

 Skip to main content

 iText pdf library

 Top menu

 	
 Open-Source

	
 Demo Lab

	
 Knowledge Base

	
 Support

	
 Blog

	
 Careers

	
 Contact

 Main navigation

 Toggle Navigation

 	
 Products

 	
 Products placeholder

 Products

 PDF SDK

 iText Suite
 iText Core
 Add-ons
 pdfCalligraph
 pdfHTML
 pdfOCR
 pdfOffice
 pdfOptimizer
 pdfRender
 pdfSweep
 pdfXFA
 RUPS
 Try the iText Demo Lab
 iText 5 (Legacy)
 iTextSharp (Legacy)
 iText 2 (Legacy)

 Document Solutions

 pdf2Data

 Image

 iText Suite 8.0.2: Advancing PDF Functionality with PDF/A-4 Creation, Enhanced Digital Signing, and Customizable Annotation Flattening

 This 8.0.2 release of iText Suite includes a ton of neat stuff, with Core support for PDF/A-4 creation, improved digital signing, and simple yet customizable annotation flattening. There's also updates to pdfHTML's advanced multicolumn support and flex containers, better font selection, and much more!

 Read more

	
 Solutions

 	
 Solutions placeholder

 Solutions

 Solving all your document needs

 PDF creation
 Automate document workflows
 Archiving digital documents with PDF/A
 Universal Accessibility with PDF/UA
 PDF Security
 Digital signatures
 Data extraction
 General Data Protection Regulation (GDPR)
 California Consumer Privacy Act (CCPA)
 Blockchain
 More

 Solutions per industry

 Solution tour

 Image

 iText DITO 2.3 is now available

 iText DITO 2.3, the latest version of our collaborative PDF creation solution has just been released. Read on for details on what's new in this version.

 Read more

	
 Developers

 	
 partners placeholders

 iText Community

 Developer resource center

 Downloads
 API Documentation
 Support
 Knowledge Base
 Technical Blog

 Community

 iText Community
 Contribute to iText
 Community guidelines
 iText on GitHub
 Report a vulnerability
 iText Certification Program

 Image

 Attacks on PDF certification, and what you can do about them

 In May 2021, a group of researchers at the Ruhr University Bochum (RUB) published an IEEE symposium paper on problems with certification signatures in PDF. The authors’ findings are summarized on the PDF Insecurity website. Since iText’s products are often used as part of digital signing workflows (including to create certification signatures), we felt compelled to comment. In this blog post, we’ll take you through some background on these new attacks, and explain what you can do about them.

 Read more

	
 Resources

 	
 Resources placeholder

 Insights

 eBooks
 Case studies
 White papers
 Webinars
 Marketing collateral
 Blog

 Image

 PDF portfolios and how to use them

 Some tips and use cases for using PDF portfolios to package many different files in a single PDF

 Read more

	
 Licensing

 	
 How to buy placeholder

 Licenses

 Discover our license models

 Open Source AGPL
 Commercial licenses

 Agreements

 Software license agreements
 Contributor license agreement
 Support agreement
 Privacy policy

 Image

 With our 30-day free trial, you can test the iText programmable PDF library and discover how it fits your needs.

 Get started

	
 Company

 	
 About placeholder

 About iText

 History
 Awards
 Careers
 Data, Privacy and Security
 ISO/IEC 27001:2017 Certified

 News & Events

 News
 Events

 iText partnerships

 Find a reseller
 iText Partnership Programs
 Become an iText reseller
 Become a development partner

 Image

 We're hiring!

 Are you looking for an interesting job opportunity?

Discover all current open job opportunities.

 Read more

	
 Request quote

	
 Try now

 Top menu

 	
 Open-Source

	
 Demo Lab

	
 Knowledge Base

	
 Support

	
 Blog

	
 Careers

	
 Contact

 Breadcrumb
 	
 Home

	
 blog

	
 technical notes

	
 investigating pdf shadow attacks depth pdf security using itext part 2

 Investigating PDF Shadow Attacks: In-Depth PDF Security using iText (Part 2)

Tue - 10/13/2020

Continuing our series of articles looking at PDF Shadow Attacks. While iText is immune to the published attacks, we present this series explaining what the attacks are, and what you can do about them. In this article, we'll explore the concept of incremental updates, and present some proof-of-concept code for detecting PDF Shadow Attack preparation with iText.

 Share this article

On July 22nd a team of researchers (for the most part from the Ruhr University Bochum (RUB), Germany) published their findings about a new class of attacks on PDF signatures they coined PDF Shadow Attacks. We invited Michael Klink, independent PDF expert and top StackOverflow contributor @mkl, on board as a technical consultant to put these vulnerabilities under the magnifying glass. The previous blog post in this series already gave a rough outline of these new types of attacks, and in this blog post we’ll drill into the specifics, explore to what degree iText is vulnerable to them, and finally show how iText 7 can help in dealing with such attacks.

 PDF Shadow Attacks

 The RUB researchers previously published their findings for other types of attacks back in early 2019[1]. This resulted in the hardening of many PDF signature validators, e.g. Adobe Acrobat Reader and iText, against incorrectly reporting manipulated signed PDFs as validly signed. This older research focused on means to manipulate signed PDFs once an attacker had already got their hands on the document.

The Shadow Attacks published in July focus on a different scenario; here the attackers already have a hand in the creation of the PDF before signing and can therefore plant invisible content in there. After signing, they then attempt to make this previously hidden content visible without causing the validators to throw any warnings, since they are misled by the fact that this content was actually already present in the originally signed document. These after-signing manipulations all are applied as incremental updates, i.e. by adding objects or changing references to objects only in data appended to the signed PDF.

Safe update?

Let’s start with the good news: iText does not fall victim to this class of attacks. As explained in the previous post in this series, all of the Shadow Attacks are based on incremental updates to the signed document, either by adding objects, or by changing references that don’t look suspicious to validators but do cause a change of the visible document content.

Let’s start with the good news: iText does not fall victim to this class of attacks.

The methods in iText 7 related to checking incremental updates, however, do not attempt to distinguish between innocent and suspicious changes at all. Instead, iText 7 conservatively considers all incremental updates to a document as changes. The notion of a safe incremental update does not exist in iText. Simply put, either the document is changed after the fact or it isn’t. There is no middle ground.

Two methods in particular from the SignatureUtil class merit some closer examination. When iText 7 is presented with manipulated sample PDFs from the PDF Insecurity website, it’s able to correctly identify that the documents were changed in some way after signing. If we call SignatureUtil.signatureCoversWholeDocument on those documents, iText returns false, meaning some objects in the document are not part of the signature.

The iText 7 SignatureUtil class also has a method to retrieve the revision of the document that was signed. If we call extractRevision on the manipulated PDFs, we don’t get back the latest document revision, but instead we get the document revision of when the documents were originally signed, just like we would expect.

Limited vulnerability?

The RUB researchers, however, go as far as to state that not distinguishing between safe and unsafe modifications in and of itself constitutes a limited vulnerability. They argue on page 15 of the report[2] that if “the same warning is raised in case of an allowed modification (e.g., commenting) as well as in case of unallowed modifications (attacks)” then “[…] victims are unable to distinguish between both cases”.

This would mean that, according to the researchers, a conservative approach such as the one implemented by iText is also considered a vulnerability to a lesser degree. In our opinion this terminology only makes sense if the software in question promises otherwise. If and only if the software promises to distinguish between safe and unsafe updates but then fails to do so, should this be considered a vulnerability.

iText 7 doesn’t promise to analyze changes introduced by incremental updates to PDFs. The only exception would be for retrieving LTV information, which, depending on the validation model, is only used if it appears in revisions of the document from after it was signed. We consider this to be the expected behavior of iText 7.

Of course, if some software uses iText for signature validation, but additionally promises to recognize allowed and disallowed changes, it would have to include additional measures to distinguish malicious documents from genuine ones. If such software would fail to accurately flag unsafe changes to a document, it would indeed constitute a limited vulnerability to the PDF Shadow Attacks.

Making a security lasagna with iText

PDF software vendors and manufacturers were informed well in advance by the researchers, giving them the opportunity to harden their software before the findings were made public. Adobe Acrobat, for example, is no longer vulnerable as of version 2020.009.20063 (cf. the Adobe Security Bulletin APSB20-24, published May 12th, 2020).

Nonetheless, the Shadow Attacks should not be considered ineffective yet. Software updates are notoriously slow to trickle down to end users’ devices, especially within large organizations or enterprises with strict policies and procedures for rollouts of software. To make matters worse, the researchers have not yet exhausted all available options at their disposal for forging documents!

A malicious user might prepare documents for them to be susceptible to PDF Shadow Attacks. So instead of naively signing every PDF document that comes your way, it would make sense to consider methods of flagging suspicious documents early on. One option would be to harden your application with additional heuristics for detecting and flagging such documents. This fits perfectly with the philosophy of defense in depth, where security controls are layered on top of another. No individual security control in and of itself infallible, but combined strong enough to provide strong security.

What would such heuristics look like? Well, for starters, what better PDF library to build it on than iText 7. In what follows, we’ll create a proof-of-concept for detecting PDF Shadow Attack preparation that could serve as a starting point for detecting malicious documents in your own applications.

Please be aware, though, that these code samples serve only as a guideline, and should not in any way be considered infallible mechanisms for detecting malicious intent. A generalized toolkit for finding clues that point to malicious intent in terms of Shadow Attacks most likely has to consider many more cases.

Detecting Preparations for “Hide” Shadow Attacks

In the case of the hide attack, one has to look for content hidden beneath other content, especially when the latter can somehow be made unreachable for a viewer. The RUB researchers give the obvious example of an image resource obscuring some text. After the document is signed, the overlay is then removed, revealing whatever an attacker might want you to believe was signed initially. Most viewers don’t warn users when content is removed after signing, only when new content was added.

To detect PDFs where text is overlaid by an image, one can simply enhance generic text extraction code a bit. First, the LocationTextExtractionStrategy needs to be enhanced to also be aware of images, and to check for text overlaid by images.

 class Strategy extends LocationTextExtractionStrategy {
 @SuppressWarnings("unchecked")
 public Strategy(int pageNr) {
 super();
 this.pageNr = pageNr;
 try {
 field = LocationTextExtractionStrategy.class.getDeclaredField("locationalResult");
 field.setAccessible(true);
 locationalResult = (List) field.get(this);
 } catch (NoSuchFieldException | SecurityException | IllegalArgumentException | IllegalAccessException e) {
 throw new RuntimeException("Failue retrieving LocationTextExtractionStrategy member locationalResult", e);
 }
 }

 @Override
 public void eventOccurred(IEventData data, EventType type) {
 if (type == EventType.RENDER_IMAGE) {
 ImageRenderInfo renderInfo = (ImageRenderInfo) data;
 Matrix imageCtm = renderInfo.getImageCtm();
 AffineTransform inverseCtm = inverse(imageCtm);
 List notCovered = new ArrayList(locationalResult.size());
 for (TextChunk chunk : locationalResult) {
 Point checkPoint = getCheckPoint(chunk.getLocation());
 Point pullback = inverseCtm.transform(checkPoint, null);
 if (!isInUnitSquare(pullback))
 notCovered.add(chunk);
 }
 if (notCovered.size() < locationalResult.size()) {
 locationalResult.removeAll(notCovered);
 String text = getResultantText();
 HiddenText hiddenText = new HiddenText(pageNr, imageCtm, text, renderInfo.getImage());
 hiddenTexts.add(hiddenText);
 locationalResult.clear(); // Or not?
 locationalResult.addAll(notCovered);
 }
 }
 super.eventOccurred(data, type);
 }

 Point getCheckPoint(ITextChunkLocation location) {
 Vector start = location.getStartLocation();
 Vector end = location.getEndLocation();
 return new Point((start.get(Vector.I1) + end.get(Vector.I1)) / 2, (start.get(Vector.I2) + end.get(Vector.I2)) / 2);
 }

 boolean isInUnitSquare(Point point) {
 double x = point.getX();
 double y = point.getY();
 return 0 getHiddenTexts() {
 return hiddenTexts;
 }

 final int pageNr;
 final List hiddenTexts = new ArrayList();
 final Field field;
 final List locationalResult;
 }

 class Strategy : LocationTextExtractionStrategy
 {
 public Strategy(int pageNr)
 {
 PageNr = pageNr;
 FieldInfo field = typeof(LocationTextExtractionStrategy).GetField("locationalResult", BindingFlags.NonPublic | BindingFlags.Instance);
 locationalResult = (List) field.GetValue(this);
 }

 public override void EventOccurred(IEventData data, EventType type)
 {
 if (type == EventType.RENDER_IMAGE)
 {
 ImageRenderInfo renderInfo = (ImageRenderInfo)data;
 Matrix imageCtm = renderInfo.GetImageCtm();
 AffineTransform inverseCtm = Inverse(imageCtm);
 List notCovered = new List(locationalResult.Count);
 foreach (TextChunk chunk in locationalResult)
 {
 Point checkPoint = GetCheckPoint(chunk.GetLocation());
 Point pullback = inverseCtm.Transform(checkPoint, null);
 if (!IsInUnitSquare(pullback))
 notCovered.Add(chunk);
 }
 if (notCovered.Count < locationalResult.Count)
 {
 locationalResult.RemoveAll(notCovered.Contains);
 String text = GetResultantText();
 HiddenText hiddenText = new HiddenText(PageNr, imageCtm, text, renderInfo.GetImage());
 HiddenTexts.Add(hiddenText);
 locationalResult.Clear(); // Or not?
 locationalResult.AddRange(notCovered);
 }
 }
 base.EventOccurred(data, type);
 }

 Point GetCheckPoint(ITextChunkLocation location)
 {
 Vector start = location.GetStartLocation();
 Vector end = location.GetEndLocation();
 return new Point((start.Get(Vector.I1) + end.Get(Vector.I1)) / 2, (start.Get(Vector.I2) + end.Get(Vector.I2)) / 2);
 }

 bool IsInUnitSquare(Point point)
 {
 double x = point.GetX();
 double y = point.GetY();
 return 0 HiddenTexts { get; private set; } = new List();
 List locationalResult;
 }

 (Code from inner class in ContentAnalyzer.java and inner class Strategy in ContentAnalyzer.cs for .NET.)

Unfortunately locationalResult is a private member of the LocationTextExtractionStrategy so it is not publicly accessible. This can be circumvented by using reflection. If your runtime environment does not allow reflection, consider just duplicating the original iText class in your code base, and manually add the above changes directly.

HiddenText is a simple helper class:

 public class HiddenText {
 public HiddenText(int page, Matrix imageMatrix, String text, PdfXObject xobject) {
 this.page = page;
 this.imageMatrix = imageMatrix;
 this.text = text;
 this.xobject = xobject;
 }

 public int getPage() {
 return page;
 }

 public Matrix getImageMatrix() {
 return imageMatrix;
 }

 public String getText() {
 return text;
 }

 public PdfXObject getXobject() {
 return xobject;
 }

 final int page;
 final Matrix imageMatrix;
 final String text;
 final PdfXObject xobject;
}

public class HiddenText
 {
 public HiddenText(int page, Matrix imageMatrix, String text, PdfXObject xobject)
 {
 Page = page;
 ImageMatrix = imageMatrix;
 Text = text;
 Xobject = xobject;
 }

 public int Page { get; private set; }
 public Matrix ImageMatrix { get; private set; }
 public String Text { get; private set; }
 public PdfXObject Xobject { get; private set; }
 }

(Code from HiddenText.java and HiddenText.cs for .NET.)

Now you can retrieve a list of images covering some text on a given page like this:

 class Strategy extends LocationTextExtractionStrategy {
 @SuppressWarnings("unchecked")
 public Strategy(int pageNr) {
 super();
 this.pageNr = pageNr;
 try {
 field = LocationTextExtractionStrategy.class.getDeclaredField("locationalResult");
 field.setAccessible(true);
 locationalResult = (List) field.get(this);
 } catch (NoSuchFieldException | SecurityException | IllegalArgumentException | IllegalAccessException e) {
 throw new RuntimeException("Failue retrieving LocationTextExtractionStrategy member locationalResult", e);
 }
 }

 @Override
 public void eventOccurred(IEventData data, EventType type) {
 if (type == EventType.RENDER_IMAGE) {
 ImageRenderInfo renderInfo = (ImageRenderInfo) data;
 Matrix imageCtm = renderInfo.getImageCtm();
 AffineTransform inverseCtm = inverse(imageCtm);
 List notCovered = new ArrayList(locationalResult.size());
 for (TextChunk chunk : locationalResult) {
 Point checkPoint = getCheckPoint(chunk.getLocation());
 Point pullback = inverseCtm.transform(checkPoint, null);
 if (!isInUnitSquare(pullback))
 notCovered.add(chunk);
 }
 if (notCovered.size() < locationalResult.size()) {
 locationalResult.removeAll(notCovered);
 String text = getResultantText();
 HiddenText hiddenText = new HiddenText(pageNr, imageCtm, text, renderInfo.getImage());
 hiddenTexts.add(hiddenText);
 locationalResult.clear(); // Or not?
 locationalResult.addAll(notCovered);
 }
 }
 super.eventOccurred(data, type);
 }

 Point getCheckPoint(ITextChunkLocation location) {
 Vector start = location.getStartLocation();
 Vector end = location.getEndLocation();
 return new Point((start.get(Vector.I1) + end.get(Vector.I1)) / 2, (start.get(Vector.I2) + end.get(Vector.I2)) / 2);
 }

 boolean isInUnitSquare(Point point) {
 double x = point.getX();
 double y = point.getY();
 return 0 getHiddenTexts() {
 return hiddenTexts;
 }

 final int pageNr;
 final List hiddenTexts = new ArrayList();
 final Field field;
 final List locationalResult;
 }

 class Strategy : LocationTextExtractionStrategy
 {
 public Strategy(int pageNr)
 {
 PageNr = pageNr;
 FieldInfo field = typeof(LocationTextExtractionStrategy).GetField("locationalResult", BindingFlags.NonPublic | BindingFlags.Instance);
 locationalResult = (List) field.GetValue(this);
 }

 public override void EventOccurred(IEventData data, EventType type)
 {
 if (type == EventType.RENDER_IMAGE)
 {
 ImageRenderInfo renderInfo = (ImageRenderInfo)data;
 Matrix imageCtm = renderInfo.GetImageCtm();
 AffineTransform inverseCtm = Inverse(imageCtm);
 List notCovered = new List(locationalResult.Count);
 foreach (TextChunk chunk in locationalResult)
 {
 Point checkPoint = GetCheckPoint(chunk.GetLocation());
 Point pullback = inverseCtm.Transform(checkPoint, null);
 if (!IsInUnitSquare(pullback))
 notCovered.Add(chunk);
 }
 if (notCovered.Count < locationalResult.Count)
 {
 locationalResult.RemoveAll(notCovered.Contains);
 String text = GetResultantText();
 HiddenText hiddenText = new HiddenText(PageNr, imageCtm, text, renderInfo.GetImage());
 HiddenTexts.Add(hiddenText);
 locationalResult.Clear(); // Or not?
 locationalResult.AddRange(notCovered);
 }
 }
 base.EventOccurred(data, type);
 }

 Point GetCheckPoint(ITextChunkLocation location)
 {
 Vector start = location.GetStartLocation();
 Vector end = location.GetEndLocation();
 return new Point((start.Get(Vector.I1) + end.Get(Vector.I1)) / 2, (start.Get(Vector.I2) + end.Get(Vector.I2)) / 2);
 }

 bool IsInUnitSquare(Point point)
 {
 double x = point.GetX();
 double y = point.GetY();
 return 0 HiddenTexts { get; private set; } = new List();
 List locationalResult;
 }

 Using this heuristic, you would then be able to detect PDFs within your application or workflow that might merit some closer inspection.

Detecting malicious intent

It’s one thing to detect overlaid content in a PDF document, but it’s something else entirely to gauge malicious intent on the part of the document’s author or producer. This is harder, if not impossible, to do for an algorithm than it is for a human being. There are completely legitimate use cases for using overlays in PDF. One such case is for PDFs that were processed by OCR software. An OCR tool usually adds the recognized characters in a separate layer underneath the original, scanned image, enabling users to copy and paste text from the document.

With this blog post, we covered the implementation of a heuristic for detecting and flagging PDFs that have the potential to be misused by someone with malicious intent. We envision this heuristic as being part of a larger workflow for vetting incoming documents, also making note of the caveat surrounding the legitimate use of overlays in PDFs.

Bearing in mind that the researchers uncovered two additional methods of achieving a similar goal, in the next post we’ll tackle the implementation of heuristics for both the replace and hide-and-replace Shadow Attacks. Stay tuned!

[1] See <https://www.pdf-insecurity.org/signature/signature.html> and <https://itextpdf.com/en/blog/technical-notes/avoiding-pdf-digital-signature-vulnerabilities-itext> for details.

[2] Vulnerability Report: Attacks bypassing the signature validation in PDF (2020-03-02)

 Discover Part 1

 Discover Part 3

 security
 Digital signatures
 iText 7
 iText 5
 Java
 .NET

 Expand sidebar

 Share this article

 Category

 iText news

 Technical notes

 Popular tags

 iText 7

 iText

 Digital signatures

 Testimonial

 iText Suite release

 iText 5

 PDF/UA

 national digital identity programs

 Related content

 Image

 RSASSA-PSS support added to iText 8

 Fri - 06/23/2023

 Our second guest blog from Matthias Valvekens looks at RSASSA-PSS - a parameterized signature scheme now supported in the open-source iText Core library. Matthias is the current chair of the PDF Association's Digital Signatures Working Group, and we are proud to present his expert analysis of the RSA cryptosystem, and how PSS differs from the "legacy" PKCS #1 v1.5 padding scheme.

 Read full article

 Image

 iText 8 now supports the latest ISO PDF extensions for digital signing

 Wed - 06/21/2023

 The ability to apply and validate secure PDF digital signatures has long been a particular strength of the open-source iText Core library. We’ve kept pace with advances such as support for PAdES and PDF 2.0, and so we’re proud to present a guest blog detailing iText 8’s support for the latest ISO extension standards for digital signing.

 Read full article

 Image

 How to solve “Unknown encryption type R = 6” errors

 Fri - 06/02/2023

 If you’ve ever encountered this error when opening or validating a PDF with iText 5 and earlier versions, then this article is for you! We’ll explore what this error message means, the reasons why you might encounter it, and the ways you can resolve it.

 Read full article

 Ready to use iText?

 As always, if you have any technical questions, you can contact support with your valid support subscription or head over to one of our community support pages on Stack Overflow to see if your question has already been answered for our open source AGPL users.

 Get started with iText

 Refer to API Documentation

 Contact

 Still have questions?

We're happy to answer your questions. Reach out to us and we'll get back to you shortly.

 Contact us

 Stay updated

 Join 11,000+ subscribers and become an iText PDF expert by staying up to date with our new products, updates, tips, technical solutions and happenings.

 Subscribe Now

 iText pdf logo

 	

 facebook

	

 twitter

	

 youtube

	
 linkedin

 	
 stackoverflow

	
 Github

 	
 Github

	
 Github

 Products & solutions

 	
 PDF library: iText Suite

	
 Template-based data extraction: pdf2Data

 Tools

 	
 License Portal

	
 Knowledge Base

	
 Downloads

	
 Demo Lab

 Licensing

 	
 Open source AGPL

	
 Commercial licenses

	
 Support agreement

	
 Software license agreements

 Resources

 	
 API documentation

	
 Downloads

	
 Resource Center

	
 Report a Vulnerability

 About iText

 	
 News

	
 Careers

	
 Contact us

	
 Resellers

	
 ISO/IEC 27001:2017 Certified

 Footer

 	
 Cookies policy

	
 Privacy Policy

	
 Terms & conditions

 Powered by Apryse, Producer of the Market's Leading PDF SDK

