object extends the
PdfStream class. With the second parameter, you can pass a name for the image; the
third parameter can be used for the reference to a mask image.

PdfStream extends PdfDictionary. Just like with plain dictionaries, you can add key-
value pairs. In this case, you choose a name for the key using the prefix reserved for
iText (ITXT): ITXT_SpecialId. The value of the entry is also a name of your choice, in
this case /123456789.

You add the stream object to the body of the file that is written by the PdfWriter object.
The addToBody() method returns a PdfIndirectObject. Because it’s the first element
that’s added to the writer in this example, the reference of this object will be 1 0 R.

Listing 16.1 SpecialId.java

B

C
D

E
F

G

B

C

D

E

Licensed to Bruno Lowagie <bruno@lowagie.com>

528 CHAPTER 16 PDF streams
You tell the Image object that it has already been added to the writer with the method
setDirectReference().

Finally, you add the image to the document. The image bytes have already been writ-
ten to the OutputStream in E. Line G writes the Do operator and its operands to the
content stream of the page, and adds the correct reference to the image bytes F to
the page dictionary.

This example unveils the mechanism that’s used by iText internally to add streams.
 You’ll use the PDF file that was created by listing 16.1 in the next example. You’ll

search for an image with the special ID /123456789, and you’ll replace it with another
image that has a lower resolution.

16.1.2 Resizing an image in an existing document

Here’s another question that is often posted to the mailing list: “How do I reduce the
size of an existing PDF containing lots of images?” There are many different answers to
this question, depending on the nature of the PDF file. Maybe the same image is
added multiple times, in which case passing the PDF through PdfSmartCopy could
result in a serious file size reduction. Maybe the PDF wasn’t compressed, or maybe
there are plenty of unused objects. You could try to see if the PdfReader’s removeU-
nusedObjects() method has any effect.

 It’s more likely that the PDF contains high-resolution images, in which case the
original question should be rephrased as, “How do I reduce the resolution of the
images inside my PDF?” To achieve this, you should extract the image from the PDF,
downsample it, then put it back into the PDF, replacing the high-resolution image.

 The next example uses brute force instead of the PdfReaderContentParser to find
images. With the getXrefSize() method, you get the highest object number in the
PDF document, and you loop over every object, searching for a stream that has the
special ID you’re looking for.

PdfName key = new PdfName("ITXT_SpecialId");
PdfName value = new PdfName("123456789");
PdfReader reader = new PdfReader(SpecialId.RESULT);
int n = reader.getXrefSize();
PdfObject object;
PRStream stream;
for (int i = 0; i < n; i++) {
 object = reader.getPdfObject(i);
 if (object == null || !object.isStream())
 continue;
 stream = (PRStream)object;
 if (value.equals(stream.get(key))) {
 PdfImageObject image = new PdfImageObject(stream);
 BufferedImage bi = image.getBufferedImage();
 if (bi == null) continue;
 int width = (int)(bi.getWidth() * FACTOR);
 int height = (int)(bi.getHeight() * FACTOR);

Listing 16.2 ResizeImage.java

F

G

Finds image
stream

Gets
BufferedImage

Creates new
BufferedImage
Licensed to Bruno Lowagie <bruno@lowagie.com>

529Finding and replacing image and font streams
 BufferedImage img = new BufferedImage(
 width, height, BufferedImage.TYPE_INT_RGB);
 AffineTransform at = AffineTransform
 .getScaleInstance(FACTOR, FACTOR);
 Graphics2D g = img.createGraphics();
 g.drawRenderedImage(bi, at);
 ByteArrayOutputStream imgBytes
 = new ByteArrayOutputStream();
 ImageIO.write(img, "JPG", imgBytes);
 stream.clear();
 stream.setData(imgBytes.toByteArray(),
 false, PRStream.NO_COMPRESSION);
 stream.put(PdfName.TYPE, PdfName.XOBJECT);
 stream.put(PdfName.SUBTYPE, PdfName.IMAGE);
 stream.put(key, value);
 stream.put(PdfName.FILTER, PdfName.DCTDECODE);
 stream.put(PdfName.WIDTH, new PdfNumber(width));
 stream.put(PdfName.HEIGHT, new PdfNumber(height));
 stream.put(PdfName.BITSPERCOMPONENT,
 new PdfNumber(8));
 stream.put(PdfName.COLORSPACE, PdfName.DEVICERGB);
 }
}
PdfStamper stamper = new PdfStamper(reader, new FileOutputStream(RESULT));
stamper.close();

Once you’ve found the stream you need, you create a PdfImageObject that will create
a java.awt.image.BufferedImage named bi; you’ll create a second BufferedImage
named img that is a factor smaller. In this example, the value of FACTOR is 0.5. You
draw the image bi to the Graphics2D object of the image image using an affine trans-
formation that scales the image down with a factor of FACTOR.

 You write the image as a JPEG to a ByteArrayOutputStream, and use the bytes from
this OutputStream as the new data for the stream object you’ve retrieved from
PdfReader. You reset all the entries in the image dictionary and add all the keys that
are necessary for a PDF viewer to interpret the image bytes correctly. After changing
the PRStream object in the reader, you use PdfStamper to write the altered file to a
FileOutputStream. Again, you get a look at the way iText works internally. When you
add a JPEG to a document the normal way, iText selects all the entries for the image
dictionary for you.

 Working at the lowest level is fun and gives you a lot of power, but you really have
to know what you’re doing, or you can seriously damage a PDF file. Because of the
high complexity, some requirements are close to impossible. For instance, it’s very
hard to replace a font. Let’s start by finding a way to list the fonts that are used in a
PDF document.

16.1.3 Listing the fonts used

In listing 11.1, you created a PDF document demonstrating different font types. You
can now use listing 16.3 to inspect this document and create a set containing all the
fonts that were used. This time you won’t look at every object in the PDF, as done in

Creates new
BufferedImage

Writes JPG
bytes

Replaces content of
image stream and
stream dictionary
Licensed to Bruno Lowagie <bruno@lowagie.com>

530 CHAPTER 16 PDF streams
the previous listing—even those that weren’t relevant. This time you’ll process the
resources of every page in the document.

public Set listFonts(String src) throws IOException {
 Set<String> set = new TreeSet<String>();
 PdfReader reader = new PdfReader(src);
 PdfDictionary resources;
 for (int k = 1;
 k <= reader.getNumberOfPages(); ++k) {
 resources = reader.getPageN(k)
 .getAsDict(PdfName.RESOURCES);
 processResource(set, resources);
 }
 return set;
}
public static void processResource(
 Set<String> set, PdfDictionary resource) {
 if (resource == null)
 return;
 PdfDictionary xobjects
 = resource.getAsDict(PdfName.XOBJECT);
 if (xobjects != null) {
 for (PdfName key : xobjects.getKeys()) {
 processResource(set, xobjects.getAsDict(key));
 }
 }
 PdfDictionary fonts
 = resource.getAsDict(PdfName.FONT);
 if (fonts == null)
 return;
 PdfDictionary font;
 for (PdfName key : fonts.getKeys()) {
 font = fonts.getAsDict(key);
 String name
 = font.getAsName(PdfName.BASEFONT).toString();
 if (name.length() > 8 && name.charAt(7) == '+') {
 name = String.format("%s subset (%s)",
 name.substring(8), name.substring(1, 7));
 }
 else {
 name = name.substring(1);
 PdfDictionary desc
 = font.getAsDict(PdfName.FONTDESCRIPTOR);
 if (desc == null)
 name += " nofontdescriptor";
 else if (desc.get(PdfName.FONTFILE) != null)
 name += " (Type 1) embedded";
 else if (desc.get(PdfName.FONTFILE2) != null)
 name += " (TrueType) embedded";
 else if (desc.get(PdfName.FONTFILE3) != null)
 name +=
 " (" + font.getAsName(PdfName.SUBTYPE)
 .toString().substring(1) + ") embedded";
 }

Listing 16.3 ListUsedFonts.java

Creates Set
for fonts

Processes
resources of
every page

Uses recursion
to get fonts in
form XObjects

Gets font
dictionary

Gets font
name

Checks for prefix
subsetted fonts

B Gets type
of fully
embedded
fonts
Licensed to Bruno Lowagie <bruno@lowagie.com>

531Finding and replacing image and font streams
 set.add(name);
 }
}

In this listing, you check for a series of keys in the font descriptor dictionary to determine
the font type B. Table 16.1 explains which key corresponds with which font type.

If you try this example on the file created in chapter 11, you’ll get the following result:

Arial-BlackItalic subset (IAEZOI)
ArialMT subset (WTBBZY)
ArialMT subset (XKYIQK)
CMR10 (Type 1) embedded
Helvetica nofontdescriptor
KozMinPro-Regular-UniJIS-UCS2-H nofontdescriptor
MS-Gothic subset (ZGXOUP)
Puritan2 (Type1) embedded

The standard Helvetica Type 1 font isn’t embedded, and there’s no font descriptor. The
same goes for the KozMinPro-Regular CJK font. Embedded Type 1 fonts are always fully
embedded by iText. TrueType and OpenType fonts are subsetted unless you changed the
default behavior with the setSubset() method. This was explained in chapter 11.

 Observe that there are two entries of ArialMT. This is caused by the use of two vari-
ations of the Arial font: one using WinAnsi encoding and one using Identity-H. You
can’t store both types of the font in the same font dictionary and stream; two different
font objects with different names will be created. In this case, the font names are WTB-
BZY+ArialMT and XKYIQK+ArialMT. The six-letter code is chosen at random and will
change every time you execute the example.

FAQ Can I combine different subsetted fonts into one font? The easy answer is “no.”
The not-so-easy answer is that merging subsets is really hard. It may require
the page content of all the pages to be rewritten.

In the next example, you’ll replace a font that isn’t embedded with a fully embedded
font. This will give you an idea of the difficulties you can expect if you ever try to com-
bine different subsetted fonts into one.

16.1.4 Replacing a font

Figure 16.1 shows two PDF files that were created in the very same way, except for one
difference: in the upper PDF, the font (Walt Disney Script v4.1) wasn’t embedded. It’s

Table 16.1 Stream references in the font descriptor

Key Description

FONTFILE The value for this key (if present) is a stream containing a Type 1 font program.

FONTFILE2 The value for this key (if present) is a stream containing a TrueType font program.

FONTFILE3 The value for this key (if present) is a stream containing a font program whose format
is specified by the /Subtype entry in the stream dictionary. It can be /Type1C,
/CIDFontType0C, or /OpenType.
Licensed to Bruno Lowagie <bruno@lowagie.com>

532 CHAPTER 16 PDF streams
a font I downloaded from a site with plenty of free fonts. The font isn’t installed on my
OS, so Adobe Reader doesn’t find it, and the words “iText in Action” are shown in
Adobe Sans MM, which is quite different from the font shown in the PDF that has the
font embedded.

 Suppose you have the upper PDF as well as the font file for the Walt Disney Script
font. You could use this listing to embed that font after the fact.

RandomAccessFile raf = new RandomAccessFile(FONT, "r");
byte fontfile[] = new byte[(int)raf.length()];
raf.readFully(fontfile);
raf.close();
PdfStream stream = new PdfStream(fontfile);
stream.flateCompress();
stream.put(PdfName.LENGTH1,
 new PdfNumber(fontfile.length));
PdfReader reader = new PdfReader(RESULT1);
int n = reader.getXrefSize();
PdfObject object;
PdfDictionary font;
PdfStamper stamper
 = new PdfStamper(reader, new FileOutputStream(RESULT2));
PdfName fontname = new PdfName(FONTNAME);
for (int i = 0; i < n; i++) {
 object = reader.getPdfObject(i);
 if (object == null || !object.isDictionary())
 continue;
 font = (PdfDictionary)object;
 if (PdfName.FONTDESCRIPTOR.equals(
 font.get(PdfName.TYPE)) && fontname.equals(
 font.get(PdfName.FONTNAME))) {

Listing 16.4 EmbedFontPostFacto.java

Figure 16.1 Non-embedded versus embedded fonts

Reads font file
into byte array

Creates PDF
stream

Finds unembedded
font
Licensed to Bruno Lowagie <bruno@lowagie.com>

533Embedding files into a PDF
 PdfIndirectObject objref
 = stamper.getWriter().addToBody(stream);
 font.put(PdfName.FONTFILE2,
 objref.getIndirectReference());
 }
}
stamper.close();

In this listing, you’re adding the complete font file. You add the reference to the
stream using the FONTFILE2 key because you know in advance that the font has True-
Type outlines. That’s not the only assumption you make. You also assume that the met-
rics of the font that is used in the PDF correspond to the metrics of the new font
you’re embedding.

 When we talked about parsing PDFs, I explained that we could only make a fair
attempt, but that the functionality could fail for PDFs using exotic encodings. Several
warnings that were mentioned in section 15.3.1 also apply here. In real-world exam-
ples, replacing one font with another can be very difficult.

 Now that you know what a PDF looks like on the inside, these examples comple-
ment your knowledge about images (discussed in chapter 10) and fonts (chapter 11).
In the sections that follow, we’ll take a close look at annotations (chapter 7) that are
associated with a PDF stream.

16.2 Embedding files into a PDF
You’ve already created a document with file attachment annotations in section 7.3.3.
You can embed different files of any type—images, Word documents, XML files, other
PDF files—into a PDF document as an annotation, but there’s also an alternative way to
do this.

 In this section, we’ll briefly return to file attachment annotations, and you’ll learn
about document-level attachments and create actions to open these annotations.
We’ll also discuss the concept of portable collections.

16.2.1 File attachment annotations

Figure 16.2 shows a list of Kubrick movies available in video stores. There’s a pushpin
next to every movie title, and if you click the pushpin, the movie poster is shown. All
the file attachments are also listed in the file attachments panel at the bottom.

 The next listing demonstrates how you can extract the attached files by looping
over all the pages of the document, inspecting the /Annots array.

Adds stream
to writer

Adds
reference to stream
Licensed to Bruno Lowagie <bruno@lowagie.com>

534 CHAPTER 16 PDF streams
PdfReader reader = new PdfReader(src);
PdfArray array;
PdfDictionary annot;
PdfDictionary fs;
PdfDictionary refs;
for (int i = 1; i <= reader.getNumberOfPages(); i++) {
 array = reader.getPageN(i).getAsArray(PdfName.ANNOTS);
 if (array == null) continue;
 for (int j = 0; j < array.size(); j++) {
 annot = array.getAsDict(j);
 if (PdfName.FILEATTACHMENT
 .equals(annot.getAsName(PdfName.SUBTYPE))) {
 fs = annot.getAsDict(PdfName.FS);
 refs = fs.getAsDict(PdfName.EF);
 for (PdfName name : refs.getKeys()) {
 FileOutputStream fos = new FileOutputStream(
 String.format(PATH,
 fs.getAsString(name).toString()));
 fos.write(PdfReader.getStreamBytes(
 (PRStream)refs.getAsStream(name)));
 fos.flush();

Listing 16.5 KubrickDvds.java

Figure 16.2 File attachment annotations

Loops over
pages

Gets
annotations

Looks for file
attachments

Gets file specification

Reads streams
into files

Gets embedded
files
Licensed to Bruno Lowagie <bruno@lowagie.com>

535Embedding files into a PDF
 fos.close();
 }
 }
 }
}

If you don’t want to add an attachment using a visible annotation, you can attach files
at the document level.

16.2.2 Document-level attachments

In the next listing, you’ll create a page listing the movies that are discussed in the doc-
umentary, Stanley Kubrick: A Life in Pictures. When you add the movies to a List, you
create an XML file. You then add this XML file to the document as an attachment with
the addFileAttachment() method.

ByteArrayOutputStream txt = new ByteArrayOutputStream();
PrintStream out = new PrintStream(txt);
out.println("<movies>");
List list = new List(List.UNORDERED, 20);
ListItem item;
for (Movie movie : movies) {
 out.println("<movie>");
 out.println(String.format("<title>%s</title>",
 SimpleXMLParser.escapeXML(movie.getMovieTitle(), true)));
 out.println(String.format("<year>%s</year>",
 movie.getYear()));
 out.println(String.format("<duration>%s</duration>",
 movie.getDuration()));
 out.println("</movie>");
 item = new ListItem(movie.getMovieTitle());
 list.add(item);
}
document.add(list);
out.print("</movies>");
out.flush();
out.close();
PdfFileSpecification fs
 = PdfFileSpecification.fileEmbedded(writer,
 null, "kubrick.xml", txt.toByteArray());
writer.addFileAttachment(fs);

Suppose you’ve created a report based on different spreadsheets; you could add the orig-
inal spreadsheets to your document as attachments. This is also an ideal way to combine
any presentation for human consumption with the data for automated consumption.

 The following listing shows how you can extract the XML from the PDF document
you created in the previous one.

Listing 16.6 KubrickDocumentary.java

Gets embedded
files

Adds document-
level attachment
Licensed to Bruno Lowagie <bruno@lowagie.com>

536 CHAPTER 16 PDF streams
PdfReader reader = new PdfReader(filename);
PdfDictionary root = reader.getCatalog();
PdfDictionary documentnames
 = root.getAsDict(PdfName.NAMES);
PdfDictionary embeddedfiles
 = documentnames.getAsDict(PdfName.EMBEDDEDFILES);
PdfArray filespecs
 = embeddedfiles.getAsArray(PdfName.NAMES);
PdfDictionary filespec;
PdfDictionary refs;
FileOutputStream fos;
PRStream stream;
for (int i = 0; i < filespecs.size();) {
 filespecs.getAsString(i++);
 filespec = filespecs.getAsDict(i++);
 refs = filespec.getAsDict(PdfName.EF);
 for (PdfName key : refs.getKeys()) {
 fos = new FileOutputStream(
 String.format(PATH,
 filespec.getAsString(key).toString()));
 stream = (PRStream) PdfReader.getPdfObject(
 refs.getAsIndirectObject(key));
 fos.write(PdfReader.getStreamBytes(stream));
 fos.flush();
 fos.close();
 }
}

The references to the file specifications of document-level attachments can be found
through the /EmbeddedFiles entry in the catalog’s name tree. These reference are in
turn part of a name tree. In section 13.3.3, you learned that a name tree is an array
with ordered pairs of strings and values. In this case, you ignore the names—you only
want the values, which are the file specifications of the embedded files.

16.2.3 Go to embedded file action

Embedded files—be they added as annotations, or at the document level—are listed
in the attachments panel where the end user can select and open them. If you want to
provide a better way for end users to find an attachment, you can create goto actions to
switch to an embedded file, or to the parent of an embedded file.

 The document in figure 16.3 shows a PDF listing the DVDs that are packaged in the
Kubrick box: eight Kubrick movies and a documentary. The PDF has nine attachments
in the PDF format, one per movie. When you click “see info,” one of these attached
files will open. There’s a “Go to original document” link in each of these files to
return you to the original document. This is done with a /GoToE action specifying
a destination in an embedded or embedding file (an attachment or a parent of
an attachment).

Listing 16.7 KubrickDocumentary.java (continued)

Gets array of file
specifications

Extracts file
streams
Licensed to Bruno Lowagie <bruno@lowagie.com>

537Embedding files into a PDF
This example shows how such a /GoToE action in the parent document is created.

PdfDestination dest
 = new PdfDestination(PdfDestination.FIT);
dest.addFirst(new PdfNumber(1));
...
fs = PdfFileSpecification.fileEmbedded(writer, null,
 String.format("kubrick_%s.pdf", movie.getImdb()),
 createMoviePage(movie));
fs.addDescription(movie.getTitle(), false);
writer.addFileAttachment(fs);
item = new ListItem(movie.getMovieTitle());
target = new PdfTargetDictionary(true);
target.setEmbeddedFileName(movie.getTitle());
action = PdfAction.gotoEmbedded(
 null, target, dest, true);
chunk = new Chunk(" (see info)");
chunk.setAction(action);
item.add(chunk);
list.add(item);

You do something similar in the PDF files that are attached to the parent document:

PdfDestination dest = new PdfDestination(PdfDestination.FIT);
dest.addFirst(new PdfNumber(1));
PdfTargetDictionary target = new PdfTargetDictionary(false);
Chunk chunk = new Chunk("Go to original document");

Listing 16.8 KubrickBox.java

Figure 16.3 Go to embedded files

Creates
destination

Creates document-
level attachment

Creates
target

Creates Chunk
with action
Licensed to Bruno Lowagie <bruno@lowagie.com>

538 CHAPTER 16 PDF streams
PdfAction action = PdfAction.gotoEmbedded(null, target, dest, false);
chunk.setAction(action);
document.add(chunk);

How does this work? The gotoEmbedded() method expects four parameters:

■ A filename—The name of the PDF file that has attachments. This parameter can
be null if you want to go to an attachment in the current document.

■ A target—An instance of the class PdfTargetDictionary. We’ll discuss this dic-
tionary in a moment.

■ A destination—A PdfString or a PdfName if you want to jump to a named desti-
nation (see section 7.1.1); a PdfDestination if you want to go to an explicit des-
tination (see section 7.1.2).

■ A Boolean value—If true, the destination document should be opened in a new
window.

When you create a PdfTargetDictionary, you specify whether you are targeting a
child document (true) or a parent document (false). If you want to jump to a child
document, you have two options:

■ If you want to go to a file that is attached at the document-level, which could be
the case if you are targeting a child document, you need to specify the name of
this file with the setEmbeddedFileName() method.

■ If you’re targeting a file that was added as a file attachment annotation, you
need to use setFileAttachmentPage() or setFileAttachmentPagename() to
specify to which page the attachment belongs. The former method expects a
page number; the latter expects a named destination. A page can contain more
than one file attachment, so you also have to pass the index (0-based) of the
attachment with setFileAttachmentIndex(), or its name with setFileAttach-
mentName()—the name is the value corresponding with the /NM key in the
annotation dictionary.

It’s also possible to nest target dictionaries. For instance, you might want to go to a
child document of a child document, to the parent of a parent document, or to a sib-
ling. This is done with the setAdditionalPath() method. We’ll use this method in a
more complex example involving portable collections.

16.2.4 PDF packages, portable collections, or portfolios

Suppose that you want to bundle a set of documents that belong together into one
PDF, and organize them in a way that the attachment panel can’t accommodate. Sup-
pose you want to add your own keys, and to allow the end user to sort the entries in
the collection of documents based on those custom keys.

 This functionality was introduced in PDF 1.7, and it’s known under different
names. People working with it on the lowest level will talk about portable collections,
because that’s the name that is used in the PDF reference and in ISO-32000-1. People
who work on a higher level using Adobe Acrobat or Adobe Reader will say that a PDF
Licensed to Bruno Lowagie <bruno@lowagie.com>

539Embedding files into a PDF
document as shown in figure 16.4 is a portfolio. And if you ever hear people talk about
PDF packages, that’s the original name of this functionality.

 Figure 16.4 shows a collection of PDF files with information about the movies of
Stanley Kubrick. The end user gets an overview with the year the movie was made, the
movie title, the run length, and the file size. The user can also sort the entries based
on these fields. Clicking one of the lines in the overview opens the file.

 The fields in this UI are defined in a collection schema dictionary. This dictionary con-
sists of a variable number of individual collection field dictionaries. The next listing shows
how to create these dictionaries.

private static PdfCollectionSchema getCollectionSchema() {
 PdfCollectionSchema schema = new PdfCollectionSchema();
 PdfCollectionField size
 = new PdfCollectionField("File size", PdfCollectionField.SIZE);
 size.setOrder(4);
 schema.addField("SIZE", size);
 PdfCollectionField filename
 = new PdfCollectionField("File name", PdfCollectionField.FILENAME);
 filename.setVisible(false);
 schema.addField("FILE", filename);

Listing 16.9 KubrickMovies.java

Figure 16.4 A portable collection containing PDF files
Licensed to Bruno Lowagie <bruno@lowagie.com>

540 CHAPTER 16 PDF streams
 PdfCollectionField title
 = new PdfCollectionField("Movie title", PdfCollectionField.TEXT);
 title.setOrder(1);
 schema.addField("TITLE", title);
 PdfCollectionField duration
 = new PdfCollectionField("Duration", PdfCollectionField.NUMBER);
 duration.setOrder(2);
 schema.addField("DURATION", duration);
 PdfCollectionField year
 = new PdfCollectionField("Year", PdfCollectionField.NUMBER);
 year.setOrder(0);
 schema.addField("YEAR", year);
 return schema;
}

In listing 16.9, you create five PdfCollectionField objects. The constructor of this class
accepts a name that will be used as the caption of a column in the detail view of the col-
lection. It also expects a field type, which must be one of values listed in table 16.2.

You can set the order of the fields in the UI with the setOrder() method. Observe
that in listing 16.9 you set one field invisible with setVisible(false). As a result,
there’s no column with that filename in figure 16.4. The default is true; all other
fields are visible. Finally, you can make the field editable with the setEditable()
method. By default, fields are not editable.

Table 16.2 Collection field types

Parameter Name Description

TEXT /S The field value will contain text; iText will use the object
PdfString internally.

DATE /D The field value will contain a date; iText will use the
object PdfDate internally.

NUMBER /N The field value will contain a number; iText will use the
object PdfNumber internally.

FILENAME /F The value will be obtained from the /UF entry in the
file specification.

DESC /Desc The value will be obtained from the /Desc entry in the
file specification.

MODDATE /ModDate The value will be obtained from the /ModDate entry
in the file specification.

CREATIONDATE /CreationDate The value will be obtained from the /CreationDate
entry in the file specification.

SIZE /Size The size of the embedded file as identified by the
/Size entry in the /Params dictionary of the
stream dictionary of the embedded file.
Licensed to Bruno Lowagie <bruno@lowagie.com>

541Embedding files into a PDF
NOTE If the collection schema is absent, the Reader will choose useful
defaults taken from the file specification dictionary, such as the filename and
the file size.

The collection schema is used in the collection dictionary of the PDF document. You con-
struct a PdfCollection dictionary with one of the following preferences as a parameter:

■ DETAIL—The collection view is presented in detail mode, with all information
in the schema dictionary presented in a multicolumn format. This mode pro-
vides the most information to the user. See figure 16.4.

■ TILE—The collection view is presented in tile mode, with each file in the collec-
tion denoted by a small icon and a subset of information from the schema dic-
tionary. This mode provides top-level information about the file attachments to
the user. See figure 16.5.

■ HIDDEN—The collection view is initially hidden, without preventing the user
from obtaining a file list via explicit actions.

■ CUSTOM—The collection view is presented by a custom navigator. This option isn’t
described in ISO-32000-1, but in Adobe’s extensions to ISO-32000-1 (level 3).

The end user can always switch from the initial view to another view.
 The files presented in the UI can be sorted in different ways, and you can define

the sort order using a PdfCollectionSort object. You construct this object by passing
the name of a field that has to be used to sort the items as a parameter. With the set-
SortOrder() method, you can sort the items in ascending (true) or descending
(false) order. If you want to involve multiple fields, you have to pass an array of field
names as a parameter of the PdfCollectionSort constructor as well as a correspond-
ing array of Boolean values for the sort order.

 Each collection has a cover page. In listing 16.10, the cover page has the text, “This
document contains a collection of PDFs, one per Stanley Kubrick movie.” But when
you open the document, you’ll see a different page because you’ve used the setIni-
tialDocument() method to choose one of the embedded files as the initial page.

 Once you’ve completed setting all the parameters of the PdfCollection diction-
ary, you can use setCollection() as is done here.

public byte[] createPdf()
 throws DocumentException, IOException, SQLException {
 Document document = new Document();
 ByteArrayOutputStream baos = new ByteArrayOutputStream();
 PdfWriter writer = PdfWriter.getInstance(document, baos);
 document.open();
 document.add(new Paragraph(
 "This document contains a collection of PDFs, one per

➥ Stanley Kubrick movie."));
 PdfCollection collection
 = new PdfCollection(PdfCollection.DETAILS);

Listing 16.10 KubrickMovies.java (continued)

Defines
collection
Licensed to Bruno Lowagie <bruno@lowagie.com>

542 CHAPTER 16 PDF streams
 collection.setInitialDocument("Eyes Wide Shut");
 PdfCollectionSchema schema = getCollectionSchema();
 collection.setSchema(schema);
 PdfCollectionSort sort
 = new PdfCollectionSort("YEAR");
 sort.setSortOrder(false);
 collection.setSort(sort);
 writer.setCollection(collection);
 PdfFileSpecification fs;
 PdfCollectionItem item;
 DatabaseConnection connection = new HsqldbConnection("filmfestival");
 java.util.List movies = PojoFactory.getMovies(connection, 1);
 connection.close();
 for (Movie movie : movies) {
 fs =
 PdfFileSpecification.fileEmbedded(writer, null,
 String.format("kubrick_%s.pdf", movie.getImdb()),
 createMoviePage(movie));
 fs.addDescription(movie.getTitle(), false);
 item = new PdfCollectionItem(schema);
 item.addItem("TITLE", movie.getMovieTitle(false));
 if (movie.getMovieTitle(true) != null) {
 item.setPrefix("TITLE",
 movie.getMovieTitle(true));
 }
 item.addItem("DURATION", movie.getDuration());
 item.addItem("YEAR", movie.getYear());
 fs.addCollectionItem(item);
 writer.addFileAttachment(fs);
 }
 document.close();
 return baos.toByteArray();
}

As soon as there are fields of type TEXT, DATE, or NUMBER in the collection schema, you
need to create a PdfCollectionItem for each file specification. This class comes with
a plethora of addItem() methods that allow you to set the values of the different fields
present in the collection schema.

NOTE If you sorted the collection shown in figure 16.4 alphabetically in
ascending order based on the titles, you’d want the movie A Clockwork Orange
to follow Barry Lyndon, and not the other way around. To achieve this, you
need to pass the string “Clockwork Orange” with the addItem() method and
the article “A” with the setPrefix() method. The title would be shown as A
Clockwork Orange, but the sorting order wouldn’t be affected by the article “A”.

You’ve created your first portable collection. If you open it in Adobe Reader, there will
be an extra entry named Portfolio in the View menu. You can use it to switch to
another UI, such as from a detailed view to a tiled view, or to return to the cover page.

 Figure 16.5 shows a second portable collection opened in tiled view. As you can
see, some of the PDFs created in this section have been bundled along with a JPEG and
a plain text file. The image was created using the following listing.

Defines
collection

Defines file
specification

Defines
collection
item for file

Adds file as
document-level
attachment
Licensed to Bruno Lowagie <bruno@lowagie.com>

543Embedding files into a PDF
PdfCollectionItem collectionitem = new PdfCollectionItem(schema);
PdfFileSpecification fs;
fs = PdfFileSpecification
 .fileEmbedded(writer, IMG_KUBRICK, "kubrick.jpg", null);
fs.addDescription("Stanley Kubrick", false);
collectionitem.addItem(TYPE_FIELD, "JPEG");
fs.addCollectionItem(collectionitem);
writer.addFileAttachment(fs);

If the file type is supported by the viewer, the end user will be able to view the file
directly. This is the case for the JPEG and the plain text file in figure 16.5. You can
choose to open these files in an external application too. That’s also an option for file
types that can’t be opened in the viewer, unless special permissions are set to avoid
security hazards.

 This second portfolio example, named KubrickCollection, was written to demon-
strate nested /GoToE actions. The file kubrick_movies.pdf shown in figure 16.5 is the
collection you created with the KubrickMovies example. The following listing adds
links from the cover page of the collection to the files embedded in a file that is part
of the collection.

PdfDestination dest = new PdfDestination(PdfDestination.FIT);
dest.addFirst(new PdfNumber(1));
PdfTargetDictionary intermediate;
PdfTargetDictionary target;
...
target = new PdfTargetDictionary(true);
target.setEmbeddedFileName(movie.getTitle());
intermediate = new PdfTargetDictionary(true);
intermediate.setFileAttachmentPage(1);
intermediate.setFileAttachmentIndex(1);
intermediate.setAdditionalPath(target);
action = PdfAction.gotoEmbedded(null, intermediate, dest, true);

Listing 16.11 KubrickCollection.java

Listing 16.12 KubrickCollection.java (continued)

Figure 16.5 A portable collection containing different file types

Final target

Intermediate
target
Licensed to Bruno Lowagie <bruno@lowagie.com>

544 CHAPTER 16 PDF streams
The final target is a movie page that is the child of an intermediate target, namely the
first attachment on page 2, which is the page with index 1. The next bit of code shows
how this attachment was added.

PdfPCell cell = new PdfPCell(new Phrase("All movies by Kubrick"));
cell.setBorder(PdfPCell.NO_BORDER);
fs = PdfFileSpecification.fileEmbedded(writer, null,
 KubrickMovies.FILENAME, new KubrickMovies().createPdf());
collectionitem.addItem(TYPE_FIELD, "PDF");
fs.addCollectionItem(collectionitem);
target = new PdfTargetDictionary(true);
target.setFileAttachmentPagename("movies");
target.setFileAttachmentName("The movies of Stanley Kubrick");
cell.setCellEvent(new PdfActionEvent(writer,
 PdfAction.gotoEmbedded(null, target, dest, true)));
cell.setCellEvent(new FileAttachmentEvent(writer, fs,
 "The movies of Stanley Kubrick"));
cell.setCellEvent(new LocalDestinationEvent(writer, "movies"));
table.addCell(cell);
writer.addFileAttachment(fs);

In this code snippet, we have another example of a /GoToE action, demonstrating the
use of the setFileAttachmentPagename() and setFileAttachmentName() methods as
alternatives for setFileAttachmentPage() and setFileAttachmentIndex(). But the
main reason to look at this snippet is the final line: writer.addFileAttachment(fs);.

 The kubrick_movies.pdf file is added as an attachment annotation. Internally, this
annotation will appear in the /Annots array of the page dictionary. These file attach-
ment annotations do not appear in the list of embedded files and are therefore not a
part of the portable collection, unless you also add them as document-level attachments.

 Don’t worry, the bits and bytes of the file will only be present once inside the PDF file.
The file specification will be referenced from two places: from a file attachment anno-
tation on the page level, and from the /EmbeddedFiles name tree at the document level.

 If you’ve experimented with the examples while reading this book, you’ve proba-
bly noticed that the files with the movie information that were embedded in the PDF
named kubrick_movies.pdf contain a “Go to original document” link that doesn’t
work. This link is created with this listing:

PdfTargetDictionary target = new PdfTargetDictionary(false);
target.setAdditionalPath(new PdfTargetDictionary(false));
Chunk chunk = new Chunk("Go to original document");
PdfAction action
 = PdfAction.gotoEmbedded(null, target, new PdfString("movies"), false);

This creates a link to the parent of a parent. It’s normal that this link doesn’t work in
the context of the standalone kubrick_movies.pdf file, because there’s no grandpar-
ent. This link will only work when the file with the movie information is opened in the

Listing 16.13 KubrickCollection.java (continued)

Listing 16.14 KubrickMovies.java (continued)
Licensed to Bruno Lowagie <bruno@lowagie.com>

545Integrating rich media
context of the kubrick_collection.pdf file in which the kubrick_movies.pdf file is
embedded. While it’s fun to make constructions like this, you shouldn’t confuse the
end user by making the family structure of embedded files and embedded goto
actions too complex.

 Let’s move on and look at special types of annotations that allow you to add mov-
ies, sound, and other multimedia formats as part of a document.

16.3 Integrating rich media
ISO-32000-1 has a complete chapter about multimedia, explaining how to embed mov-
ies and sound and even 3D images into pages, but the supplement to ISO-32000-1
(extension level 3), also adds the concept of rich media. If you look for the term “Rich
Media” on Wikipedia, you’ll be forwarded to a page about “Interactive media”:

Interactive media normally refers to products and services on digital computer-based
systems which respond to the user’s actions by presenting content such as text, graphics,
animation, video, audio.

—“Interactive media,” Wikipedia

Let’s start with the more traditional multimedia, such as movies, then have a look at
a 3D example, and finish this chapter with a rich media annotation that embeds a
Flash application into a PDF document.

16.3.1 Movie annotations

In chapter 10, you created a document containing the different frames of an ani-
mated GIF showing a fox jumping over a dog. You learned that animated GIFs aren’t
supported in PDF, but if you want to add a movie with a fox jumping over a dog, you
can create an annotation using the media types shown in table 16.3.

Table 16.3 Multimedia files supported in PDF

Extension MIME-type Description

.aiff audio/aiff Audio Interchange File Format

.au audio/basic NeXT/Sun Audio Format

.avi video/avi AVI (Audio/Video Interleaved)

.mid audio/midi MIDI (Musical Instrument Digital Interface)

.mov video/quicktime QuickTime

.mp3 audio/x-mp3 MPEG Audio Layer-3

.mp4 audio/mp4 MPEG-4 Audio

.mp4 video/mp4 MPEG-4 Video

.mpeg video/mpeg MPEG-2 Video

.smil application/smil Synchronized Multimedia Integration Language

.swf application/x-shockwave-flash Macromedia Flash
Licensed to Bruno Lowagie <bruno@lowagie.com>

546 CHAPTER 16 PDF streams
Depending on the viewer, other types of multimedia may be supported too, but these
are the ones listed in appendix H of the PDF specification.

 Adding a movie with iText is done with a screen annotation. You can use the cre-
ateScreen() method to add an annotation that refers to an external file, or you can
embed the file as is done next.

PdfFileSpecification fs = PdfFileSpecification
 .fileEmbedded(writer, RESOURCE, "foxdog.mpg", null);
writer.addAnnotation(PdfAnnotation.createScreen(writer,
 new Rectangle(200f, 700f, 400f, 800f), "Fox and Dog", fs,
 "video/mpeg", true));

The constant value RESOURCE contains the path to the file that needs to be embedded;
foxdog.mpg is the name that will be used inside the PDF.

NOTE The viewer will warn you about possible security hazards before you
can play a movie or any other multimedia file, because one never knows if the
file contains a Trojan horse. (I’m not referring to a wooden construction con-
cealing Brad Pitt.)

You can also add sound with a sound annotation, but currently there are no conve-
nience methods in iText to do this. If you need to embed an .au file, you’ll have to cre-
ate PdfDictionary objects describing a sound object, a sound annotation, and
possibly a sound action. The same goes for 3D annotations.

 In the next section, we’ll learn how to create specific objects that are described in
ISO-32000-1, but for which there are no convenience classes or methods.

16.3.2 3D annotations

The 3D Industry Forum is a special consortium that brought together a diverse group
of companies and organizations, including Adobe Systems, HP, and Intel. They’ve devel-
oped a format named the Universal 3D (U3D) file format, a compressed file format for 3D
computer graphics. The format was standardized by Ecma International in 2005.

 This format is natively supported by the PDF format. 3D objects in U3D format can
be inserted into PDF documents and interactively visualized by Adobe Reader 7.0 and
higher. This is done with a 3D annotation that provides a virtual camera through
which the artwork is viewed. Figure 16.6 shows a 3D image of a teapot. You can change
the view of the object in the PDF by using the mouse and the 3D controls in the bar on
top of the annotation.

 To produce a PDF like the one shown in figure 16.6, you need to use basic PdfOb-
ject classes to create a 3D stream object B in listing 16.16, a 3D view dictionary C,
and a 3D annotation D.

Listing 16.15 MovieAnnotation.java
Licensed to Bruno Lowagie <bruno@lowagie.com>

547Integrating rich media
Rectangle rect = new Rectangle(100, 400, 500, 800);
PdfStream stream3D
 = new PdfStream(new FileInputStream(RESOURCE), writer);
stream3D.put(PdfName.TYPE, new PdfName("3D"));
stream3D.put(PdfName.SUBTYPE, new PdfName("U3D"));
stream3D.flateCompress();
PdfIndirectObject streamObject = writer.addToBody(stream3D);
stream3D.writeLength();
PdfDictionary dict3D = new PdfDictionary();
dict3D.put(PdfName.TYPE, new PdfName("3DView"));
dict3D.put(new PdfName("XN"), new PdfString("Default"));
dict3D.put(new PdfName("IN"), new PdfString("Unnamed"));
dict3D.put(new PdfName("MS"), PdfName.M);
dict3D.put(new PdfName("C2W"), new PdfArray(
 new float[] { 1, 0, 0, 0, 0, -1, 0, 1, 0, 3, -235, 28 }));
dict3D.put(PdfName.CO, new PdfNumber(235));
PdfIndirectObject dictObject = writer.addToBody(dict3D);
PdfAnnotation annot = new PdfAnnotation(writer, rect);
annot.put(PdfName.CONTENTS, new PdfString("3D Model"));
annot.put(PdfName.SUBTYPE, new PdfName("3D"));
annot.put(PdfName.TYPE, PdfName.ANNOT);
annot.put(new PdfName("3DD"), streamObject.getIndirectReference());
annot.put(new PdfName("3DV"), dictObject.getIndirectReference());
PdfAppearance ap = writer.getDirectContent()

Listing 16.16 Pdf3D.java

Figure 16.6 Document with a 3D annotation

B Creates 3D
stream
object

C Creates 3D
view
dictionary

DCreates 3D
annotation
Licensed to Bruno Lowagie <bruno@lowagie.com>

548 CHAPTER 16 PDF streams
 .createAppearance(rect.getWidth(), rect.getHeight());
annot.setAppearance(PdfAnnotation.APPEARANCE_NORMAL, ap);
annot.setPage();
writer.addAnnotation(annot);

In B, you create a PdfStream using a FileInputStream that allows iText to read a
U3D file. You add the keys /Type and /Subtype to the stream dictionary to indicate
that you’re creating a /3D stream of type /U3D—you do this because it’s described that
way in ISO-32000-1. You then compress the stream and add the compressed stream to
the body of the PDF file with the addToBody() method.

NOTE If you create a PdfStream by passing an array of bytes, the stream
object can immediately determine the length of the stream. This length will
change when you invoke flatecompress(). In this example, you’re creating
the stream using a FileInputStream, and iText doesn’t know the length of
the stream until after the stream has been written to the body, so iText will
create an indirect reference for the value of the /Length key. It’s up to us to
write the object with the actual value to the body once the length is known.
This is done with the writeLength() method.

When you add the stream to the body, you obtain the indirect reference streamObject.
 You also need a 3D view dictionary C. In this dictionary, you can specify parame-

ters for the virtual camera associated with a 3D annotation: the orientation and posi-
tion of the camera, details regarding the projection of camera coordinates, and so on.

 In listing 16.16, you define an external (/XN) and an internal (/IN) name. The
matrix system (/MS) indicates that you’ll specify a matrix (/M) using a Camera to World
entry (/C2W). This is a 12-element 3D transformation matrix that specifies a position
and orientation of the camera in world coordinates. The /CO value is a non-negative
number indicating a distance in the camera coordinate system along the Z axis to the
center of orbit for this view. For the complete description of these values, and of the
other options that are available, please read section 13.6 of ISO-32000-1.

 You add the 3D view dictionary to the body with the addToBody() method, just as you
did with the 3D stream. You obtain the indirect reference dictObject. Finally, you cre-
ate a 3D annotation D as you did before in listing 7.20. You can consult ISO-32000-1 to
find out which keys are required in the annotation dictionary, and you add the anno-
tation to the PDF document using the addAnnotation() method.

 3D is hot, and it will probably become even hotter, because Adobe’s supplement to
ISO-32000-1 and Acrobat 9 came with plenty of new features for 3D. If you need 3D func-
tionality, please check itextpdf.com to find out if 3D classes have been added to iText
before you add 3D streams the hard way—as described in listing 16.16.

 We’ll conclude this chapter with an example of brand new functionality described
in the supplement to ISO-32000-1 by Adobe (extension level 3).

16.3.3 Embedding Flash into a PDF

You can embed a Flash application (a .swf file) into a PDF document using a movie
annotation as described in section 16.3.1. This works well for a Flash movie, but if you

D Creates 3D
annotation
Licensed to Bruno Lowagie <bruno@lowagie.com>

549Integrating rich media
want to embed a Flash application, you’ll discover that the interactive features are
rather limited. If you want to take advantage of all the functionality of a Flash applica-
tion, you’ll need to embed the .swf file as a rich media annotation. This was the case
for the PDF shown in figure 16.7.

 The combo box with dates, the button for selecting a day, and the table listing
screenings on a particular day are all part of a Flash application written in Flex.

WRITING A FLEX APPLICATION

This listing shows the source code of the Flex application.

<?xml version="1.0" encoding="utf-8"?>
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml"
 layout="absolute"
 applicationComplete="stage.scaleMode = StageScaleMode.EXACT_FIT;
 initList(Application.application.parameters.day);">
 <mx:Script>
 <![CDATA[
 private function initList(day:Object):void {
 days.selectedItem = day;
 getDateInfo(days.selectedItem);
 }
 private function getDateInfo(day:Object):void {
 screeningsService.url=
 'http://flex.itextpdf.org/fff/day_'
 + day + '.xml';
 screeningsService.send();
 screeningsDataGrid.invalidateList();
 }

Listing 16.17 FestivalCalendar1.mxml

Figure 16.7 Integrating a Flash application in a PDF document

B
C

Initializes
date

Gets data for
specific day
Licensed to Bruno Lowagie <bruno@lowagie.com>

550 CHAPTER 16 PDF streams
]]>
 </mx:Script>
 <mx:HTTPService
 id="screeningsService" resultFormat="e4x" />
 <mx:Grid id="formgrid">
 <mx:GridRow id="row1">
 <mx:GridItem>
 <mx:ComboBox id="days" dataProvider="{[
 '2011-10-12', '2011-10-13', '2011-10-14',
 '2011-10-15', '2011-10-16', '2011-10-17',
 '2011-10-18', '2011-10-19']}" />
 </mx:GridItem>
 <mx:GridItem>
 <mx:Button id="date" label="Select day"
 click="getDateInfo(days.selectedItem);" />
 </mx:GridItem>
 </mx:GridRow>
 <mx:GridRow id="row2">
 <mx:GridItem colSpan="2">
 <mx:DataGrid id="screeningsDataGrid"
 dataProvider=
 "{screeningsService.lastResult.screening}">
 <mx:columns>
 <mx:DataGridColumn
 headerText="Time" dataField="time"/>
 <mx:DataGridColumn headerText="Location"
 dataField="location"/>
 <mx:DataGridColumn headerText="Duration"
 dataField="duration"/>
 <mx:DataGridColumn
 headerText="Title" dataField="title"/>
 <mx:DataGridColumn
 headerText="Year" dataField="year"/>
 </mx:columns>
 </mx:DataGrid>
 </mx:GridItem>
 </mx:GridRow>
 </mx:Grid>
</mx:Application>

This listing is easy to understand even if you’ve never written a Flex application. There
are two methods written in ActionScript inside the Script tag. The object defined
with the HTTPService tag will be responsible for making a connection to a site and
retrieving data about screenings in the form of an XML file (resultFormat="e4x").

 The layout of the UI is defined using a Grid containing two GridRows. The first row
has two GridItems: a ComboBox with days ranging from 2011-10-12 to 2011-10-19,
and a Button with the label "Select day". The item in the second row has colspan 2,
and contains a DataGrid with five DataGridColumns: Time, Location, Duration,
Title, and Year. The data provider for this data grid is the last result of the HTTPSer-
vice with id screeningsService.

 This .mxml file was compiled into an .swf file using Flex Builder. This .swf file can
be embedded into an HTML file, but you’re going to integrate it into a PDF document.

Fetches
XML file

Displays combo
box with dates

Displays button to trigger
getDateInfo method

Displays grid
containing
screening info
Licensed to Bruno Lowagie <bruno@lowagie.com>

551Integrating rich media
FETCHING XML DATA FROM A SERVER

This example shows the XML file that is fetched by this service for October 12.

<day date="2011-10-12">
<screening>
 <location>GP.3</location>
 <time>09:30:00</time>
 <duration>98</duration>
 <title>The Counterfeiters</title>
 <year>2007</year>
</screening>
<screening>
 <location>GP.3</location>
 <time>11:30:00</time>
 <duration>120</duration>
 <title>Give It All</title>
 <year>1998</year>
</screening>
...
</day>

You’ve indicated that you’re looking for screening nodes in the dataProvider of the
DataGrid. As a result, the data grid will have a line for every screening tag in the
XML, containing the contents of the dataField defined in the DataGridColumn.

 To make this work, you need to put XML files for every date in the combo box in
the appropriate place on our web server, but this may not be sufficient. This will work
for HTML and .swf files that are hosted on the same domain as the data files, but it
won’t work in a PDF that is opened on somebody’s local machine. The Flash player
that runs the Flash application—in a browser, or in a PDF viewer—operates in a secure
sandbox. This sandbox will prevent the application from accessing the user’s filesys-
tem, and from fetching data from a remote website.

 In this case, the Flex application won’t be allowed to access the XML files outside
the domain to which the application is deployed, unless the owner of the site where
the XML files reside allows it. If you open a PDF containing this Flex application
locally, you are not on the http://flex.itextpdf.org/ domain, and Adobe Reader will
open a dialog box with the following security warning:

The document is trying to connect to http://flex.itextpdf.org/crossdomain.xml. If you
trust the site, choose Allow. If you do not trust the site, choose Block.

The next bit of code shows the contents of the crossdomain.xml file that I had to put
at the root of the flex.itextpdf.org domain in order to grant access to any Flex applica-
tion from any domain.

<?xml version="1.0"?>
<!DOCTYPE cross-domain-policy
 SYSTEM "http://www.adobe.com/xml/dtds/cross-domain-policy.dtd">

Listing 16.18 http://flex.itextpdf.org/fff/day_2011-10-12.xml

Listing 16.19 crossdomain.xml
Licensed to Bruno Lowagie <bruno@lowagie.com>

http://flex.itextpdf.org/
http://flex.itextpdf.org/crossdomain.xml

552 CHAPTER 16 PDF streams
<cross-domain-policy>
 <site-control permitted-cross-domain-policies="all"/>
 <allow-access-from domain="*" />
 <allow-http-request-headers-from domain="*" headers="*"/>
</cross-domain-policy>

If such a file isn’t there, or if it doesn’t allow everyone access, the Flex application
won’t be able to retrieve the data.

 Even with the crossdomain.xml file in place, Adobe Reader will show a security warn-
ing every time an XML file (for instance, http://flex.itextpdf.org/fff/day_2011-10-12.
xml) is fetched, unless you check the Remember My Action for This Site check box.

NOTE Most SWF files that can be found on the market are written to be
embedded in HTML files. In theory, you can embed all these files in a PDF
document. However, if the SWF files were created using Flex Builder, you
may experience problems when zooming in and out, or when printing a page
that has a rich media annotation. These problems are caused by the default
scale mode. To avoid them, you need to change the scale mode as is done in
line B in listing 16.17: stage.scaleMode = StageScaleMode.EXACT_FIT. This
is important if you buy a Flash component that was written using Flex Builder
and that was intended for use in HTML. You need to make sure the vendor
has taken this into account if you want to use the .swf in a PDF document.

Now that you know how the Flex application was written, let’s look at how you can
integrate it into a PDF document.

RICH MEDIA ANNOTATIONS

Rich media annotations aren’t part of ISO-32000-1. Support for these annotations was
added by Adobe in PDF 1.7 extension level 3. In this case, it isn’t sufficient to change
the version number to 1.7 with setPdfVersion(); you also have to set the extension
level with the addDeveloperExtension() method. You can do this more than once if
you’re using extensions from different companies.

 The method expects an instance of the PdfDeveloperExtension class. In list-
ing 16.20, you use the static final object ADOBE_1_7_EXTENSIONLEVEL3. This value was
created like this:

new PdfDeveloperExtension(PdfName.ADBE, PdfWriter.PDF_VERSION_1_7, 3)

The first parameter refers to the developing company. The second parameter indi-
cates for which PDF version the extension was written. Finally, you pass in the number
of the extension level as an int.

Document document = new Document();
PdfWriter writer
 = PdfWriter.getInstance(document, new FileOutputStream(RESULT));
writer.setPdfVersion(PdfWriter.PDF_VERSION_1_7);
writer.addDeveloperExtension(
 PdfDeveloperExtension.ADOBE_1_7_EXTENSIONLEVEL3);

Listing 16.20 FestivalCalendar1.java

Sets version and
extension level
Licensed to Bruno Lowagie <bruno@lowagie.com>

http://flex.itextpdf.org/fff/day_2011-10-12.xml
http://flex.itextpdf.org/fff/day_2011-10-12.xml

553Integrating rich media
document.open();
RichMediaAnnotation richMedia
 = new RichMediaAnnotation(writer,
 new Rectangle(36, 400, 559,806));
PdfFileSpecification fs =
 PdfFileSpecification.fileEmbedded(
 writer, RESOURCE, "FestivalCalendar1.swf", null);
PdfIndirectReference asset
 = richMedia.addAsset("FestivalCalendar1.swf", fs);
RichMediaConfiguration configuration
 = new RichMediaConfiguration(PdfName.FLASH);
RichMediaInstance instance
 = new RichMediaInstance(PdfName.FLASH);
RichMediaParams flashVars = new RichMediaParams();
String vars = new String("&day=2011-10-13");
flashVars.setFlashVars(vars);
instance.setParams(flashVars);
instance.setAsset(asset);
configuration.addInstance(instance);
PdfIndirectReference configurationRef
 = richMedia.addConfiguration(configuration);
RichMediaActivation activation = new RichMediaActivation();
activation.setConfiguration(configurationRef);
richMedia.setActivation(activation);
PdfAnnotation richMediaAnnotation = richMedia.createAnnotation();
richMediaAnnotation.setFlags(PdfAnnotation.FLAGS_PRINT);
writer.addAnnotation(richMediaAnnotation);
document.close();

The RichMediaAnnotation class isn’t a subclass of PdfAnnotation, but it can create such
an object using the method createAnnotation(). The rich media annotation diction-
ary contains two important entries: a /RichMediaContent dictionary and a /RichMedia-
Settings dictionary. These dictionaries are created internally by iText.

 The RichMediaContent dictionary consists of the assets, the configuration, and the
views:

■ Assets—These are stored as a name tree with embedded file specifications. You
can use the addAsset() method to add entries to this name tree.

■ Configuration—This is an array of RichMediaConfiguration objects. Such an
object contains an array of RichMediaInstance objects.

■ Views—This is an array of 3D view dictionaries, in case the rich media annota-
tion contains a 3D stream. See listing 16.16.

The RichMediaConfiguration dictionary describes a set of instances that are loaded
for a given scene configuration. In this example, you use a rich media annotation to
embed a Flash application, but you can also use such an annotation for 3D, sound, or
video objects.

 The constructors of the RichMediaConfiguration and RichMediaInstance classes
accept the following parameters:

Creates annotation
object

Adds .swf file
as asset

Configures
RichMedia
annotation
as Flash app

Sets activation
dictionary
Licensed to Bruno Lowagie <bruno@lowagie.com>

554 CHAPTER 16 PDF streams
■ PdfName._3D—For 3D objects
■ PdfName.FLASH—For Flash objects
■ PdfName.SOUND—For sound objects
■ PdfName.VIDEO—For video objects

A RichMediaInstance dictionary describes a single instance of an asset with settings to
populate the artwork of an annotation. In this example, you only have one Flash
instance, for which you define /FlashVars: &day=2011-10-13. The day variable is
retrieved in line C of listing 16.17: Application.application.parameters.day.

NOTE If you want to reuse the RichMediaContent dictionary in more than one
rich media annotation, you have to create the first RichMediaAnnotation as is
done in listing 16.20. You can then get a reference to the RichMediaContent
dictionary with the getRichMediaContentReference() method, and use this
reference as an extra parameter for the RichMediaAnnotation constructor.

Rich media annotations can be active or inactive. The RichMediaSettings dictionary
stores conditions and responses that determine when the annotation should be acti-
vated and deactivated. iText creates this dictionary automatically, just like the RichMe-
diaContent dictionary. It can contain a RichMediaActivation dictionary that is set with
the method setActivation(), and a RichMediaDeactivation dictionary set with set-
Deactivation(). Listing 16.20 uses the default activation and deactivation conditions.

 The possible conditions for activation—set with setCondition()—are:

■ PdfName.XA—The annotation is explicitly activated by a user action or script;
this is the default.

■ PdfName.PO—The annotation is activated as soon as the page that contains the
annotation receives focus as the current page.

■ PdfName.PV—The annotation is activated as soon as any part of the page that
contains the annotation becomes visible.

These are the possible conditions for deactivation—also set with setCondition():

■ PdfName.XD—The annotation is explicitly deactivated by a user action or script;
this is the default.

■ PdfName.PC—The annotation is deactivated as soon as the page that contains
the annotation loses focus as the current page.

■ PdfName.PI—The annotation is deactivated as soon as the entire page that con-
tains the annotation is no longer visible.

In the RichMediaActivation dictionary, you can also add keys to specify the anima-
tion, the view, presentation, and scripts.

 This first “Flash in PDF” example is cool because you have a PDF document that
presents data to the end user that isn’t part of the PDF document. I know from experi-
ence that the schedule of screenings at a film festival can change at any moment,
because the film stock didn’t arrive on time or some other reason. By using this Flash
Licensed to Bruno Lowagie <bruno@lowagie.com>

555Integrating rich media
application written in Flex, the document can always show the most recent informa-
tion fetched from the official film festival website.

 You could use the same technique to get the most recent items and prices to com-
plete an order form in PDF. To achieve this, you’d need to establish communication
between the embedded Flex application and the PDF document.

16.3.4 Establishing communication between Flex and PDF

Figure 16.8 shows a series of widget annotations (PDF), and one rich media annota-
tion (Flash). The sentence, “This is the festival program for 2011-10-14”, is shown
using a read-only text field. The text is updated using a JavaScript method that is trig-
gered by the rich media annotation. The buttons with the different dates call a Rich-
MediaExecuteAction that executes an ActionScript method in the Flash application.

The Flex application, in the next listing, is different from the previous example.

<?xml version="1.0" encoding="utf-8"?>
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml"
 layout="absolute" width="525" height="200" applicationComplete=
 "stage.scaleMode = StageScaleMode.EXACT_FIT;init();">
 <mx:Script>
 <![CDATA[
 import flash.external.*;
 private function init():void {
 ExternalInterface.addCallback("getDateInfo", getDateInfo);
 }

Listing 16.21 FestivalCalendar2.mxml

Figure 16.8 Communication between PDF and Flash

Imports
package

B CRegisters
AS method
Licensed to Bruno Lowagie <bruno@lowagie.com>

556 CHAPTER 16 PDF streams
 private function getDateInfo(day:Object):void {
 screeningsService.url=
 'http://flex.itextpdf.org/fff/day_' + day + '.xml';
 screeningsService.send();
 screeningsDataGrid.invalidateList();
 ExternalInterface.call("showDate", day);
 }
]]>
 </mx:Script>
 <mx:HTTPService
 id="screeningsService" resultFormat="e4x" />
 <mx:DataGrid id="screeningsDataGrid"
 dataProvider=
 "{screeningsService.lastResult.screening}"
 width="100%" height="100%">
 <mx:columns>
 <mx:DataGridColumn
 headerText="Time" dataField="time"/>
 <mx:DataGridColumn
 headerText="Location" dataField="location"/>
 <mx:DataGridColumn
 headerText="Duration" dataField="duration"/>
 <mx:DataGridColumn
 headerText="Title" dataField="title"/>
 <mx:DataGridColumn
 headerText="Year" dataField="year"/>
 </mx:columns>
 </mx:DataGrid>
</mx:Application>

You’ll recognize the HTTP service that will get the XML files from http://flex.itext-
pdf.org/ and the data grid that visualizes the XML data. You no longer need the
combo box and the button, because you’re going to change the data from outside the
Flex application.

 You import the flash.external.* package B, because you’re going to use the
ExternalInterface object. With the addCallback() method C, you make the
ActionScript method getDateInfo() in the Flex application available for external
applications. In this method, you call the JavaScript showDate() method that is sup-
posed to be present in the PDF document by using the call() method D.

 The showDate() JavaScript method in the PDF is very simple:

function showDate(txt) {
 this.getField("date").value
 = "This is the festival program for " + txt;
}

It gets the text field with the name date, and it changes the value of this field so that it
corresponds with the date for which the screenings are shown.

 The first part of this next listing should look familiar.

Calls JS
method

D

HTTP service to
fetch XML file

Grid containing
screening info
Licensed to Bruno Lowagie <bruno@lowagie.com>

http://flex.itextpdf.org/
http://flex.itextpdf.org/

557Integrating rich media
Document document = new Document();
PdfWriter writer
 = PdfWriter.getInstance(document, new FileOutputStream(RESULT));
writer.setPdfVersion(PdfWriter.PDF_VERSION_1_7);
writer.addDeveloperExtension(
 PdfDeveloperExtension.ADOBE_1_7_EXTENSIONLEVEL3);
document.open();
writer.addJavaScript(Utilities.readFileToString(JS));
RichMediaAnnotation richMedia
 = new RichMediaAnnotation(
 writer, new Rectangle(36, 560, 561, 760));
PdfFileSpecification fs = PdfFileSpecification
 .fileEmbedded(writer, RESOURCE,
 "FestivalCalendar2.swf", null);
PdfIndirectReference asset
 = richMedia.addAsset("FestivalCalendar2.swf", fs);
RichMediaConfiguration configuration
 = new RichMediaConfiguration(PdfName.FLASH);
RichMediaInstance instance
 = new RichMediaInstance(PdfName.FLASH);
instance.setAsset(asset);
configuration.addInstance(instance);
PdfIndirectReference configurationRef
 = richMedia.addConfiguration(configuration);
RichMediaActivation activation
 = new RichMediaActivation();
activation.setConfiguration(configurationRef);
richMedia.setActivation(activation);
PdfAnnotation richMediaAnnotation
 = richMedia.createAnnotation();
richMediaAnnotation.setFlags(PdfAnnotation.FLAGS_PRINT);
writer.addAnnotation(richMediaAnnotation);
String[] days = new String[]{"2011-10-12",
 "2011-10-13", "2011-10-14", "2011-10-15",
 "2011-10-16", "2011-10-17", "2011-10-18",
 "2011-10-19"};
for (int i = 0; i < days.length; i++) {
 Rectangle rect = new Rectangle(
 36 + (65 * i), 765, 100 + (65 * i), 780);
 PushbuttonField button
 = new PushbuttonField(writer, rect, "button" + i);
 button.setBackgroundColor(new GrayColor(0.75f));
 button.setBorderStyle(
 PdfBorderDictionary.STYLE_BEVELED);
 button.setTextColor(GrayColor.GRAYBLACK);
 button.setFontSize(12);
 button.setText(days[i]);
 button.setLayout(
 PushbuttonField.LAYOUT_ICON_LEFT_LABEL_RIGHT);
 button.setScaleIcon(
 PushbuttonField.SCALE_ICON_ALWAYS);
 button.setProportionalIcon(true);
 button.setIconHorizontalAdjustment(0);
 PdfFormField field = button.getField();

Listing 16.22 FestivalCalendar2.java

Adds
JavaScript

Adds rich media
annotation

Adds buttons
Licensed to Bruno Lowagie <bruno@lowagie.com>

558 CHAPTER 16 PDF streams
 RichMediaCommand command = new RichMediaCommand(
 new PdfString("getDateInfo"));
 command.setArguments(new PdfString(days[i]));
 RichMediaExecuteAction action
 = new RichMediaExecuteAction(
 richMediaAnnotation.getIndirectReference(),
 command);
 field.setAction(action);
 writer.addAnnotation(field);
}
TextField text = new TextField(writer,
 new Rectangle(36, 785, 559, 806), "date");
text.setOptions(TextField.READ_ONLY);
writer.addAnnotation(text.getTextField());
document.close();

In the second half of the previous listing, you add a series of buttons to the document,
creating a RichMediaExecuteAction for each button. The action will be triggered on
the rich media annotation for which you pass the indirect reference. You also pass a
RichMediaCommand.

 The name of the action is a PDF string that corresponds to the string you used as
the parameter of the ExternalInterface.addCallback() method in the Flex applica-
tion. The argument can be a PdfString, PdfNumber, PdfBoolean, or PdfArray con-
taining those objects.

 You also add a text field named date. When you click one of the PDF buttons, the
getDateInfo() method will be called, an XML file containing screenings will be
fetched from the internet, filling the data grid, and the Flex application will trigger
the showDate() JavaScript method to change the value of the date field.

 Although this is a very simple example, the techniques that are used can apply to
many different types of applications. You could use these techniques to integrate fancy
Flash buttons that trigger functions in a PDF file, or you could embed a Flex applica-
tion to establish client-server communication to retrieve the most recent data. But
don’t forget that this functionality is very new: it only works with the most recent ver-
sions of Adobe Reader!

16.4 Summary
In this final chapter, we’ve looked at different kinds of PDF streams. We started with
streams that hold an image or a font and looked at the way iText creates low-level
objects that are responsible for writing such a stream to the OutputStream. You also
learned how to replace such a stream.

 Then we moved on to a type of annotation we encountered in chapter 7: a file
attachment annotation. You discovered that there’s a difference between file attach-
ments that are added as annotations, and file attachments that are stored at the docu-
ment level as embedded files. This difference matters if you want to extract files from
a PDF document. Files that are embedded at the document level can be organized
into a portable collection, aka a portfolio.

Creates rich
media command

Creates rich
media action

Adds text
field
Licensed to Bruno Lowagie <bruno@lowagie.com>

559Summary
 Finally, we discussed multimedia files. You added annotations containing a movie
file and a 3D stream, and you also used a very new type of annotation that isn’t part of
ISO-32000 yet.

 With a rich media annotation, you were able to integrate a Flash application into a
PDF document, and establish communication between the ActionScript in the Flash
application and the JavaScript in the PDF document. Those were the last examples of
this book.

WHAT YOU’VE LEARNED FROM THIS BOOK

Let’s return to the first image in chapter 1 and quickly review everything you’ve
learned. Figure 16.9 shows three main areas.

CREATING PDFS

Chapter 1 provided a short introduction. In chapters 2 and 4 you learned to create PDF
documents from scratch using high-level objects. You did the same using low-level func-
tionality in chapters 3 and 5. These first five chapters formed part one of the book.

 Essential skills concerning PDF creation were explained in part three. In chapter 9,
you learned to create documents on the fly from a web application. We focused on
color and images in chapter 10, and on fonts in chapter 11. Chapter 12 was about
encrypting and signing documents.

 For advanced users, there’s also part four, which explains the inner workings of
iText and PDF. Chapter 14 will remain especially interesting as a reference for develop-
ers who frequently need to add content to a document using low-level methods.

 Most of the PDF files in this book were generated using data from a database, but
in some cases you converted an XML or an HTML file to PDF. For instance in chapter 9,
we talked about using the HTMLWorker class to convert HTML snippets; in chapter 11
you converted an XML file containing the word “peace” in many different languages
into a PDF document.

Figure 16.9 Overview of the PDF functionality that was covered
Licensed to Bruno Lowagie <bruno@lowagie.com>

560 CHAPTER 16 PDF streams
On occasion, we looked at creating a PDF document manually, using Open Office
rather than using iText, such as in chapter 6. In chapter 8, you used Adobe Acrobat
and LiveCycle Designer. These files were created for the purpose of updating them,
and that takes us from the Read block in figure 16.9 to the Update block.

UPDATING PDFS

Part two of this book was titled “Manipulating existing PDF documents.” Chapter 6
presented an overview of all the PDF manipulation classes available in iText. You
always needed a PdfReader instance to access an existing document. You learned how
to split and merge PDF documents with PdfCopy, PdfSmartCopy, PdfCopyFields, and
even using PdfImportedPage objects, but the class you used the most was PdfStamper,
which was initially written to stamp extra information on an existing document.

 In chapter 7, you used PdfStamper to add different types of annotations. This func-
tionality is also useful when creating a document from scratch; for instance, to add links
that allow the end user to navigate from one page to another, or from one document
to another. Along the way, we talked about bookmarks, actions, and destinations.

 Chapter 8 was dedicated entirely to forms: you worked with forms built using the
AcroForm technology, and with XFA forms. iText has almost complete support for
AcroForms, but as soon as you have a form involving the XML Forms Architecture, the
possibilities are limited. For instance, iText can’t flatten an XFA form (yet).

 Signing and encrypting existing PDF documents was discussed in chapter 12. Con-
verting a PDF document to another format turned out to be very difficult, but in some
cases, you can extract an XML version of the complete document, or extract plain text
from a page.

READING PDFS

iText isn’t a PDF viewer, nor can iText be used to print a PDF, but the PdfReader class
can give you access to the objects that form a PDF document. The different types of
objects that are defined in the PDF specification were listed in chapter 13, where you
also had a closer look at the root object of a PDF document.

 Chapter 14 dealt with the imaging system and the way the content of a page in a
PDF document is organized. We continued studying the content stream of a page in
chapter 15, looking for ways to add structure. You found out that a PDF can be read
out loud if marked content has been added to improve the accessibility of the docu-
ment. You also learned how to convert a PDF to XML if the PDF was tagged and con-
tains a structure tree. At the end of the chapter, we made a fair attempt at parsing the
content of a page to plain text.

 Finally, in chapter 16 you learned more about streams. You even wrote a Flex appli-
cation for use in a PDF document.
Licensed to Bruno Lowagie <bruno@lowagie.com>

561Summary
 This isn’t the first book I’ve written, and based on my previous experience, I know
that one can never have enough documentation. But with this book, you have a com-
prehensible overview of what is possible with PDF in general—the different topics listed
in figure 16.9—and with iText in particular—the topics marked with the iText logo.

 Sure, writing a book is a lot of work, but I also had a lot of fun writing new material
for this second edition: creating the movie database, making my first dynamic PDF
using LiveCycle Designer, learning Flex for the sole purpose of creating a PDF contain-
ing a rich media annotation, and inventing many other new examples that weren’t in
the first edition.

 I hope you’ve enjoyed reading this book as much as I enjoyed writing it.

 May the source be with you!

Licensed to Bruno Lowagie <bruno@lowagie.com>

Licensed to Bruno Lowagie <bruno@lowagie.com>

appendix A
Bibliography

This appendix contains a list of books, specifications, and presentations for further
reading. I’ll keep an updated list on the iText site (http://itextpdf.com/), adding
new publications by Adobe or standards bodies such as AIIM, ETSI, and ISO.

A.1 Published by Adobe Systems
 For more info, see http://www.adobe.com/.

A.1.1 Specifications (PDF documents)
 XML Forms Architecture (XFA) Specification version 3.1. November 16, 2009.
 Adobe Supplement to the ISO 32000—BaseVersion: 1.7—ExtensionLevel: 5. June 2009.
 Understanding the Differences Between Static and Dynamic PDF Forms. July 2008.
 Adobe Supplement to the ISO 32000—BaseVersion: 1.7—ExtensionLevel: 3. June 2008.
 JavaScript for Acrobat API Reference. April 2007.
 Developing Acrobat Applications Using JavaScript. November 2006.
 Digital Signature Appearances. October 2006.
 PDF Reference, sixth edition—Adobe Portable Document Format Version 1.7. 2006.
 XMP specification. September 2005.
 Acrobat 7.0 PDF Open Parameters. July 2005.
 Warnock, John. The Camelot Paper. 1991.

A.1.2 Presentations (PDF documents)
 Schellemans, Peter. PDF Standards & Digital Signatures (Adobe Benelux Pulse session). 2010.
 King, Jim. The Future of PDF and Flash. 2007.
 King, Jim. Introduction to the Insides of PDF (IS&T Archiving Conference). 2005.
 Cosimini, Gary. Acrobat, the Early Years (keynote, PDF Conference, 2003). 2003.
 King, Jim. Introduction to XML—A Little about PDF. 2000.
 King, Jim. PDF: A Look Inside. 1998.
563

Licensed to Bruno Lowagie <bruno@lowagie.com>

http://itextpdf.com/
http://www.adobe.com/

APPENDIX A Bibliography564
A.2 Published by the Association for Information and
Image Management (AIIM)
 For more info, see http://www.aiim.org.
 Implementation Guide for the Portable Document Format Healthcare (PDF/H)—Best Practices. 2008.
 PDF/UA (Universal Accessibility), Draft Meeting Minutes, October 3, 4, 2005.

A.3 Published by the European Telecommunications
Standards Institute (ETSI)
 For more info, see http://portal.etsi.org/.
 Electronic Signatures and Infrastructure (ESI): PDF Advanced Electronic Signature Profiles (in 5 parts).

 [TS 102 778-1] Part 1: PAdES Overview—A Framework Document for PAdES
 [TS 102 778-2] Part 2: PAdES Basic—Profile Based on ISO 32000-1
 [TS 102 778-3] Part 3: PAdES Enhanced—PAdES-BES and PAdES-EPES Profiles
 [TS 102 778-4] Part 4: PAdES Long term—PAdES LTV Profile
 [TS 102 778-5] Part 5: PAdES for XML Content—Profiles for XAdES Signatures

A.4 Published by the International Organization for
Standardization (ISO)
 For more info, see http://www.iso.org/.
 ISO 32000-1:2008, Document management—Portable document format—Part 1: PDF 1.7.
 ISO 24517-1:2008, Document management—Engineering document format using PDF—Part 1:

Use of PDF 1.6 (PDF/E-1).
 ISO 19005, Document management—Electronic document file format for long-term preserva-

tion—Part 1: Use of PDF 1.4 (PDF/A-1).
 ISO 15930-1 to 8, Graphic technology—Prepress digital data exchange (PDF/X-1a:2001, PDF/

X-2, PDF/X-3:2002, PDF/X-1a:2003, PDF/X-2, PDF/X-3:2003, PDF/X-4 and PDF/X-5).

A.5 Other publications
 Snyder, Thomas. Advanced Integrated RPG. Mc Press, 2010. (Discusses IBM Report Program Gen-

erator, with three chapters about iText.)
 De Caluwe, Rita. Vijftig jaar rekencentrum aan de Universiteit Gent. Academia Press, 2009.
 Lowagie, Bruno. iText in Action: Creating and Manipulating PDF. Manning, 2007. (The first edi-

tion of this book.)
 Steward, Sid. PDF Hacks. O’Reilly Media, 2004. (About PDF in general, with some outdated

examples about using iText.)

Licensed to Bruno Lowagie <bruno@lowagie.com>

http://www.aiim.org
http://portal.etsi.org/
http://www.iso.org/

appendix B
Useful links

This appendix contains a list of links to interesting sites about iText, PDF, and tech-
niques that were used in this book. For an updated version of this list, visit the iText
site (http://itextpdf.com/).

B.1 iText-related links

B.1.1 iText links
 iText home page: http://itextpdf.com/
 iText at SourceForge:

 http://sourceforge.net/projects/itext/
 http://sourceforge.net/projects/itextsharp/

 iText mailing list: itext-questions@lists.sourceforge.net.
Registration is mandatory: https://lists.sourceforge.net/lists/listinfo/itext-questions

 Maven repository: http://maven.itextpdf.com/
 SVN repository: http://itext.svn.sourceforge.net/viewvc/itext/
 SVN access to the iText source code:

 svn co https://itext.svn.sourceforge.net/svnroot/itext/trunk main
 AGPL license: http://www.gnu.org/licenses/agpl-3.0.html
 Commercial licenses: sales@itextpdf.com

Paid consultancy: consultancy@itextpdf.com

B.1.2 iText in Action links
 More info about the examples in the book: http://itextpdf.com/examples/
 More info about the images in the book: http://www.flickr.com/photos/itextinaction
 SVN access to the book examples:

svn co https://itext.svn.sourceforge.net/svnroot/itext/book book
 Extra examples regarding digital signatures:

http://itextpdf.sourceforge.net/howtosign.html
565

Licensed to Bruno Lowagie <bruno@lowagie.com>

http://itextpdf.com/
http://itextpdf.com/
http://sourceforge.net/projects/itext/
http://sourceforge.net/projects/itextsharp/
https://lists.sourceforge.net/lists/listinfo/itext-questions
http://maven.itextpdf.com/
http://itext.svn.sourceforge.net/viewvc/itext/
https://itext.svn.sourceforge.net/svnroot/itext/trunk
http://www.gnu.org/licenses/agpl-3.0.html
http://itextpdf.com/examples/
http://www.flickr.com/photos/itextinaction
https://itext.svn.sourceforge.net/svnroot/itext/book
http://itextpdf.sourceforge.net/howtosign.html

APPENDIX B Useful links566
B.2 PDF-related links
 Adobe, JavaScript for Acrobat: http://www.adobe.com/devnet/acrobat/javascript.html
 Adobe, PDF Open Parameters:

http://partners.adobe.com/public/developer/en/acrobat/PDFOpenParameters.pdf
 Adobe, PDF Reference and Adobe Extensions to the PDF Specification:

http://www.adobe.com/devnet/pdf/pdf_reference.html
 Adobe, PDF Reference archives:

http://www.adobe.com/devnet/pdf/pdf_reference_archive.html
 Adobe, XML Forms Architecture:

http://partners.adobe.com/public/developer/xml/index_arch.html
 Comp.text.pdf newsgroup: http://groups.google.com/group/comp.text.pdf/topics
 Planet PDF: http://www.planetpdf.com/
 Wikipedia: PDF: http://en.wikipedia.org/wiki/Portable_Document_Format

B.3 Technical links

B.3.1 Tools and products referred to in the book
 Adobe Flex: http://www.adobe.com/products/flex/
 Apache Ant: http://ant.apache.org/
 Apache Batik: http://xmlgraphics.apache.org/batik/
 Apache FOP: http://xmlgraphics.apache.org/fop/
 Apache Tomcat: http://tomcat.apache.org/
 Bouncy Castle Crypto API: http://www.bouncycastle.org/
 Eclipse: http://eclipse.org/
 Flying Saucer: https://xhtmlrenderer.dev.java.net/
 HyperSQL: http://hsqldb.org/
 Java: http://java.sun.com/
 JavaScript: https://developer.mozilla.org/en/Core_JavaScript_1.5_Reference
 JFreeChart: http://www.jfree.org/jfreechart/

B.3.2 Fonts
 American Mathematical Society, Type 1 fonts: http://www.ams.org/publications/type1-fonts
 Free Font Archives (Luc Devroye): http://cg.scs.carleton.ca/~luc/freefonts.html
 Free Fonts: http://www.free-fonts.com/
 Gallery of Unicode Fonts: http://www.wazu.jp/
 Languagegeek Fonts: http://www.languagegeek.com/font/fontdownload.html
 Microsoft Typography: http://www.microsoft.com/typography/
 OpenType Naming Tables (section 11.4.1):

 http://partners.adobe.com/public/developer/opentype/index_name.html
 http://www.microsoft.com/typography/otspec/name.htm

 OpenType Q & A: http://www.adobe.com/type/opentype/qna.html
 OpenType Specification: http://www.microsoft.com/typography/otspec/
 Repository of TrueType Fonts: http://chanae.walon.org/pub/ttf/
 Say Peace in all Languages! http://www.columbia.edu/~fdc/pace/
 Search Free Fonts: http://www.searchfreefonts.com/
Licensed to Bruno Lowagie <bruno@lowagie.com>

http://www.adobe.com/devnet/acrobat/javascript.html
http://partners.adobe.com/public/developer/en/acrobat/PDFOpenParameters.pdf
http://www.adobe.com/devnet/pdf/pdf_reference.html
http://www.adobe.com/devnet/pdf/pdf_reference_archive.html
http://partners.adobe.com/public/developer/xml/index_arch.html
http://www.planetpdf.com/
http://en.wikipedia.org/wiki/Portable_Document_Format
http://www.adobe.com/products/flex/
http://ant.apache.org/
http://xmlgraphics.apache.org/batik/
http://xmlgraphics.apache.org/fop/
http://tomcat.apache.org/
http://www.bouncycastle.org/
http://eclipse.org/
https://xhtmlrenderer.dev.java.net/
http://hsqldb.org/
http://java.sun.com/
https://developer.mozilla.org/en/Core_JavaScript_1.5_Reference
http://www.jfree.org/jfreechart/
http://www.ams.org/publications/type1-fonts
http://cg.scs.carleton.ca/~luc/freefonts.html
http://www.free-fonts.com/
http://www.wazu.jp/
http://www.languagegeek.com/font/fontdownload.html
http://www.microsoft.com/typography/
http://partners.adobe.com/public/developer/opentype/index_name.html
http://www.microsoft.com/typography/otspec/name.htm
http://www.adobe.com/type/opentype/qna.html
http://www.microsoft.com/typography/otspec/
http://chanae.walon.org/pub/ttf/
http://www.columbia.edu/~fdc/pace/
http://www.searchfreefonts.com/

APPENDIX B Useful links 567
 Summer Institute of Linguistics, Computers & Writing Systems: http://scripts.sil.org/
 The Unicode Consortium: http://www.unicode.org/
 Unicode Fonts for Windows Computers (Alan Wood):

http://www.alanwood.net/unicode/fonts.html
 Where Is My Character? http://www.unicode.org/standard/where/

B.3.3 Accessibility
 Section 508 (accessibility): http://www.section508.gov/
 W3C, Web Content Accessibility Guidelines:

http://www.w3.org/TR/2005/WD-WCAG20-20050630/

B.3.4 Miscellaneous
 Adobe, Communication between Flex & JavaScript:

http://cookbooks.adobe.com/post_Communication_between_Flex___
JavaScript-17010.html

 Adobe, XMP Developer Center: http://www.adobe.com/devnet/xmp/
 ECMA International: http://www.ecma-international.org/
 iTextSharp examples: http://kuujinbo.info/iTextInAction2Ed/index.aspx
 Oracle, Java Developer Tutorials and Training:

http://java.sun.com/developer/onlineTraining/
 World Wide Web Consortium (W3C): http://www.w3.org/

B.4 Other links

B.4.1 Certificate authorities
 CAcert: http://www.cacert.org/
 GlobalSign: http://www.globalsign.com/
 Thawte: http://www.thawte.com/
 VeriSign: http://www.verisign.com/

B.4.2 Movie links
 Flanders International Film Festival Ghent: http://www.filmfestival.be/
 Internet Movie Database (IMDB): http://www.imdb.com/
 Java Movie Database (JMDB): http://www.jmdb.de/

Serious efforts have been made to save paper when writing this book. Occasionally,
I’ve printed a chapter I was working on, but I’ve tried to avoid this as much as possible.
I’ve printed the full manuscript only once to revise it for the final review. Paper is too
valuable to waste! See http://www.panda.org/savepaper.

Licensed to Bruno Lowagie <bruno@lowagie.com>

http://scripts.sil.org/
http://www.unicode.org/
http://www.alanwood.net/unicode/fonts.html
http://www.unicode.org/standard/where/
http://www.section508.gov/
http://www.w3.org/TR/2005/WD-WCAG20-20050630/
http://cookbooks.adobe.com/post_Communication_between_Flex___JavaScript-17010.html
http://cookbooks.adobe.com/post_Communication_between_Flex___JavaScript-17010.html
http://www.adobe.com/devnet/xmp/
http://www.ecma-international.org/
http://kuujinbo.info/iTextInAction2Ed/index.aspx
http://java.sun.com/developer/onlineTraining/
http://www.w3.org/
http://www.cacert.org/
http://www.globalsign.com/
http://www.thawte.com/
http://www.verisign.com/
http://www.filmfestival.be/
http://www.imdb.com/
http://www.jmdb.de/
http://www.panda.org/savepaper

Licensed to Bruno Lowagie <bruno@lowagie.com>

index
Numerics

128-bit encryption 389, 417
3D annotations 546–548
3D rich media 554
3D stream 546
40-bit encryption 389

A

abbreviations
expansion of 509

access permissions 387–388,
393–394

get from existing PDF 390
accessibility 422, 508, 567
Acrobat 6 layers 399
AcroFields 181, 186, 241, 258,

264, 448
AcroForm technology 236–265,

293–304, 447–451
concatenating forms 191
form flattened with iText 270
See also form

acronyms 509
actions 195–199, 202–208,

220–222, 226–234
ActionScript action 555
additional action 207, 230,

232, 434
chaining 205
go to embedded file 536
Goto. See goto
launch action 205, 442

local goto. See local goto
named actions 195
open action 207
remote goto. See remote goto

ActionScript 550
communication with

JavaScript in PDF 555
actual text 510
addAnnotation method

217, 220, 548
addChild method 497
addDeveloperExtension

method 552
addElement method 111

ColumnText 81
PdfPCell 107

addFileAttachment
method 535, 544

addImage method 86, 469, 471
adding content at absolute

positions 67–84, 116–121,
173–175

additional actions
207, 230–232, 434

additive color 318
addJavaScript method 203
addNamedDestinations

method 201
addPage method 187
addPageLabel method 444
addTemplate method 90,

166–167, 466, 468–469, 471
addText method. See Column-

Text
addToBody method 527, 548

Adobe Acrobat 4, 272, 276, 297,
388, 416, 560

Adobe Designer 186
Adobe Font Metrics. See AFM
Adobe Illustrator 414
Adobe imaging model

416, 452–477
Adobe InDesign 4
Adobe LiveCycle Designer

272, 560
Adobe LiveCycle Enterprise

Suite 418
Adobe Mars 424
Adobe Reader 297, 309,

423, 436
browser plug-in 288, 293
enable usage rights 276
font packs 363
plug-in 287
visibility 498

Adobe Systems Inc. 414, 563
Advanced Encryption Standard.

See AES
AES 389, 417
Affero General Public License.

See AGPL
AffineTransform 470
AFM 352
AGPL 3, 565
AIFF 545
AIIM 421

publications 564
alert method

JavaScript 204, 210
569

Licensed to Bruno Lowagie <bruno@lowagie.com>

 INDEX570
alignment
ColumnText in text mode 77
images 52
justified 11
Paragraph alignment 33
PdfPCell alignment 99–100
PdfPTable alignment 98
rotated text in a PdfPCell 105

alternate descriptions 510
Anchor 15, 47–49
animated GIF 340
annotations 215–231, 442

additional actions 231–232
appearance 216, 226,

229, 233
border styles 226
color 219
file attachment 222, 533
flags 225, 248
generic creation 217
get focus 231
highlight 222
icons 217, 224
importing pages

166, 178, 188
lose focus 231
movie 545–546
multimedia 526
polygon/polyline

annotations 226
popup 229
rubber stamp 224
showing and hiding 228
text annotations 215–217
visualize text edits 219
widget 226

Apache ANT 286, 566
Apache Batik 504, 566
Apache FOP 311, 566
appearance

annotations 216, 226,
229, 233

check box 240
form fields 257
NeedAppearances flag 250
radio button/check box 239
signature field 397, 399
state 183, 239–240
text field 258
XFA form 267

append mode 277, 427, 430
digital signature 401
document history 401, 427

application server 284
application/pdf 285, 288, 303

application/vnd.adobe.fdf 303
approval signature 398
Arabic 366, 373
ArabicLigaturizer 373, 378
arc method 64, 459
ARC4 389
archiving 421
Arial 24, 531
array (PDF object) 425
art box 147, 438
ascent 102

calculating 68
AsianFontMapper 486, 488
Association for Information and

Image Management. See
AIIM

Association for Suppliers of
Printing, Publishing, and
Converting Technology . See
NPES

asymmetric key algorithm
390, 395

attachments panel 437
AttributedString 487
Audio Interchange File Format.

See AIFF
Audio/Video Interleaved. See

AVI
author signature. See certifica-

tion signature
automatic font selection 377
AVI 545
axial shading 324

B

b tag 308
backdrop 325–326
background canvas 118, 125
background color

Chunk 24, 134
Rectangle/PdfPCell 105

BadPasswordException 163, 390
Barcode 334
Barcode 3 of 9 335
Barcode128 335
Barcode39 335
BarcodeCodabar 335
BarcodeDatamatrix 337
BarcodeEAN 335, 337
BarcodeEANSUPP 335
BarcodeInter25 335, 337
BarcodePDF417 337
BarcodePostnet 335
BarcodeQRCode 337

barcodes 334–337
two-dimensional. See matrix

code
without text 337

Base 14 fonts. See fonts
standard Type 1

base canvas 118, 125
BaseColor 318, 421, 464
BaseField 238, 246, 248
BaseFont 374, 471, 483

character advance 370
creating a Font instance 29
creating object 354
four objects created 356
measuring a String 67

BaseFontParameters 485
baseline 30, 68–69, 102,

138, 336
angle 72

basic building blocks 20–56, 71,
79, 116, 133–140

class diagram 20
basic PDF objects 424–426

retrieval 445
beginLayer method 494, 497
beginMarkedContentSequence

method 508, 510
beginText method 70, 471
beginTextBlock method 519
Bézier curves 455
blank page

adding a blank page 142
problem 287
problem in JSP pages 292

bleed box 147, 438
blend mode 325–326, 329
blind exchange 420
blinds page transition 155
BMP 331–332, 338
BmpImage 332
body 426
bold text

simulating bold text 73
book spine 12
Bookland 335
bookmarks 5, 49, 139,

208–214, 446
concatenating 213–214
entries 210–211
panel 436
retrieving from existing

file 210
shift page numbers 214
title 49, 209

Boolean (PDF object) 424
Licensed to Bruno Lowagie <bruno@lowagie.com>

 INDEX 571
border
annotations 226
colors 106
padding 106
pushbuttons 242
tables/cells 106
variable borders 107
widths 106

border styles
annotations 242
pushbuttons 242

BorderArray 226
BorderStyleDictionary 226
Bouncy Castle 387, 566
box page transition 155
broken PDFs 162
browse for file dialog 301
browser problems 286
BufferedImage 525, 529
built-in fonts. See fonts

standard type 1
bursting 189
button field 237–244
ByteArrayOutputStream

13, 176, 292, 529

C

CA 394
OCSP server 406

CA Cert 398, 567
cacerts 402
cache control 291
CAdES 409
Camelot paper 414
caret annotations 219
Carousel 414
Carousel Object System. See COS
Cascading Style Sheets. See CSS
catalog 18, 429, 432,

434–451, 495
CCITT 332–333, 345
CCITTFaxDecode 332
cell 98–114

events 122–133
height 103
padding 102
spacing 102, 128

cellLayout method 126–127
certificate authority. See CA
certificate encryption 390–395
certificate revocation list. See

CRL
certificate signing request. See

CSR

certification
levels 398
signature 396, 398

CFF 355, 359–360
CFFFont 360
chaining actions 205
Chapter 49–51, 56–140,

148, 208
depth 140
events 138
indentation 49
memory use 115
number depth 49
number style 49
title 49, 140

character
advance 370
collection 358
definition in ISO-32000-1 28
identifier. See CID
missing 28
spacing 371, 471
width 371

characters method 312
charset 26
check box 238, 240–241

possible values 183, 241
Chinese Japanese Korean. See

CJK font
choice field 237, 252–255

get options 255
Chunk 56, 76, 312

background color 24, 134
defined 23–24
image Chunk 56
measurements 68
offset in a Phrase 71
rendering mode 71
scaling 71
separator 44–45
skewing 71
wrapping images in 56

CID 358
CIDFont 354, 357

two types 359
circle method 64, 459
CJK font 359–360, 363–366, 417

text fields 250
ClassNotFountException 287
classpath 21

defining 6
clickable area 197, 296
client-side problems 288–291
clip art 331
clip method 346, 457

clipping 345
path 346

closePath method 64, 455
closePathEoFillStroke

method 456
closePathFillStroke method 456
closePathStroke method 456
CMap 359, 363

UCS2 366
cmap 375
CMS 404, 409
CMS Advanced Electronic Signa-

tures. See CadES
CMYK color 318, 320, 329,

421, 465
Codabar 335
Code 128 335
code page. See encoding
collection dictionary 541
collection field 539

types 540
collection schema 539, 542

default 541
color 318–325, 464

annotations 219, 233
barcode 336
bookmark titles 210
compositing 325
fill 66
key masking 342
pushbuttons 242
space 318, 342, 421, 465
text 73
text field 245, 249

colored tiling patterns 321
colspan. See column span
column span 95, 99, 124
columns 45, 74–84

define coordinates 74
irregular columns 79, 84

ColumnText 74–84, 95, 98, 365
addElement method 81
adding a watermark 153
adding tables to columns 119
addText method 76
alignment 77
composite mode 81–84
count the lines that were

written 76
inserting pages 178
irregular columns 79
paragraph spacing in text

mode 77
properties 83
right to left 367
Licensed to Bruno Lowagie <bruno@lowagie.com>

 INDEX572
ColumnText (continued)
run direction 368
setArabicOption method 373
setText method 79, 128
simulation mode 78, 82, 264
status 76
text mode 75–81
Y position 76

combo box 253
command line 6
Compact Font Format. See CFF
composite font 354, 357–359
compression 385–387, 417

changing the compression
level 16

decompressing existing
PDFs 386

full compression 385
image compression

338–339, 528
level 385
uncompressed PDF 16

concatCTM method
461, 467–468, 471

concatenating
forms 191–192
PDFs 187–189

console
JavaScript 202

consolidateNamedDestinations
method 200

content
disposition 288, 303
stream 453, 495, 503
type 288, 303

ContentByteUtils 517
convenience methods 67–71,

459, 476
converting documents

HTML to PDF 308
PDF to XML 513–514
XML to PDF 312

coordinate system 466–470
3D annotation 548
Graphics2D 482
origin 144, 466

copying documents in five
steps 186

COS 416, 424–434
Courier 28, 352, 371, 483
createAwtImage method 336
createFileAttachment

method 223
createFont method

360, 363, 373

createGraphics method
478, 483, 488

createGraphicsShapes
method 488

createImageWithBarcode
method 336

createPattern method 321, 323
createPushButton method 238
createRadioButton method 239
createResetForm method 295
createScreen method 546
createSignature method

397, 401
createSubmitForm method 295
createTemplateWithBarcode

method 336
createText method 217
createTitle method 497
createXmpMetadata

method 384
creating a document in 5

steps 8–19, 284–286
creating a form

with Adobe LiveCycle
Designer 272–274

with Open Office 179–181
creating a PDF in two

passes 175–176
CRL 398, 406
crop box 145–147, 433, 438
cross-reference table 18, 426,

429, 431
crossdomain.xml 551
Cryptographic Message Syntax.

See CMS
cryptography

public-key 276
CSR 394
CSS 309
CTM 62, 86, 461, 469, 471–472

combine operations 468
image appearance

changed 466
Cubic Bézier curves. See Bézier

curves
current transformation matrix.

See CTM
curveTo method 64, 455

D

Data Matrix 337
database 4–7

movie database 21–22, 62–63

database connection 22
DCTDecode 331
decompression 386
decrypting existing PDF

390, 393
default cell 100
DefaultFontMapper 483
DefaultHandler 312
defineGlyph 363
DER 395
descent 102

calculating 68
destination

local. See local destination
detail mode 541
developer extensions

417, 434, 552
intent 419

device colors 318
DeviceCMYK 318, 333, 342, 465
DeviceGray 318, 333, 342,

345, 465
DeviceRGB 318, 333, 342, 465
diacritical mark 370–371
dictionary (PDF object) 425
digital ID 392
Digital Rights Management. See

DRM
digital signature 395–409, 417,

563, 565
approval 398
external digest 404
extract revisions 401
invalid signature 401
multiple signatures 399
signing externally 403
verification 402

direct content 57–92,
116–121, 174

adding images 86
direct object 425, 445
dispose method 481
dissolve page transition 155
Distiller 416
Distinguished Encoding Rules.

See DER
Do operator 86, 89, 469
Doc object

JavaScript 206
Document

adding content 15–17
closing the document 17–18
creating an instance 9–12
opening 13–15
Licensed to Bruno Lowagie <bruno@lowagie.com>

 INDEX 573
document
creating in 5 steps 8–19
event 207
navigation 195–202
title 438

document-level
attachment, extracting 535
JavaScript 202

DocumentException
12, 185, 287

doGet method 290, 301
doPost method 290, 301
dotted line 44, 464
down appearance 233
DrawInterface 41, 46

class diagram 41
drawString method 487
DRM 389
Dublin Core Schema 383
duplex printing 439
duration

page 154
transition 154

dynamic XFA form 270

E

EAN 335
Eclipse 7, 566

in combination with
Tomcat 284

ECMA International 546–567
ECMA script. See JavaScript
Element 33, 42, 44,

81–84, 107–109
eliminatePages method 214
ellipse method 64, 137, 459
embed tag 291, 306
embedded files 533, 536, 544
embedding

Flash application 549
font 353

empty pages 142
Enable Usage Rights in Adobe

Reader 276
encoding 350, 355–356,

378, 516–517
ID 375
Identity-H 358
mismatch 26
PdfGraphics2D

encoding 484–488
problems with database

encoding 26
switching 357

encrypted PDFs 162, 387–395
encrypting existing PDFs

390, 393
encryption 417, 421

128-bit 388
40-bit 388
algorithms 389

End User License Agreement.
See EULA

endElement method 312
endLayer method 494, 497
endMarkedContentSequence

method 508, 510
endobj 426
endText method 70, 471
endTextBlock method 519
entity relationship diagram. See

ERD
eoClip method 457
eoFill method 456
eoFillStroke method 456
ERD 21

film festival database 62
ETSI 409

publications 564
EULA 418
European Article Number. See

EAN
European Telecommunications

Standards Institute. See
ETSI

even-odd rule 88–457
events

Chapter and Section
events 138–140

Chunk events 134–137
document events 207
navigation events 207, 231
page events 148–155
Paragraph events 138
PdfPCell and PdfPTable

events 122–133
print event 207
triggering actions 206

Evince 27
exchange 420
execMenuItem method 227
existing documents 159–193
existing PDFs

adding annotations 219
adding bookmarks 212
adding clickable areas 221
adding watermark 169
changing field properties 248

compression/
decompression 386

concatenating 187–189
copy pages 186–191
copying pages 164–173
encryption 389, 393
get bookmarks 210
get named destinations 198
list used fonts 529–531
overview of the manipulation

classes 192
partial read 163
replacing a font 531
replacing images 528
retrieving fields 181
retrieving metadata 382, 384
rotated pages 174
splitting 189
stamping content 173–178
tiling 172

expansion of abbreviations 509
explicit destinations 199–202
explicit masking 344
Extensible Metadata

Platform 383, 563
external

link 48, 196–197, 220, 417
program 205, 442

extract signed revision 401
extracting

file attachments 533, 535
images 524
text 513–525

F

F/OSS 3
fast web view 423
FDF 293

embedded file 300
reading an FDF file 301
reading an XFDF file 303
store files 302
submitting a PDF as 296

FdfReader 301
FdfWriter 303
field

names 183
types 181

FieldPosition 264
file

identifier 429
selection 246, 300–301
size 92
structure 426–432
Licensed to Bruno Lowagie <bruno@lowagie.com>

 INDEX574
file attachment 417
annotation 222, 533
document-level 535
extract from file 533

FileInputStream 548
FileNotFoundException 13
FileOutputStream 13, 176, 284,

286, 529
fill color 61, 66
fill method 61, 456

even-odd rule 88, 457
nonzero winding number

rule 88, 457
filling

form 183–186
path 457

fillStroke method 456
fillXfaForm method 275
FilteredTextRenderListener 522
finding text margins 523
Firefox 284, 309
fixed-width font 371
Flash 545, 548–558, 563

embedding application 549
objects 554
scale mode 552
secure sandbox 551

FlashVars 554
flatecompress 548
FlateDecode 332
flatness tolerance 460, 462
flattening 183, 299

custom 260
partial 258, 260

Flex 549, 566–567
communication with PDF 555

Flex Builder 552
Flying Saucer 308, 566
Font. See fonts
FontFactory 374, 377
FontFactoryImp 311, 377
FontMapper interface 483

custom implementation 487
FontProvider 377
FontProvider interface 310
fonts 23–24, 56, 62, 349–379

Arial 531
barcode 336
Chinese 364
CJK font 360
CJK fonts in

iTextAsian.jar 363
composite 354
composite font 357–359

Computer Modern
Regular 353

Courier 28, 352, 371, 483
creating objects using 28
creation 373
default font 24
directories 376
embedded 28–29, 353,

360, 421
subset 354, 356, 360, 531
Type 1 531

factory 374
families 376
files 350–354
fixed-width 371
HeiseiKakuGo 364
HeiseiMin 364
Helvetica 28, 67, 250, 352,

483, 531
HYGoThic 364
HYSMyeongJo 364
Japanese 364
java.awt.Font 483–484
Korean 364
KozMinPro 364
list 529–531
MHei 364
missing characters or

glyphs 28, 378
MSung 364
name 531
not embedded 24, 27–28,

349, 352, 360, 363
OpenType 353–354, 360, 531
program 350
proportional 69, 371
registering a font

directory 374–375
rendering mode 62
replacing a font 531
resources 566
run direction 367
selection 377
simple font 355–357
size 68, 471
standard Type 1 28, 352
stream 526
STSong 364
substitution 24, 27–28
Symbol 28, 352, 355
text field 250
Times New Roman 29, 67
Times-Roman 28, 310, 352,

483

TrueType 353–354, 531
font 360

Type 0 357
Type 1 352–354, 360
Type 3 354, 361
types 354–359
using a FontMapper 483
Zapf Dingbats 28, 239,

352, 355
FontSelector 378
footers

page 148–152, 175
skip last 113
stationery 169
table 112–113

FOP 37, 311
form

fix broken form 447
prefilling 183, 258, 276, 299

form creation
with Adobe LiveCycle

Designer 272–274
with Open Office 179–181

form fields 232, 505
add JavaScript 449
combo box 253
definition 237
different types 238–255
fields spanning different

pages 240
filling fields 183–186
flags 248
fully qualified name 257
in an existing form 181–183
list 253
low-level inspection 448
names 256
options 246
partial names 257
positions 264
read-only 246, 260, 449
removing fields 259
renaming fields 192
required 246
signature. See signature field
visibility 246
with the same name 191

form flattening 183, 299
custom flattening 260
partial flattening 258, 260

form XObject 87–92, 331–332,
454, 469

Formatting Objects Processor.
See FOP

Forms Data Format. See FDF
Licensed to Bruno Lowagie <bruno@lowagie.com>

 INDEX 575
frame count 340
free and open source software.

See F/OSS
full compression 386

file structure 426
full screen mode 154, 437
fully qualified name

form field 257

G

getAcroFields 185–186,
241–270, 298, 450

getAcroFields method
PdfReader 181

getAliases method 484
getAnnot method

JavaScript 229, 237
getAppearanceStates

method 241
getAscentPoint method 68
getBoxSize method 150
getComboField method 254
getDescentPoint method 68
getDirectContent method 174
getDirectContentUnder

method 174
getEffectiveStringWidth 476
getElementById method

JavaScript 306
getField method

AcroFields 247
JavaScript 227, 229, 237
PdfReader 301
PushbuttonField 238

getFieldPositions method 264
getFieldType method 181
getFieldValue method 301
getFont method 374

FontProvider 310
getImportedPage method

PdfCopy 187
PdfStamper 177
PdfWriter 166

getInfo method 382
getKernArray method 474
getLayer method

signature field 399
getListField method 254
getListOptionDisplay

method 255
getListOptionExport

method 255
getMapper method 484
getMetadata method 384

getNewPushbuttonFormField
method 243

getNumberOfPages
method 162

getOutputStream method
284, 288, 292

getOverContent method
174, 189, 264

getPageContent method
166, 387, 453, 514

getPageN method 441
getPageNumber method

142, 150
getPageRotation method 162
getPageSize method 162
getPageSizeWithRotation

method 162
getResourceAsStream

method 298, 301, 304
getResultantText method 519
getRootOutline method 209
getStructureTreeRoot

method 507, 512
getText method 519
getTextField method 244, 254
getTextFromPage method 522
getUnderContent method

174, 189
getVerticalPosition method 210
getWidthPoint method 67
getWriter method 202
getXrefSize method 528
GIF 51, 330, 341

animated 340
using setTransparency

method 342
GifImage 331
glitter page transition 155
GlobalSign 567
glyph 62

definition in ISO-32000-1 28
missing 28
space 371

go method
simulation mode 74, 78–84

go to
action 536
embedded action 543
embedded file action 536

Google Chrome 284, 293, 302
goto 195

local destination. See local
goto

gotoEmbedded method 538

gotoLocalPage method 201–202
PdfAction 198

gotoRemotePage method
PdfAction 198

Graphic Interchange Format. See
GIF

graphical objects
changing states 60

graphics layer 59
graphics objects 84
graphics state 60–62, 460–470

default state 66
operators and operands

64–67
Graphics2D 477–492, 529

DefaultFontMapper 483
drawing shapes 479–482
drawing text 483–492

GrayColor 318
GState 347

H

headers
page 148–152, 175
PDF file structure 426
skip first 113
stationery 169, 176
table 112–113, 125

headless mode 482
Hebrew 366
height

barcode 336
fixed height for cells 103
font 68
Image 54
rows. See row height
String 68
table 103, 118
table event 125

Hello World 6–8
Helvetica 24, 28, 67, 250, 352,

483, 531
and Chinese characters 250
See also fonts 250

hidden mode 541
high-level objects. See basic

building blocks
high-resolution image 528
highlight

annotations 222
Hindi 489
horizontal scaling 472
hostContainer 307
Licensed to Bruno Lowagie <bruno@lowagie.com>

 INDEX576
HSQL 21
storing special characters 26

HTML
color notation 319
embedding a PDF 291, 305
mixing with PDF syntax 287
parsing HTML 308–311
PDF preferred over 5
submit form 293

HTMLWorker 308–311,
377, 559

FontProvider 310
ImageProvider 311
path to images 311

HTTPService tag 550
HttpServlet 285
HttpServletResponse 13, 284
HttpSession 290
hyperlinks 49, 196, 220
HyperSQL 566
hyphenation 36

I

i tag 308
ICC based color space 342, 465
icon

file attachments 222, 224
font files 353
push button annotation

229, 243
text annotations 217

IDE 7
Identity-H 354, 358–359
Identity-V 354, 359
IllegalPdfSyntaxException 62
Image 51–56, 84–87,

153, 329–348
add special id 527
adding the same image more

than once 54, 84
alignment 52
annotation 221
borders 53
dimensions 54
down-sampling 528
form fields 301
from HTML 311
inline image 87
java.awt.Image

336, 338–339, 342
making images

transparent 341
mask 344
OCG 503

PdfTemplate image 91
placeholder 243
position 52
reducing resolution 528
rotation 54
scale absolute 54
scale percent 54
scale to fit 54
sequence 51
size in pixels 53–54, 338
skewing 86
stream 526
transformations 86
using images in a

PdfPCell 108
width and height 54
wrap Image in Chunk 56

image
map 197, 296
mask 344, 527
XObject 84–87, 331–332, 469

ImageProvider 311
ImageRenderInfo 524
images

resizing 53
resolution 53, 338–339, 528

imaging model. See Adobe imag-
ing model

IMDB 187
displaying link 134
hyperlinks to 196
linking to 46

img tag 311
ImgCCITT 332, 334
ImgJBIG2 332
ImgRaw 331
ImgTemplate 332, 334
ImgWMF 332
importing pages 165–167

scaling 167–170
inches

converting to millimeters or
points 9

indentation 33
indexed color space 342, 465
indirect object 426, 431, 446,

495, 527
indirect reference 426
info dictionary 18, 382, 425, 429
ink spreading 337
inline image 87
InputStream 298
insertDirectory method 484
insertPage method 178

integrated development envi-
ronment. See IDE

interactive features 166
preservation 178, 188
widget annotations 226

interactive forms 179–186,
236–278, 293–307, 417, 563

adding a button 293
concatenating 191–192
custom flattening 260
definition 237
dynamic XFA forms 274
filling out a form 183–186,

257, 268–270
filling out text fields 247–252
flattening 183, 299
inspecting a form 181–183
on server side 298–301
partial flattening 258, 260
saving locally 276
static XFA forms 265
submit a file 300
submit as FDF 296
submit as HTML form 296
submit as XFDF 297
submit to server 295
using a form as a

template 183
Interchange PostScript 414
Interleaved 2 of 5 335
internal link 47, 196
International Organization for

Standardization. See ISO
International Standard Book

Number. See ISBN
International Telecommunica-

tion Union. See ITU
Internet Movie Database. See

IMDB
InvalidKeyException 392
InvalidPdfException 162
invisible signature 398
invisible text 73
IOException 12, 18, 287, 352
irregular columns 79

cannot create in composite
mode 84

ISBN 335
ISO 418

publications 564
ISO-15930 420, 564
ISO-19005 421, 564
ISO-216 10
ISO-24517 422, 564
ISO-32000-1 417–419, 564
Licensed to Bruno Lowagie <bruno@lowagie.com>

 INDEX 577
ISO-32000-2 417
ISO-8859-1 26
ISO/AWI 14289 422, 508
isolation 329
isTampered method 185
isXfaPresent method 265
italic text

simulating italic text 72
itext-hyph-xml.jar 37
iTextAsian.jar 363
ITU 333

J

J2EE 284
JAI 339
Java Advanced Imaging. See JAI
Java Cryptography Extension. See

JCE
Java Development Kit. See JDK
Java Runtime Environment. See

JRE
Java Servlet Technology

13, 283–291
Java Swing 478
java.awt.Font 483–484
java.awt.Graphics2D. See

Graphics2D
JavaScript 237, 442, 563, 566

actions 203
adding to a field 449
in PDF documents 202–205
PDF to HTML

communication 304–307
programming in PDF

226–234
triggering ActionScript in

Flash 555
validating text fields 252

JavaScript console window 202
javascript method 205
JavaServer Pages. See JSP
JBIG2 331

multiple pages 340
JBIG2Image 332, 340
JCE 392
JDK 6
JFreeChart 480, 566
Joint Bi-level Image Experts

Group. See JBIG2
Joint Photographic Expert

Group. See JPEG
JPanel 478, 480
JPEG 51, 330–331, 339, 341,

345, 525, 529

JPEG 2000 330–331, 525
JPXDecode 331
JRE 287
JSP 291–293
JTable 491
JTextPane 490

K

kerning 69, 474, 476
KeyStore 393, 396, 403
keystrokes 231
keytool 390–392

certreq 394
export 391
genkey 390
import 403

knockout group 326, 329

L

landscape. See page orientation
LargeElement 50, 115
Latin-1. See ISO-8859-1
launch action 205

removal 442
layers

content covering other
layers 60

direct content 59
image covering all layers 84
OCG 494

Layers panel 494, 498
leading 23, 30, 472

absolute leading 77, 101
default leading 26
image leading 56
initial leading 24
relative leading 77, 101

left to right 438
ligatures 372
line

annotation 224
canvas 118, 125
cap style 460, 462
characteristics 461–464
dash 460, 464
join style 460, 463
separators 43
spacing. See leading
width 460

linear page mode 141, 441
linearized PDF 423, 427
LineBreakMeasurer 489

LineSegment 519
lineTo method 64, 455
List 15, 37–41, 56

GreekList 39
indentation 39
ordered and unordered 38
RomanList 39
ZapfDingbatsList 40
ZapfDingbatsNumberList 39

list form field 253
get options 255
multiple select 254

list symbol 38
indentation 39

list used fonts 529–531
listContentStream method 517
ListItem 37–41, 56
LiveCycle Reader

Extensions 276
loadStyle method 310
loadTagStyle method 310
local destination 47, 49
local goto 47, 49, 195, 201
location based text

extraction 521
LocationTextExtractionStrategy

521
locked width 95, 118
lockLayer method 497
lossless compression 338
lossy compression 339, 528
low-level PDF creation 15–17,

57–92, 116–121
LZW 331

M

Macromedia Flash. See Flash
mailing list 565
makeMask method 345
makeRemoteNamed-

DestinationsLocal
method 201

manipulating PDFs 159–193
manipulating the existing

file 176
manipulation classes 192
margins 9, 11, 42

finding text margins 523
mirrored 11

marked content 506–514
adding structure 511

marked content operator 495
matrix code 337
Maven 565
Licensed to Bruno Lowagie <bruno@lowagie.com>

 INDEX578
measurement unit 9
measurements

ascent/descent 68
converting points, inches, and

centimeters 9
measuring a String 67

media box 143–145, 160, 174,
433, 438

definition 143
memory 17

adding the same content
more than once 84

creating a PDF in memory
13, 175, 289

freeing 50
large elements 115
PdfReader memory use

163–164
release template 89, 151

menu bar 438
message handler 307
metadata 381–384, 434

avoid encryption 389
producer 382
retrieve from PDF 382, 384

Microsoft Internet Explorer. See
MSIE

Microsoft Windows Certificate
Security 398

Microsoft Word 160
MIDI 545
millimeters

converting to inches or
points 9

miter join. See miter limit
miter limit 460, 463
Model Tree panel 506
monospaced font 371
mouse action 215, 220, 224,

229, 231, 233
mouse position 197
moveText method 472, 474
moveTextWithLeading

method 472, 474
moveTo method 64, 455
movie annotation 545–546
MPEG 545
MSIE 284

older versions 288
multimedia 545
multipart/form-data

request 300
multiple

hits 291

select list 254
signatures 399, 427

Musical Instrument Digital Inter-
face. See MIDI

MXML 550, 555

N

N-up 147, 170
name (PDF object) 425
name tree 447
named destinations 49, 196,

202, 446
convert to explicit

destinations 200
inject into PdfCopy 201
make remote destinations

local 201
PdfCopy 200
retrieving names 198

nested tables 109–110
new

browser window 198
line 23–24, 30
page 77, 142, 150
viewer window 197
window 211, 538

newlineShowText method 473
newLineText method 473
newPath method 346, 456
next method 205
Nimbus 27
nonbreaking space character 34
nonzero winding number

rule 88, 457
normal appearance 233
NPES 421
null (PDF object) 425
NullPointerException 164
number (PDF object) 424
number tree 446
numbering style

List object 39
page labels 444

O

obj 426
object data 506–508
Object data tool 506
object tag 306
OCG 494

action 501
grouped layers 497

locked layer 496
nested layers 496
radio group 497
structure 495
visibility expression 501
visibility policy 500

OCSP 405–409
onChapter method 150
onChapter/onChapterEnd

method 140
onCloseDocument method

148, 152
onEndPage method

148, 150, 153
onGenericTag method 134–137
Online Certificate Status Proto-

col. See OCSP
onMessage method 307
onOpenDocument

method 148, 150, 152–153
onParagraph/onParagraphEnd

method 138
onSection/onSectionEnd

method 140
onStartPage method

148, 150, 155
opacity 325–326
open

action 207, 214, 306, 434
parameters 214–215
password. See user password

Open Office 160, 179, 186, 236,
260, 560

OpenType font 351, 353–354,
360, 531, 566

operators, combining 64
optical character recognition.

See OCR
optional content

group 417, 493–505
membership 500–501

ordered list 38
origin of coordinate system 144
outline

panel 436
tree 49, 208–214, 446

OutOfMemoryException 289
output intent 421, 434
OutputStream 17, 50,

514, 528–529
creating a PdfReader

instance 176
FileOutputStream 13
keeping the OutputStream

open 18
Licensed to Bruno Lowagie <bruno@lowagie.com>

 INDEX 579
OutputStream (continued)
ServletOutputStream 13
which to write to 12–13
whitespace characters 292
ZipOutputStream 18

owner password 387

P

PAdES. See PDF Advanced Elec-
tronic Signature Profiles

page
art box 147
bleed box 147
boundaries 9, 11,

142–148, 441
clipping 145
content 493–525
crop box 145–147
dictionary 86, 432, 441
display 435
duration 154
empty pages. See empty pages
events 123, 133–140, 148–155
headers and footers 148–152
label dictionary 443
layout 435
media box 143–145, 160
mode 436
numbers 5, 202
orientation 11, 162
reference 202, 441
reordering. See reordering

pages
rotation 11, 162, 442
size 9–10, 143, 162
structure 493–525
superimposing 167–170
transitions 154
tree structure 141, 202, 432

definition 441
tree structure. See page tree

structure
trim box 147
X of Y 150–152, 175–176

Page Description Language 414
PageStamp 189
paintShading method 466
paper size 10
Paragraph 30–34, 56, 107, 309

alignment 33
events 138
indentation 33
spacing 34, 77

parseToList method 308

parsing
HTML 308–311
PDF 513–525

difficulties 516
tagged PDF 513

XML 312–315, 378
password

field 246–247, 259, 448
PDF encryption 387
protected PDF 162, 387–390

path
construction 454–456
filling 457
painting and clipping

456–459
stroking 457

pattern color 321–325, 342
shading pattern 323
tiling pattern 321

PatternColor 323
PDF 559–560

adding watermark 177
blind exchange 420
certificate encryption

390–395
comparison with PS 416
compression 385
concatenating 187
copyright 416
creating documents 15
encryption 162, 387–395
extensions 434
file structure 426–432
general overview 4–5
header 14
history 414–419
inserting pages 178
ISO 419
manipulating existing

documents 4, 159
manipulation classes 192
measurement unit 9
metadata 382
objects 424–426
on the fly 5
other types 423
password protection 162–390
PDF object in an HTML

page 307
PDF syntax 426–431, 452–477
preferred over HTML 5
reader enabling 276, 427
reference manual 563
repairing broken files 162
resources 566

schema 383
splitting 187
submit PDF 293
syntax 64, 85–86, 428,

452–477, 514–517
tagged 422
unattended mode 5
version history 416
versions 14, 434

PDF Advanced Electronic Signa-
tures. See PAdES

PDF package. See portable collec-
tion

PDF/A 511, 564
level A 422, 511
level B 421
specification 421

PDF/E 422, 564
PDF/H 424, 564
PDF/UA 422, 508, 510–511, 564
PDF/VT 424
PDF/X 320, 420
PDF417 337
PdfAction 195, 222, 295,

425, 501
bookmark 209
constructor 197
static methods 198, 201–202

PdfAnnotation 216, 237, 248,
295, 553

OCG 503
PdfAppearance 240
PdfArray 236, 425, 445
PdfBoolean 424, 445
PdfCollection 541
PdfCollectionField 540
PdfCollectionItem 542
PdfCollectionSort 541
PdfContentByte 59–67, 76, 87,

321, 454, 477
ByteBuffer 59
convenience methods 476

PdfContentReaderTool 517
PdfContentStreamProcessor

518, 520
PdfCopy 186–191, 193, 200,

213, 560
adding content 188
inject named destinations 201
named destinations 200

PdfCopyFields 191–193, 560
PdfDate 425
PdfDestination 199, 201, 209,

222, 538
bookmark 209
Licensed to Bruno Lowagie <bruno@lowagie.com>

 INDEX580
PdfDeveloperExtension
434, 552

PdfDictionary 236–237,
425, 527

get() method 445
PdfAction 197
PdfAnnotation 218

PdfDocument 22, 133, 136, 138
PdfFormField 237–238, 244,

254, 295, 425
PdfGraphics2D 477–492

drawing shapes 479–482
drawing text 483–492
encoding problems 484
troubleshooting 481

PdfGState 326, 329, 461, 464
PdfImage 527
PdfImageObject 524, 529
PdfImportedPage 166, 177, 188

overlapping objects 326
scaling and tiling 172
usage 193

PdfIndirectObject 527
PdfIndirectReference 446–447,

449–450
PdfLayer 494–501

structural element 497
title 497

PdfLayerMembership 501
PdfName 197, 425, 445
PdfNull 425
PdfNumber 424, 445
PdfObject 197, 445
PdfOutline 51, 208, 425

constructor 209
PdfPageEvent interface

134, 148–149, 155
PdfPageEventHelper 136
PdfPageLabels 444
PdfPatternPainter 321
PdfPCell 98–115, 122–133

addElement 107
alignment (text mode) 101
background color 105
border 106
composite mode 107–112
default cell. See default cell
events. See cell events
right to left 367
rotation 105
rounded borders 133
run direction 368
setArabicOption method 373
text mode 99–107
wrapping content 103

PdfPCellEvent interface
123, 125–128

PdfPRow 94
PdfPTable 93, 122–133, 311

absolute column widths 97
adding at an absolute

position 116–121
alternating rows 124
cell spacing 128
colspan. See column span
ColumnText 119
complete rows 95
deep nesting 110
direct content canvases

118, 125, 127
dropping cells 115
events. See table events
extend last row 105
footer 113
from HTML 311
header 113, 125
incomplete tables 95
large tables 112
nested tables 109
padding. See cell padding
relative column widths 96
row height. See row height
rowspan. See row span
splitting a table vertically 118
splitting cells 113–115
total width 95
width percentage 95

PdfPTableEvent interface
123–125

PdfReader 193, 298, 529, 560
accessing a PDF 160–164
reading specific pages 173

PdfReaderContentParser
520, 528

PdfRectangle 425
PdfShading 324, 466
PdfShadingPattern 325, 466
PdfSignatureAppearance 397
PdfSmartCopy 189–191, 193,

263, 528, 560
PdfStamper 173–186, 193, 387

add metadata 382
append mode 277, 430
filling out reader-enabled

form 278
get PdfWriter 202
inserting pages 178
rotation 174
updating PDFs 560

PdfStream 425, 445, 527, 548

PdfString 425, 445
PdfStructureElement 509–510
PdfTargetDictionary 538, 544
PdfTemplate 87–92, 166, 332

clipping 345
OCG 503
release from memory 89
transformations 91
wrapped inside an image 91

PdfTextArray 474
PdfTextExtractor 521
PdfTransparencyGroup 328
PdfVisibilityExpression 501
PdfWriter 12–13, 79,

193, 217–218
analyzes behind scenes 22
getImportedPage 166
memory management 115
PdfCopy extends 186
reordering pages 141

PEM 394
permissions

parameters 388
password. See owner password

PFB 352
PFM 353
Phrase 15, 25–30, 56, 74,

76, 99–100
PKCS 404
PKCS#7 signature

detached 408
placeBarcode method 336
PLANET 335
PNG 51, 331, 339, 341–342
PngImage 332
points

converting to millimeters or
inches 9

POJO 22, 65
popup annotation 229–230
portable collection

417, 538–545
cover page 541
initial document 541

Portable Data File. See PDF
Portable Document Format Ref-

erence Manual 415
Portable Network Graphics. See

PNG
portfolio. See portable collection
portrait. See page orientation
positioning

Phrase 71
String 69
Licensed to Bruno Lowagie <bruno@lowagie.com>

 INDEX 581
Postal Alpha Numeric Encoding
Technique. See PLANET

Postal Numeric Encoding Tech-
nique. See POSTNET

postfix 453
postMessage method 307
POSTNET 335, 337
PostScript Font Binary. See PFB
PostScript. See PS
print

annotations 246
area 439
dialog 439
duplex 439
event 207
method 491
preferences 439
scaling 439, 441

Printer Font Metrics. See PFM
printing marks 143
PrintStream 308
Privacy Enhanced Mail. See PEM
private key 276, 390, 398
PrivateKey 403
processContent method 521
producer info 382
proportional font 69, 371
PRStream 529
PRTokeniser 514, 518
PS 414

comparison with PDF 416
reverse Polish notation 453

public key 390
Public Key Cryptography Stan-

dards. See PKCS
public-key

cryptography 276
encryption 390–395

public/private key pair
creation 390
encryption 391

pushbutton 238, 241–244
icon 243
replacing a button 243

PushbuttonField 227, 230, 238,
243, 295

putAlias method 484

Q

QRCode 337
quadding 232, 246
query string 197

Quick Response code. See
QRCode

QuickTime 545

R

R2L. See right to left
radial shading 324
radio field 238–240

possible values 183, 239
RadioCheckField 238–239
RandomAccessFileOrArray 164
RC4 389
read out loud 423, 509, 560
Reader enabling 276–278, 427
recipient signature. See approval

signature
Rectangle 97–98, 217–218, 522

background color 105
border 106
breaking down large

image 147
calculating position 66
defining page size 9
placing annotations 223
properties 105–107

rectangle
annotation 224
method 60, 64, 455, 459
rounded 133

RectangleReadOnly 144
reflow 187
regenerateField method 248
RegionTextRenderFilter 522
register method 374
registerDirectories method 376
registerDirectory method 375
releaseTemplate method

89, 151
remote goto 49, 195

change into local goto 201
removeField method 259
removeUnusedObjects

method 528
removing usage rights 278
renameField method 192, 259
RenderFilter 522
renderImage method 524
rendering mode 62, 71,

472, 475
Chunk 72

RenderListener interface
518–520

renderText method 519

reordering pages 141–142, 178
using selectPages 179

replacement text 510
replacePushbuttonField

method 243
resizing images 53
resolution of images

53, 338–339, 528
resources 7

dictionary 166
page dictionary 86
page resources 433

restore graphics state 60, 62,
86, 460

restoreState method 460, 464
ResultSet 22, 26
reverse Polish notation 453
revisions 401, 403, 427
RGB color 318, 465

Graphics2D 482
rich media 545

activation 554
annotation 548–558
assets 553
command 558
configuration 553
content 553
deactivation 554
instance 553
settings 553

RichMediaAnnotation 553
reuse 554

RichMediaExecuteAction 555
right to left 366, 373
Rivest, Shamir and Adleman. See

RSA
role map 512
rollover appearance 233
root

certificate 395, 402
dictionary 429, 434–451

rotation 468
images 54
page rotation 160, 442
text 69
text in a PdfPCell 105

rounded rectangle 133
roundRectangle method 459
row

height 103
span 95, 99, 109

RSA 404
rubber stamp annotation 224
RUPS 433
Licensed to Bruno Lowagie <bruno@lowagie.com>

 INDEX582
S

sanity check 62, 70
save graphics state 60, 62,

86, 460
document 207

saveState method 460, 464
Scalable Vector Graphics. See

SVG
scaling 468

images 53–54
images in cells 109

imported pages 167–170
screen annotation 546
Section 49–51, 56–140, 148, 208

events 138
indentation 49
memory use 115
number depth 49
number style 49
title 49

Section 508 508, 510, 567
Secure Hash Algorithm 1. See

SHA-1
selecting fonts 377
selectPages method 164, 179

PdfCopy 187
PdfStamper 173

self-signed security handler 398
separation 320, 342
separators 43–45
server-side problems 286–288
service method 291
servlet-mapping 286
Servlet. See Java Servlet

technology
ServletInputStream 288
ServletOutputStream 13, 284,

286, 288
setAcro6Layers method 399
setAction method 195–196, 220
setAdditionalAction

method 207
setAdditionalPath method 538
setAlignment method

ColumnText 77
Paragraph 33
PdfPTable 98
TextField 245

setAnnotation method 221
setBackgroundColor method

pushbuttons 242
setBorder method

annotations 226
PdfPCell 106

setBorderColor method 106
pushbuttons 242

setBorderStyle method 226
pushbuttons 242

setBorderWidth method 106
pushbuttons 242

setBoxSize method 147
setCanvas method 178
setCellEvent method 127–128
setCharacterSpacing

method 371, 471
setChoices method 254
setChoiceSelection method 254
setCMYKColorFill 465
setCMYKColorStroke 465
setCode method 335
setCollection method 541
setColor method

annotations 219
bookmarks 210

setColorFill method 319, 464
setColorStroke method 464
setColumns method

ColumnText 81
setCreatorInfo method 499
setCropBox method 145
setDirectReference method 528
setDuration method 154
setEmbeddedFileName

method 538
setExport method 499
setExportValues method 254
setExtensionFont method 250
setExtraMargin method 258
setField method 186, 241, 247,

255, 258, 301
AcroFields 265

setFieldCache method 258
setFieldFlags method 247
setFieldProperty method

248–252, 260
setFields method 301, 303
setFileAttachmentIndex

method 538, 544
setFileAttachmentName

method 538, 544
setFileAttachmentPage

method 538
setFileAttachmentPagename

method 538, 544
setFileAttachmetnPage

method 544
setFillOpacity method 326
setFlags method 246

annotation 225

setFlatness method 460
setFontAndSize method 62, 471
setFontSize method 245
setFullCompression

method 385–386
setGenericTag method 137
setGrayFill method 465
setGrayStroke method 465
setGState method 326, 460, 464
setHorizontalScaling

method 472
setImageMask method 345
setIndentation method

Chapter/Section 49
ColumnText in text mode 77
List/ListItem 39
Paragraph 33
PdfPCell in text mode 101

setIsolated method 329
setKnockout method 329
setLanguage method 499
setLayer method 505
setLayout method 242
setLeading method 472, 474

ColumnText 77
Paragraph 30
PdfPCell 101

setLinearPageMode
method 141, 441

setLineCap method 460
setLineDash method 460
setLineJoin method 460
setLineWidth method 460
setListOption method 255
setListSelection method 255
setLiteral method 143, 477
setLocalDestination method 49
setLocalGoto method 49, 196
setMiterLimit method 460
setMoreInfo method 382
setNeedAppearances

method 250
setOCGState method 503
setOn method 495
setOnPanel method 498
setOpenAction method 207
setOptions method 246
setOutlines method 213–214
setPageContent method 387
setPageElement method 499,

505
setPageEmpty method 142
setPageEvent method 137
setPageSize method 147
setPatternFill method 323, 466
Licensed to Bruno Lowagie <bruno@lowagie.com>

 INDEX 583
setPatternMatrix method 323
setPatternStroke method 466
setPdfVersion method 552
setPDFXConformance

method 420
setPhrase method 128
setPrint method 498–499
setRemoteGoto method 49, 196
setRenderingMode method 399
setRGBColorFill method 465
setRGBColorStroke method 465
setRotateContents method 174
setRunDirection method

368, 373
setScaling method 72
setShadingFill method 466
setShadingStroke method 466
setSimpleColumn method 74
setSkew method 72
setSortOrder method 541
setSpaceCharRatio method 474

ColumnText 77
Paragraph 37
PdfPCell 101

setSplitLate method 114
setStyle method 210
setSubset method 361, 531
setSubstitutionFonts

method 250
setTableEvent method 125
setText method

ColumnText 79, 128
TextField 245

setTextColor method 245
setTextKnockout method 472
setTextMatrix method

62, 471–472
setTextRenderingMode

method 472
setTextRenderMode method 72
setTextRise method 472, 474
setTitle method 219
setTransition method 154
setUseAscender method 102
setUseDescender method 102
setUser method 499
setUserName method 246
setView method 499
setWordSpacing method 472
setXmpMetadata method 384
setZoom method 498–499
SHA-1 404
shading pattern 323
ShadingColor 325
shiftPageNumbers method 214

showText method 62, 473–474
showTextAligned method 152

ColumnText 70
PdfContentByte 67, 476

showTextAlignedKerned
69, 476

showTextKerned 476
signatures

detached 409
digital 565
field 237, 395–402

adding an unsigned
field 396

graphic 399
verifying 402
visible 397

signing externally 403
simple font 355–357
simpleAxial method 324
SimpleBookmark 210
SimpleNamedDestination

198, 201–202
simpleRadial method 324
SimpleTable class 94
SimpleTextExtractionStrategy

520
skewing 468

images 86
slide show 154–155
smart card 404
SML

Form Document 179
soft masking 345, 347
sound objects 554
source code 6
SourceForge 6, 565
space/character ratio. See set-

SpaceCharRatio method
spacing

between paragraphs 34
between tables 97
between words and charac-

ters. See setSpaceCharRatio
method

PdfPCell 101
split

character 34
page transition 155
PDFs 5, 187–189

splitting
cells 113–115
tables vertically 118
text 34–37

spot color 320–321
SQL 22

squiggly annotations 219
Stack 312
stamping content 173–178, 188
standard Type 1 fonts 352
startElement method 312
static XFA form 265
stationery 169–170, 176
stencil mask 344
sticky note 215
stream (PDF object)

425, 526–548
strike through 30

annotations 219
string (PDF object) 425
stroke color 61
stroke method 62, 64–65, 456
stroking a path 457
structure tree 507, 512, 514
StyleSheet 309–310
subforms 273
submit button 293–297

change URL 450
subscript 23–24
subsetting a font 354, 356
subtractive color 318
Subversion. See SVN
superimposing 167–170
superscript 23–24
supplemental barcode 335
SVG 503
SVN 6, 565
SWF. See Flash
Symbol 28, 352, 355
symmetric key algorithm 390

T

tab Chunks 45
Table class 94
table of contents, clickable 49
tableLayout method

124–125, 128
tables

colspan. See column span
events 122–133
incomplete rows 95
rowspan. See row span
splitting vertically 118

tabs 45
Tagged Image File Format. See

TIFF
tagged PDF 417, 422–423, 511

block-level structure
elements 511

grouping elements 511
Licensed to Bruno Lowagie <bruno@lowagie.com>

 INDEX584
tagged PDF (continued)
illustration elements 511
inline-level structure

elements 511
role map 512

TaggedPdfReaderTool 514
template 183
text

annotations 215–217, 230
canvas 118, 125
color 73
layer 59
matrix 62, 472
reflow 160
rise 23–24, 472
stroke color 73

text extraction 513–525
filtered text extraction 522
location based 521

text field 237, 244–252
comb fields 246
font size 0 245
fonts 250
justified text 246, 263
maximum character

length 245
multiline 246, 263, 448
read only 232
text properties 245
validation 252

text state 62, 471–477
operators 471

text-line matrix 472
text-positioning operators 472
text-rendering matrix 472
text-showing operators 472
TextElementArray 20, 22, 312
TextExtractionStrategy

interface 519, 521–522
TextField 238, 244, 254, 258

lists and combo boxes 254
TextLayout 488
TextMarginFinder 523
TextRenderInfo 519–520
Thawte 567
thumb nail panel 436
TIFF 51, 331

multiple pages 340
TiffImage 332, 340
tile mode 541
tiling 145, 172

pattern 321
timeout 290
Times New Roman 29, 67

Times-Roman 28, 310, 352, 483
timestamp 406–407
timestamping authority. See TSA
toggle optional content

visibility 503
token types 514
Tomcat 287, 298, 566

in combination with
Eclipse 284

toolbar 438
tooltip 215, 220, 230

text field 246
trailer 18, 426, 429

dictionary 429, 432
transform method 470
transformations 69, 167,

467, 470
PdfTemplate 91
text 472

transition 154
translation 467

text 69
transparency 325–329, 341–348,

417, 472
group 326–328

trim box 147, 438
troubleshooting web

applications 286
TrueType collection 353–359
TrueType font 351, 353–354,

360, 531
Unicode 360

trusted identities 399
TS 102 778. See PDF Advanced

Electronic Signature Pro-
files

TSA 406
need account with 409

Type 0 CID font 359
Type 0 font 357, 360
Type 1 font 351–354, 360, 531
Type 2 CID font 359
Type 3 font 354, 360–361, 363

U

U3D
file format 546
reading a file 548

UCC/EAN-128 335
uncolored tiling patterns 321
underline 23

color 30
thickness 30

Unicode 35, 359, 373, 566
text fields 250

United States Postal Service. See
USPS

Universal 3D. See U3D
universal accessibility 422
Universal Product Code. See

UPC
Unlimited Strength Jurisdiction

Policy Files 392
unordered list 38
UPC 335
URL 49, 220

hyperlink 48, 197
jump to external 197

usage rights
reader enabling 276
remove 278

user
password 387
properties 507
space 9
unit 417

maximum/minimum
value 10

USPS 335, 337
UTF-8 26

V

validating text field 252
vector graphics 341
verifying signatures 402
VeriSign 398, 567
vertical

alignment 100
position marks 41, 43
position. See Y position
writing system 365

VerticalText 365
video objects 554
view area 439
viewer preferences 154, 195,

435–441
page layout 435
page mode 436

Views 553
virtual X-server 482
visibility

annotations 228
collection field item 540
depending on usage 498
file attachments 535
form fields 246
OCG visibility expression 501
Licensed to Bruno Lowagie <bruno@lowagie.com>

 INDEX 585
visibility (continued)
OCG visibility policy 500
optional content 494
text field 248
toggle 503

visible signatures 397

W

W3C 508, 567
WAI 508
WAR file 286, 298
watermark 5, 152–153, 175, 505

adding to existing PDF
169, 177

stationery 169
WCAG 508, 567
Web Accessibility Initiative. See

WAI
web applications 5, 283–315

submit data to server 293–298
timeout 290
troubleshooting 286

Web Content Accessibility
Guidelines. See WCAG

web server 284
web.xml 285
webapp problems

client-side 288–291
server-side 286–288

widget annotation
232, 237–238, 250, 555

interactive features 226
properties 248
triggering popup 229
widgets per field 449

width
barcode 337
cell border width 106
glyph 371
Image 54
line width 460

PdfPTable 95
rectangle border width 106
String 67
table column 96–97
table event 125

WINANSI 29
Windows bitmap. See BMP
wipe page transition 155
WMF 331–332, 341
word spacing 472
World Wide Web Consortium.

See W3C
writeLength method 548
writeSelectedRows method

116, 125, 130–133, 152, 196
get Y position 118
write selected columns 119

writing from right to left 366

X

X11 server 482
XAdES 409
XDP 424
XFA technology 264–278, 447,

560, 563, 566
data description 268
dynamic XFA form 270
fill out dynamic XFA

form 274
fill out pure XFA form 269
fill out static XFA form

265, 270
internal structure 266
remove XFA 270
replacing the XFA stream 269
static XFA form 265

XFDF
submitting PDF as 297
See also FDF

XfdfReader 303
xhtmlrenderer 308

XML 5, 424, 535, 563
convert tagged PDF to

XML 513
DefaultHandler 312
Flash 550
parsing XML 312–315, 378
XML data in an XFA

form 271
XMP 383

XML Advanced Electronic Sig-
natures. See XAdES

XML Data Package. See XDP
XML Forms Architecture. See

XFA
XML Schema Definition. See

XSD
XMP 383

automatic creation 384
avoid encryption 389
Dublin Core 383
PDF schema 383
and PDF/A 421

XmpWriter 383
XObject 433

definition 84
form XObject. See form XOb-

ject
image XObject. See Image

XObject
XSD 273

Y

Y position 138, 210

Z

Zapf Dingbats 28, 239, 352, 355
special symbols 40

zip file
creating a zip file 18

ZipOutputStream 18
Licensed to Bruno Lowagie <bruno@lowagie.com>

S
earch for “Java PDF” and what do you think you’ll fi nd in
the #1 position? Why, iText, of course. Ever since its launch
in 2000, this open source Java library has been the most

popular and most broadly used tool for programmatic creation
and manipulation of PDF. With it you too can easily transform
static PDF into live, interactive applications.

iText in Action, Second Edition is an entirely revised new version
of the popular fi rst edition. It introduces the latest version of
iText, and it lowers the learning curve to its advanced features.
Following its innovative, practical examples, you’ll master new
form types, including AcroForm, explore the XML Forms Archi-
tecture (XFA), and discover techniques for linking documents,
creating a PDF based on records in a database, and much more.

What’s Inside
Automate static and dynamic XFA forms
How to generate dynamic PDF from XML or a database
How to add digital signatures
Covers iText 5

Written by the creator of iText, this new edition covers the latest
version of iText and Java 5. Th e examples can be easily adapted to
.NET using iTextSharp or iText.NET.

Bruno Lowagie is the original developer and current maintainer
of iText.

For a free ebook for owners of this book, go to
manning.com/iTextinActionSecondEdition

$59.99 / Can $68.99 [INCLUDING eBOOK]

iText IN ACTION Second Edition

JAVA/PDF

Bruno Lowagie

“Deep coverage of both iText
 and PDF—indispensable.”
 —Kevin Day, Trumpet, Inc.

“Th e classic, revised with
 practical code everyone
 can use.”
 —John S. Griffi n
 Overstock.com

“Masterful, comprehensive.”
 —Saicharan Manga
 Services and Solutions

“Invaluable examples...
 what you need is here.”
 —Paulo Soares
 Glintt Business Solutions

“Th e canonical source on
 iText.”
 —Michael Klink
 AuthentiDate International AG

M A N N I N G

SEE INSERT

	iText in Action, Second Edition
	brief contents
	contents
	preface
	preface to the first edition
	acknowledgments
	about this book
	Who should read this book?
	How to use this book
	What you’ll be able to achieve after reading this book
	Creating PDF documents
	Manipulating PDF documents
	Essential iText skills
	Under the hood
	The goal of the book
	Code conventions
	Software requirements and downloads

	about the title
	about the cover illustration
	Creating PDF documents from scratch
	Introducing PDF and iText
	1.1 Things you can do with PDF
	1.2 Working with the examples in this book
	1.3 Creating a PDF document in five steps with iText
	1.3.1 Creating a new Document object
	1.3.2 Getting a PdfWriter instance
	1.3.3 Opening the Document
	1.3.4 Adding content
	1.3.5 Closing the Document

	1.4 Summary

	Using iText’s basic building blocks
	2.1 Illustrating the examples with a real-world database
	2.2 Adding Chunk, Phrase, Paragraph, and List objects
	2.2.1 The Chunk object: a String, a Font, and some attributes
	2.2.2 The Phrase object: a List of Chunks with leading
	2.2.3 Paragraph object: a Phrase with extra properties and a newline
	2.2.4 Distributing text over different lines
	2.2.5 The List object: a sequence of Paragraphs called ListItem
	2.2.6 The DrawInterface: vertical position marks, separators, and tabs

	2.3 Adding Anchor, Image, Chapter, and Section objects
	2.3.1 The Anchor object: internal and external links
	2.3.2 Chapter and Section: get bookmarks for free
	2.3.3 The Image object: adding raster format illustrations

	2.3.4 Summary

	Adding content at absolute positions
	3.1 Introducing the concept of direct content
	3.1.1 Direct content layers
	3.1.2 Graphics state and text state
	3.1.3 A real-world database: three more tables

	3.2 Adding text at absolute positions
	3.2.1 Convenience method: PdfContentByte.showTextAligned()
	3.2.2 Convenience method: ColumnText.showTextAligned()

	3.3 Working with the ColumnText object
	3.3.1 Using ColumnText in text mode
	3.3.2 Using ColumnText in composite mode

	3.4 Creating reusable content
	3.4.1 Image XObjects
	3.4.2 The PdfTemplate object

	3.5 Summary

	Organizing content in tables
	4.1 Constructing tables
	4.1.1 Your first PdfPTable
	4.1.2 PdfPTable properties

	4.2 Changing the properties of a cell
	4.2.1 PdfPCell in text mode
	4.2.2 PdfPCell in composite mode

	4.3 Dealing with large tables
	4.3.1 Repeating headers and footers
	4.3.2 Splitting tables
	4.3.3 Memory management for LargeElement implementations

	4.4 Adding a table at an absolute position
	4.4.1 Working with writeSelectedRows()
	4.4.2 Wrapping tables in columns

	4.5 Summary

	Table, cell, and page events
	5.1 Decorating tables using table and cell events
	5.1.1 Implementing the PdfPTableEvent interface
	5.1.2 Implementing the PdfPCellEvent interface
	5.1.3 Combining table and cell events

	5.2 Events for basic building blocks
	5.2.1 Generic Chunk functionality
	5.2.2 Paragraph events
	5.2.3 Chapter and Section events
	5.2.4 Page order and blank pages

	5.3 Overview of the page boundaries
	5.3.1 The media box
	5.3.2 The crop box
	5.3.3 Other page boundaries

	5.4 Adding page events to PdfWriter
	5.4.1 Adding a header and a footer
	5.4.2 Solving the “page X of Y” problem
	5.4.3 Adding a watermark
	5.4.4 Creating a slideshow

	5.5 Summary

	Manipulating existing PDF documents
	Working with existing PDFs
	6.1 Accessing an existing PDF with PdfReader
	6.1.1 Retrieving information about the document and its pages
	6.1.2 Reducing the memory use of PdfReader

	6.2 Copying pages from existing PDF documents
	6.2.1 Importing pages
	6.2.2 Scaling and superimposing pages
	6.2.3 N-up copying and tiling PDF documents

	6.3 Adding content with PdfStamper
	6.3.1 Adding content at absolute positions
	6.3.2 Creating a PDF in multiple passes
	6.3.3 Adding company stationery to an existing document
	6.3.4 Inserting pages into an existing document
	6.3.5 Filling out a PDF form

	6.4 Copying pages with PdfCopy
	6.4.1 Concatenating and splitting PDF documents
	6.4.2 PdfCopy versus PdfSmartCopy
	6.4.3 Concatenating forms

	6.5 Summary

	Making documents interactive
	7.1 Introducing actions
	7.1.1 Document-navigation actions
	7.1.2 Explicit destinations
	7.1.3 JavaScript in PDF documents
	7.1.4 More actions

	7.2 Adding bookmarks
	7.2.1 Creating bookmarks for a new document
	7.2.2 Retrieving bookmarks from an existing document
	7.2.3 Adding bookmarks to an existing document
	7.2.4 Concatenating documents with bookmarks
	7.2.5 Open parameters

	7.3 Creating annotations
	7.3.1 Text annotations
	7.3.2 Link annotations
	7.3.3 File attachments
	7.3.4 Stamp, line, and rectangle annotations

	7.4 JavaScript programming in PDF
	7.4.1 Triggering JavaScript from a button
	7.4.2 Showing and hiding an annotation
	7.4.3 A popup triggered by a button that doesn’t need to be pushed
	7.4.4 Additional actions
	7.4.5 A PDF calculator

	7.5 Summary

	Filling out interactive forms
	8.1 Introducing AcroForms
	8.2 Selecting states or trigger actions with button fields
	8.2.1 Radio fields and radio buttons
	8.2.2 Check boxes
	8.2.3 Pushbuttons

	8.3 Filling in data with text fields
	8.3.1 Creating text fields
	8.3.2 Filling out text fields
	8.3.3 Text fields and fonts
	8.3.4 Validating text fields

	8.4 Selecting options with choice fields
	8.4.1 Creating lists and combo boxes
	8.4.2 Manipulating lists and combo boxes

	8.5 Refining the form-filling process
	8.5.1 Choosing field names
	8.5.2 Optimizing the filling process
	8.5.3 Partial form flattening
	8.5.4 Customized form flattening

	8.6 Introducing the XML Forms Architecture (XFA)
	8.6.1 Static XFA forms
	8.6.2 Dynamic XFA forms

	8.7 Preserving the usage rights of Reader-enabled forms
	8.7.1 Reader-enabling a form using Adobe Acrobat
	8.7.2 Filling out Reader-enabled forms using iText

	8.8 Summary

	Essential iText skills
	Integrating iText in your web applications
	9.1 Creating a PDF from a servlet
	9.1.1 The five steps of PDF creation in a web application
	9.1.2 Troubleshooting web applications
	9.1.3 Generating a PDF from a JSP page

	9.2 Making a form “web ready”
	9.2.1 Adding a submit button to an existing form
	9.2.2 Filling out a form on the server side
	9.2.3 FDF and XFDF in web applications

	9.3 JavaScript communication between HTML and PDF
	9.4 Creating basic building blocks from HTML and XML
	9.4.1 Parsing HTML
	9.4.2 Parsing XML

	9.5 Summary

	Brightening your document with color and images
	10.1 Working with the iText color classes
	10.1.1 Device colors
	10.1.2 Spot colors
	10.1.3 Painting patterns
	10.1.4 Transparency

	10.2 Overview of supported image types
	10.2.1 JPEG, JPEG2000, GIF, PNG, BMP, WMF, TIFF, and JBIG2
	10.2.2 Creating a raw image
	10.2.3 CCITT compressed images
	10.2.4 Creating barcodes
	10.2.5 Working with java.awt.Image
	10.2.6 Compressing images
	10.2.7 Images consisting of multiple pages or frames

	10.3 Making images transparent
	10.3.1 Images and transparency
	10.3.2 Masking images
	10.3.3 Clipping images

	10.4 Summary

	Choosing the right font
	11.1 Getting fonts from a file
	11.1.1 Font files and their extensions
	11.1.2 Type 1 fonts
	11.1.3 TrueType and OpenType fonts

	11.2 Examining font types from a PDF perspective
	11.2.1 Simple fonts
	11.2.2 Composite fonts

	11.3 Using fonts in iText
	11.3.1 Overview of the Font classes
	11.3.2 Type 3 fonts
	11.3.3 CJK fonts
	11.3.4 Writing from right to left
	11.3.5 Advanced typography

	11.4 Automating font creation and selection
	11.4.1 Getting a Font from the FontFactory
	11.4.2 Automatic font selection

	11.5 Summary

	Protecting your PDF
	12.1 Adding metadata
	12.1.1 The info dictionary
	12.1.2 The Extensible Metadata Platform (XMP)

	12.2 PDF and compression
	12.2.1 Compression levels
	12.2.2 Compressing and decompressing existing files

	12.3 Encrypting a PDF document
	12.3.1 Creating a password-encrypted PDF
	12.3.2 Public-key encryption

	12.4 Digital signatures, OCSP, and timestamping
	12.4.1 Creating an unsigned signature field
	12.4.2 Signing a PDF
	12.4.3 Adding multiple signatures
	12.4.4 Verifying the signatures in a document
	12.4.5 Creating the digest and signing externally
	12.4.6 CRLs, OCSP, and timestamping
	12.4.7 PDF Advanced Electronic Signatures (PAdES) profiles

	12.5 Summary

	Under the hood
	PDFs inside-out
	13.1 PDF, why and how?
	13.1.1 The ancestors of PDF
	13.1.2 The history of PDF
	13.1.3 PDF as an ISO standard
	13.1.4 PDF/X, PDF/A, PDF/E, PDF/UA, and other types of PDF

	13.2 Understanding the Carousel Object System
	13.2.1 Basic PDF objects
	13.2.2 The PDF file structure
	13.2.3 Climbing up the object tree

	13.3 Exploring the root of a PDF file
	13.3.1 Page layout, page mode, and viewer preferences
	13.3.2 Pages and page labels
	13.3.3 Outlines, destinations, and names
	13.3.4 AcroForms revisited

	13.4 Summary

	The imaging model
	14.1 Examining the content stream
	14.2 Path construction and painting operators
	14.2.1 Constructing paths
	14.2.2 Painting and clipping paths
	14.2.3 Convenience methods to draw shapes

	14.3 Overview of the graphics state methods
	14.3.1 Line characteristics
	14.3.2 Colors
	14.3.3 Changing the coordinate system
	14.3.4 Affine transformations using Java

	14.4 Overview of the text and text state methods
	14.4.1 Text state operators
	14.4.2 Text-positioning and text-showing operators
	14.4.3 Convenience methods for text

	14.5 Using java.awt.Graphics2D
	14.5.1 Drawing content to PdfGraphics2D
	14.5.2 Drawing text to PdfGraphics2D

	14.6 Summary

	Page content and structure
	15.1 Making content visible or invisible
	15.1.1 Optional content groups
	15.1.2 Adding structure to layers
	15.1.3 Optional content membership
	15.1.4 Changing the state of a layer with an action
	15.1.5 Optional content in XObjects and annotations

	15.2 Working with marked content
	15.2.1 Object data
	15.2.2 Section 508 and accessibility
	15.2.3 Adding structure

	15.3 Parsing PDFs
	15.3.1 Examining the content stream with PRTokeniser
	15.3.2 Processing content streams with PdfContentStreamProcessor
	15.3.3 Extracting text with PdfReaderContentParser and PdfTextExtractor
	15.3.4 Finding text margins
	15.3.5 Extracting images

	15.4 Summary

	PDF streams
	16.1 Finding and replacing image and font streams
	16.1.1 Adding a special ID to an Image
	16.1.2 Resizing an image in an existing document
	16.1.3 Listing the fonts used
	16.1.4 Replacing a font

	16.2 Embedding files into a PDF
	16.2.1 File attachment annotations
	16.2.2 Document-level attachments
	16.2.3 Go to embedded file action
	16.2.4 PDF packages, portable collections, or portfolios

	16.3 Integrating rich media
	16.3.1 Movie annotations
	16.3.2 3D annotations
	16.3.3 Embedding Flash into a PDF
	16.3.4 Establishing communication between Flex and PDF

	16.4 Summary

	Appendix A: Bibliography
	A.1 Published by Adobe Systems
	A.1.1 Specifications (PDF documents)
	A.1.2 Presentations (PDF documents)

	A.2 Published by the Association for Information and Image Management (AIIM)
	A.3 Published by the European Telecommunications Standards Institute (ETSI)
	A.4 Published by the International Organization for Standardization (ISO)
	A.5 Other publications

	Appendix B: Useful links
	B.1 iText-related links
	B.1.1 iText links
	B.1.2 iText in Action links

	B.2 PDF-related links
	B.3 Technical links
	B.3.1 Tools and products referred to in the book
	B.3.2 Fonts
	B.3.3 Accessibility
	B.3.4 Miscellaneous
	B.4 Other links
	B.4.1 Certificate authorities
	B.4.2 Movie links

	index
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Back cover

